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1. Polytopes and Linear
Programming
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Linear Programming

minimize c · x

Such that
Ax ≤ b

• P = {x | Ax ≤ b } is called a (convex)
polyhedron

• Bounded polyhedra are called (convex)
polytopes.
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Polytopes

�

�

� �

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

ed
gefacet

��

vertex

• Face: ∩ with
supporting
hyperplane

• conv(X) = {λX |
λ ≥ 0,

∑

i λi = 1 }.
• P =

conv(vertices(P ))
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The Simplex Method
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d(u, v) ≡ length of
the shortest edge-
path from u to v.

diameter ≡ max(u,v) d(u, v)
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The Hirsch Conjecture

Conjecture (Hirsch, 1957)
Any polytope defined by n inequalities in d
dimensions has diameter at most n− d.
Theorem (Kalai, 1992)
Any polytope defined by n inequalities in d
dimensions has diameter at most

2(2d)log2(n) .
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2. From Paths to Polytopes
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The Grand Program

Idea For each combinatorially distinct long path,
try to build a polytope out of it.

Problem One path pretty much looks like the next.
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Polarity: Paths to Path Complexes
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• polar: P ∗ = conv{ y | ∀x ∈ P, y · x ≤ 1 }

• vertices↔ facets, inclusion inverted.
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Path Complexes

Simplicial Complex Family of d-subsets of { 1 . . . n }

Path Complex Simplicial complex whose dual
graph is a path.
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Enumerating Path Complexes [BBHK]

Non Revisiting Paths
1

3

2

1

2

1

3

1

label sequence: 12131

• Each pivot
introduces a new
vertex.

• Label first facet in
order of departure.
Labels follow pivots.
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Label Sequences

Directed Paths Label sequences 〈 sj 〉 such that
• sj 6= sj−1, and
• If a < b, a occurs before b.

End Disjoint Paths (Restricted Growth Functions)

max
j

sj = d .

t(d, l) ≡ #e.d.d. (d, l)-paths,

t(d, l) =

{

l − 1

d− 1

}
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Symmetric Paths

1(2)

2(3)

3(1)

1(2)

2(3)

1(2)

3(1)

1213 ≡ 1232

1

2

3

1

2

3

1

1231

• symmetric ≡ same label seq. from both ends.
• #unlabelled paths = (t(d, l) + s(d, l))/2

JGA 2002 – p. 14/38



< ↑ >

Revisiting Paths
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• Model revisits by identifying pairs of vertices
• Characterization of 0 and 1 revisit paths in

[BBHK]
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3. Chirotopes: Abstract Point
Configurations
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Searching for polytopes

• Nominally, an n-vertex d-polytope is a point in
R

nd.

• Space is big.
• The pieces corresponding to a polytope are

not nice:
The realization spaces of polytopes are
equivalent to the solutions of arbitrary
sets of polynomial inequalities
(Richter-Gebert,Mnëv).

• Reduce to combinatorial search +
realizability
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Encoding Point Sets

basis ≡ B ⊂ R
(d+1)×d

χ(B) = sign det

[

B
1
...
1

]

Idea: Which side of the
hyperplane defined by
{ b1 . . . bd } is bd+1 on.

b1 b2b3

χ(B) = 0

b1

b2

b3

χ(B) = +1 = ccw
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(Realizable) Chirotopes

The chirotope χ of P ⊂ R
d is the map

B ∈ P d+1 → χ(B) ∈ { 0,±1 }

[i1, i2, . . . , id+1] ≡ χ({ pi1, . . . pid+1
})

p1

p2

p3

p4

[1, 2, 3] = −1

[1, 2, 4] = −1

[1, 3, 4] = +1

[2, 3, 4] = −1

JGA 2002 – p. 19/38



< ↑ >

Alternating Sign Maps

Given N = { 1 . . . n }, a rank r = d + 1,
χ : N r → {−1, 0, +1 } is

alternating if
[b1 . . . i . . . j . . . br] = −1 · [b1 . . . j . . . i . . . br]
(determinant w.r.t. row swap).

uniform if ∀B χ(B) 6= 0.
(Non-degeneracy)
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(Combinatorial) Chirotopes

A uniform alternating sign map χ is a (uniform)
chirotope if

∀λ ∈ N r−2,∀{ a, b, c, d } ⊂N \ λ,

{+1,−1 } ⊂ {[λ a b] · [λ c d],

−[λ a c] · [λ b d],

[λ a d] · [λ b c]}

(3-term Plücker-Graßmann Identity)
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Matroid Polytopes

Given a uniform
chirotope (N,χ):

• F ⊂ Nd is a facet if
∀{ j, k } ⊂ N \ F ,
[F j] = [F k].

• (N,χ) is a matroid
polytope if ∀x ∈ N ,
x is contained in
some facet.

1 2

3
4

5

[1 2 3] = [1 2 4]

= [1 2 5]
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Matroid Polytope Completion

Partial Chirotope A map χ(B) : N r → {−1, +1, ? }

Matroid Polytope Completion

Given: A partial chirotope (N,χ), and some
subset F of the facets.

Question: Is there a chirotope (N,χ∗)
consistent with χ such that each F ∈ F is a
facet of χ∗.
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Complications

Geodesic Embedding Given s, t ∈ F , add
constraint d(s, t) = k.

MPC is NP-Hard in rank 3 with F = ∅.
Tschirnitz CCCG2001

Realizability is also NP-Hard (Richter-Gebert
1995, Mnëv). Non-realizable instances for
d = 3, n = 10 and d = 4, n = 9
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4. Direct Approaches to Chirotope
Completion
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Approach I: Backtracking

• oms: Backtracking algorithm to find
“satisfying” basis signs
1. Choose a sign
2. Find the consequences
3. (Maybe) recurse

• 3 sets of constraints: Plücker, boundary,
distance

• Analogous to Davis-Putnam SAT Procedure
• Singleton clause ≡ forced variable
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Backtracking Tree

χ = +000 . . . 0

χ = ++−0 . . . 0

(χ1 ← 1)⇒ χ2 = −1

χ = +−0+ . . . 0

(χ1 ← −1)⇒

χ3 = 1

χ = +−++ . . . +

χ9 = 1

contradiction

(χ9 ← −1)⇒

χ0 = −1
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Forcing Variables

{−1, +1 } ⊂ {x1 · x2,−(x3 · x4), x5 · x6 } (Plücker)

x1 = x2 = x3 · · · = xn−d (On Boundary)

{−1, +1 } ⊂ {x1, x2, . . . xn−d } (Off Boundary)

¬F [i] ∨ ¬F [j] ∨ ¬F [k] . . . (Diameter)

χ0 = 1

facet 7

χ7 = −1

χ11 = 1 χ57 = −1

χ42 = 1 ¬ facet 23

facet 17 ¬ facet 126
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Keeping your distance

1 2

3 4

Pivot Graph

s
t

• Maintain fringed
shortest path tree(s)

• Forbid short cuts
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Approach II: (0, 1)-LP

Plücker Take convex hull of valid (0, 1) points in

R
6. Lift 16 inequalities to R

( n

d+1).

On Boundary Equalities are easy.

Off Boundary 1 ≤
∑

xi ≤ n− d− 1

Diameter Forbid all possible short paths.
• Enumerate paths in pivot graph.
• Generate 2 inequalities for each path.

For d = 4, n = 11, roughly 160000 inequalities in
410 binary variables, 10 nonzeros per row.
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oms vs. cplex (I)

missing facets
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

tim
e 

(s
)

5

10
15
25
40
60
90

130
185
265
375
535
760

(4,9,5) example 1

oms

cplex
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oms vs. cplex (II)

missing facets
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

tim
e 

(s
)

100
200
400
700

1300
2300
4100
7200

12600
22100
38700
67700

(4,9,5) example 2

oms

cplex
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oms vs. cplex (III)

vertices
8 9 10 11 12 13 14 15 16 17 18 19 20

tim
e 

(s
) 20

40
60
80

120
160

Cyclic Polytopes

cplex d=5

oms d=5

oms d=6

oms d=7
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5. Incremental Construction:
Hyperline Sequences
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Sweeping Around a Hyperline

• Sweep hyperplane around d− 1 points.
• Record the (cyclic) order points are reached.

1 −

2

3

4

5

6

7 +

hls(1) = (−6,−4,+7,−5,+2,+3)

JGA 2002 – p. 35/38



< ↑ >

Hyperline Sequences

• N = {1 . . . n}.

• A hyperline sequence of λ ∈ N d−1,

hls(λ) = (σ1µ1 σ2µ2 . . . σn−d+1µn−d+1)

Where

σ ∈ {+1,−1 }n−d+1

µ ∈ permutations(N \ λ)
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Hyperline Configurations

• hyperline configuration ≡ map from λ ∈ N d−1

to hls(λ)

• A hyperline configuration encodes a chirotope
as follows

j < k ⇔ [λi σijµij σikµik] = +

• Plücker equations are implicit.
• Incremental algorithm (with backtracking) due

to Bokowski and Guedes de Oliviera tests for
flat embedding.
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Sign Alternation

1 2 3 4 5 non-alternating
1 3 −2 4 5

1 4 −2 −3 5
...
2 4 1 −3 5 alternating

2

1
3

5

4

Proposition
A hyperline is on the boundary if and only if it has
a non-alternating sign sequence.
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Incremental Construction

1 2 3 4

1 3 -2 4

1 2 3 -5 4

1 3 -2 4

1 2 3 4 -5

1 3 -2 4

�
1 2 3 4 -5

1 3 -2 4 -5

choose gap, update intervals, check constr., recurse
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Hyperline versus Chirotope Search

Hyperline search algorithm, modified version of
[BGdO], uses alternation test.

path type
1 2 3 4 5 6

no
de

s

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

completing (4,9,5) paths

oms

hls
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6. Concluding Remarks
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Conclusions

• So far, no presented approach can solve
(4, 11) examples from only a path.

• Given most of the boundary, moderate sized
problems can be tackled.

• Memory is the main limitation.
• Specialized backtracking solver seems

competitive with (a) commercial ILP solver
and incremental construction.
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Remarks: Background

• Working directly with boundary harder?:
• No algorithm to recognize spheres.

(Noviko, 1960).
• Computational Experience of Holt.

• Simplicial polytopes ⊂ UMP ⊂ simplicial
spheres

• Hirsch conjecture is false for spheres (d = 12,
Manni)

• Both hyperline configurations and chirotopes
are axiomatizations of oriented matroids
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Remarks: Software

• Web test-drive available via anonpbs
http://lids.cs.unb.ca/online

• oms has been parallelized using Marzetta’s
ZRAM toolkit. Speedup is about 85%. Further
improvements possible
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