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1. Polytopes and Linear
Programming



Linear Programming

minimize c-x
Such that
Ax < b

P={x| Ax < b} is called a (convex)
polyhedron

Bounded polyhedra are called (convex)
polytopes.



Polytopes

- Face: N with
supporting
hyperplane

c conv(X) ={ X |
A>0,)> . N=1}.

@ P p—
conv(vertices(P))




The Simplex Method
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100 110 the shortest edge-
D path from v to v.
simplex path

diameter = max(, ) d(u, v)




The Hirsch Conjecture

Conjecture (Hirsch, 1957)
Any polytope defined by n inequalities in d
dimensions has diameter at most n — d.

Theorem (Kalal, 1992)
Any polytope defined by n inequalities in d
dimensions has diameter at most

Q(Qd)logg(n) :



2. From Paths to Polytopes



The Grand Program

Idea For each combinatorially distinct long path,
try to build a polytope out of It.

Problem One path pretty much looks like the next.



Polarity: Paths to Path Complexes

 polar: P* =conv{y |Vx € Py-x <1}
» vertices « facets, inclusion inverted.



Path Complexes

Simplicial Complex Family of d-subsetsof {1...n }

Path Complex Simplicial complex whose dual
graph is a path.




Enumerating Path Complexes [BBHK]

Non Revisiting Paths < Each pivot
Introduces a new
vertex.

- Label first facet In
order of departure.
Labels follow pivots.

[

label sequence: 1213



|_abel Sequences

Directed Paths Label sequences (s, ) such that
s; # sj—1, and
If a < b, a occurs before b.

End Disjoint Paths (Restricted Growth Functions)

maxs; = d .
J

t(d,l) = #e.d.d. (d,l)-paths,

t(d, 1) = {2:11}



Symmetric Paths

/\%\ /\/\
\/ 23

1213 = 1232

symmetric = same label seq. from both ends.
#unlabelled paths = (¢(d, 1) + s(d,1))/2

<T>



Revisiting Paths

- Model revisits by identifying pairs of vertices

- Characterization of 0 and 1 revisit paths In
[BBHK]
>

<1



3. Chirotopes: Abstract Point
Configurations



Searching for polytopes

Nominally, an n-vertex d-polytope is a point in
R™,
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Searching for polytopes

Nominally, an n-vertex d-polytope is a point in
R",

Space Is big.

The pieces corresponding to a polytope are

not nice:

The realization spaces of polytopes are
equivalent to the solutions of arbitrary
sets of polynomial inequalities
(Richter-Gebert,Mnév).



Encoding Point Sets

S (d+1)xd
basis= B CR x(B) =0

1
x(B) = sign det {B E } b1

1
Idea: Which side of the \\ by

hyperplane defined by
{by...b5} 1S bgyq ON.




(Realizable) Chirotopes

The chirotope y of P ¢ R? is the map

B e P — y(B) € {0,+1}
[i17i27 e ,’id+1] = X({pm o Pigiy })

P1 1,2,3] = -1
1,2,4] = —1
P4 = L

Dy :__,3,4: = 41

p3 _2,3,4_ — _:_




Alternating Sign Maps

Given N ={1...n},arankr =d + 1,
x:N"—{—-1,0,+1}is

alternating |If
by...0...7...b,]==1-|by...5...1...b,]
(determinant w.r.t. row swap).

uniform if VB x(B) # 0.
(Non-degeneracy)




(Combinatorial) Chirotopes

A uniform alternating sign map y Is a (uniform)

chirotope If

YA e N2 V{abc,d} CN\ X
A\ab-

\acl-

{+1, -1} {

Ncd

A\ bd

ANad]-|AbCc]

(3-term Plucker-Graldmann Identity)



Matroid Polytopes

Given a uniform 9
chirotope (N, y):

F c N%is a facet if
V{j,k} CN\F,
' j] = |F K.

(N, x) Is a matroid 1

polytope if Vx € N, 123] =[12 4]
x IS contained In

some facet.




Matroid Polytope Completion

Partial Chirotope A map x(B) : N — {—1,+1,7}
Matroid Polytope Completion

Given: A partial chirotope (/V, x), and some
subset F of the facets.

Question: Is there a chirotope (N, x*)
consistent with y such that each F' € Fis a
facet of y*.



Complications

Geodesic Embedding Given s,t € F, add
constraint d(s,t) = k.

MPC is NP-Hard in rank 3 with F = 0.
Tschirnitz CCCG2001

Realizability IS also NP-Hard (Richter-Gebert
1995, Mnév). Non-realizable instances for
d=3, n=10andd=4,n=9



4. Direct Approaches to Chirotope
Completion



Approach I: Backtracking

ons:. Backtracking algorithm to find
“satisfying” basis signs

1. Choose a sign

2. Find the consequences

3. (Maybe) recurse
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Approach I: Backtracking

ons:. Backtracking algorithm to find

“satisfying” basis signs

1. Choose a sign

2. Find the consequences

3. (Maybe) recurse

3 sets of constraints: Plicker, boundary,

distance

Analogous to Davis-Putnam SAT Procedure
Singleton clause = forced variable



Backtracking Tree

A

x = +000...0

(X1 1) = x2=—1 E ; (X1 ;31):=>

X9 = 1

AY

contradiction




Forcing Variables

{—1,4+1} C {21 29, —(x3-24), 25 26} (Pliicker)

T1 =29 =T33 = Tp_d (On Boundary)
{—1,4+1} C{x,29,...20_q} (Off Boundary)
- Fi| vV -Fg vV -Flk| ... (IEWEED
e X7 = —1
facet 7|
- X11 = 1|—| x57 = —1
Xo=1 ~ | Xa2 = I|— - facet 23

™~

|_facet 17 |=| — facet 126




Keeping your distance

1 2

- Maintain fringed
shortest path tree(s)

» Forbid short cuts

Pivot Graph



Approach Il: (0,1)-LP

Plucker Take convex hull of valid (0, 1) points in
RS. Lift 16 inequalities to R{).

For d = 4, n = 11, roughly 160000 inequalities Iin

410 binary variables, 10 nonzeros per row.
<T>
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Approach Il: (0,1)-LP

Plucker Take convex hull of valid (0, 1) points in
RS. Lift 16 inequalities to R{).

On Boundary Equalities are easy.

Off Boundary 1 < ) z; <n—d—1

Diameter Forbid all possible short paths.

Enumerate paths in pivot graph.
Generate 2 inequalities for each path.

For d = 4, n = 11, roughly 160000 inequalities Iin
410 binary variables, 10 nonzeros per row.

<T>



oms vs. cplex (1)

(4,9,5) example 1

—HQ—QQ—H—H—@—H—@—@—@—@—@JM’D’D

3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21
missing facets




oms vs. cplex (11)

(4,9,5) example 2

NN /N
N e E e e N e D e

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
missing facets




oms vs. cplex (111)

Cyclic Polytopes

[
14

vertices




5. Incremental Construction:
Hyperline Sequences



Sweeping Around a Hyperline

Sweep hyperplane around d — 1 points.
Record the (cyclic) order points are reached.

hls(1) = (—6,—4,+7, —5,+2, +3)



Hyperline Sequences

N={1...n}.
A hyperline sequence of A ¢ N4,

hlS()\) — (0'1,U1 O2M2 . .. O'n—dJrl:un—dJrl)
Where

= {_|_17 1 }n—d—|—1
u € permutations(N \ \)



Hyperline Configurations

hyperline configuration = map from A € N1
to hls(\)



Hyperline Configurations
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jg<k < [Noijpij o] =+
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Hyperline Configurations

hyperline configuration = map from A € N¢-!
to hls(\)

A hyperline configuration encodes a chirotope
as follows

J<k & |\oijij otk =+

Plucker equations are implicit.

Incremental algorithm (with backtracking) due
to Bokowskl and Guedes de Oliviera tests for

flat embedding.

<T>



Sign Alternation

2
1 2| 3 4 5 non-alternating
1 3|-2 45 o
I 4)—-2 =3 5 1
: 3
2 4| 1 —3 5 alternating 4

Proposition
A hyperline is on the boundary if and only if it has
a non-alternating sign sequence.

<T>



Incremental Construction

1 21 3
1 31| -2 4
e N\
1 21 3 |-B] 4 1 211 3 4 |-5
1 31-2 4 1 31| -2 4
/\ -,
1 2113 4 |-5
1 3| -2 4 |-5

choose gap, update intervals, check constr., recurse

<T>

JGA 2002 — p. 39/38



Hyperline versus Chirotope Search

Hyperline search algorithm, modified version of
[BGdO], uses alternation test.

al



6. Concluding Remarks



Co

nclusions

So far, no presented approach can solve
(4,11) examples from only a path.

Given most of the boundary, moderate sized
problems can be tackled.

Memory is the main limitation.

Specialized backtracking solver seems
competitive with (a) commercial ILP solver
and incremental construction.
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(Noviko, 1960).

Computational Experience of Holt.
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Remarks: Background

Working directly with boundary harder?:

No algorithm to recognize spheres.
(Noviko, 1960).

Computational Experience of Holt.

Simplicial polytopes € UMP C simplicial
spheres

Hirsch conjecture Is false for spheres (d = 12,
Manni)

Both hyperline configurations and chirotopes
are axiomatizations of oriented matroids



Remarks: Software

Web test-drive available via anonpbs
http://li1ds.cs.unb.ca/online

ons has been parallelized using Marzetta'’s

ZRAM toolkit. Speedup is about 85%. Further
Improvements possible



	hypertarget {hsec:0}{Overview}
	hypertarget {hsec:	hehypersec }{	hehypersec . Polytopes and Linear Programming}
	Linear Programming
	Polytopes
	The Simplex Method
	The Hirsch Conjecture
	hypertarget {hsec:	hehypersec }{	hehypersec . From Paths to Polytopes}
	The Grand Program
	Polarity: Paths to Path Complexes
	Path Complexes
	Enumerating Path Complexes {
ormalsize [BBHK]}
	Label Sequences
	Symmetric Paths
	Revisiting Paths
	hypertarget {hsec:	hehypersec }{	hehypersec . Chirotopes: Abstract Point Configurations}
	Searching for polytopes
	Searching for polytopes
	Searching for polytopes
	Searching for polytopes

	Encoding Point Sets
	(Realizable)
Chirotopes
	Alternating Sign Maps
	(Combinatorial)
Chirotopes
	Matroid Polytopes
	Matroid Polytope Completion
	Complications
	hypertarget {hsec:	hehypersec }{	hehypersec . Direct Approaches to Chirotope Completion}
	Approach I: Backtracking
	Approach I: Backtracking
	Approach I: Backtracking

	Backtracking Tree
	Forcing Variables
	Keeping your distance
	Approach II: $(0,1)$-LP
	Approach II: $(0,1)$-LP
	Approach II: $(0,1)$-LP

	oms vs. cplex (I)
	oms vs. cplex (II)
	oms vs. cplex (III)
	hypertarget {hsec:	hehypersec }{	hehypersec . Incremental Construction: Hyperline Sequences}
	Sweeping Around a Hyperline
	Hyperline Sequences
	Hyperline Configurations
	Hyperline Configurations
	Hyperline Configurations
	Hyperline Configurations

	Sign Alternation
	Incremental Construction
	Hyperline versus Chirotope Search
	hypertarget {hsec:	hehypersec }{	hehypersec . Concluding Remarks}
	Conclusions
	Remarks: Background
	Remarks: Background
	Remarks: Background
	Remarks: Background

	Remarks: Software

