What is a structural representation?
A proposal for an event-based representational formalism

Sixth Variation *

Lev Goldfarb, David Gay, Oleg Golubitsky, Dmitry Korkin, lan Scrimger

Faculty of Computer Science
University of New Brunswick
Fredericton, Canada

July 17, 2008

[W]e may again recall what Einstein stressed: that given a sufficiently powerful formal
assumption, a fertile and comprehensive theory may ... be constructed without prior
attention to the detailed facts, or even before they are known.

L. L. Whyte, Internal Factors in Evolution, 1965

Abstract

We outline a formalism for structural, or symbolic, representation, the necessity of
which has been acutely felt not just in artificial intelligence and pattern recognition,
but also in the natural sciences, particularly biology. At the same time, biology has
been gradually edging to the forefront of sciences, although the reasons obviously have
nothing to do with its state of formalization or maturity. Rather, the reasons have to
do with the growing realization that the objects of biology are not only more important
(to society) and interesting (to science), but that they also more explicitly exhibit the
evolving nature of all objects in the Universe. It is this view of objects as evolving
structural entities/processes that we aim to formally address here, in contrast to the
ubiquitous mathematical view of objects as points in some abstract space. In light of
the above, the paper is addressed to a very broad group of scientists.

One can gain an initial intuitive understanding of the proposed representation by
generalizing the temporal process of the (Peano) construction of natural numbers: re-
place the single structureless unit out of which a number is built by multiple structural
ones. An immediate and important consequence of the distinguishability (or multiplic-
ity) of units in the construction process is that we can now see which unit was attached

* For earlier versions of this paper, see [1]-[5]. In Part I of the paper, we use single quotes when we refer
to the terminology introduced later in this paper.

and when. Hence, the resulting (object) representation for the first time embodies tem-
poral structural information in the form of a formative, or generative, object “history”
recorded as a series of (structured) events. Each such event stands for a “standard”
interaction of several objects/processes.

We introduce the new concept of class representation via the concept of class gen-
erating system, which outputs structural entities belonging to that class. Hence, the
concept of class is introduced as that of a class of similar structural entities, where
the “similarity” of such entities is ensured by them being outputs of the same class
generating system and hence having similar formative histories. In particular, such a
concept of class representation implies that—in contrast to all existing formalisms—no
two classes have elements in common. The evolving transformation system (ETS) for-
malism proposed here is the first one developed to support such a new vision of classes.
Most important, since the operations that participated in the object’s construction are,
for the first time, made explicit in the representation, it makes the inductive recovery
of class representation (on the basis of object representation) much more reliable.

As a result, ETS offers a formalism that outlines, for the first time, a tentative
framework for understanding what a class is. Even this tentative framework makes it
quite clear that the term “class” has been improperly understood, used, and applied:
many, if not most, of the current “classes” should not be viewed as such. A detailed
example of a class representation is included.

In light of ETS, the classical discrete “representations” (strings, graphs) appear as
incomplete special cases at best, the proper adaptation of which should incorporate
corresponding formative histories, as is done here.

The gradual emergence of ETS—including the concepts of structural object and
class representations, the resulting radically different (temporal) view of “data”, as
well as the associated inductive learning processes and the representational levels—
points to the beginning of a new field, inductive informatics, which is intended as a
class oriented rival to conventional information processing paradigms.

Part 1
Prolegomenon

Those who still wish to build a computational empire on the basis of such troubling
precedents [i.e. to assume that the Church-Turing thesis is an adequate scientific and/or
epistemological basis for the science of information processing] would do well to pause
first on the significance of Wittgenstein’s ever-timely warning that “One keeps forgetting
to go right down to the foundations. One doesn’t put the question marks deep enough
down.”

S. Shankar, Wittgenstein’s Remarks on the Foundations of AI, 1998

1 Introduction

1.1 Obstacles toward a formalism for structural representation

In this paper we outline a vision of the concept of (temporal) structural representation which
has been in gestation for twenty years. Since such a grand vision cannot be corroborated by
one research group or in a short period of time, it is only natural to present it to the wider
research community.

Despite the fact that the overwhelming importance of structural, or symbolic, representa-
tions in many sciences has become increasingly clear during the second half of the twentieth
century, there have been no systematic attempts to address this topic at a fundamental level®.
It is not that difficult to understand the main reasons behind this state of affairs. From a
theoretical point of view, it appears there are two very formidable obstacles to be cleared: 1)
the choice of the central “intelligent” process (among many possible candidates, e.g. induc-
tion, deduction, etc.), the structure and requirements of which would drive and justify the
choice of a particular form of structural representation, and 2) the lack of any fundamental
mathematical models whose roots are not directly related to numeric models. The order
in which these obstacles must be addressed is important: obviously, one must first choose
which intelligent process to model before attempting to look for a satisfactory formalism.
Unfortunately, the second (and principal) of the above obstacles is usually underestimated
or overlooked entirely.

Why has it been overlooked? Because, during mankind’s scientific history, we have dealt
only with numeric models and, during the last century, with their derivatives. The latter
should not be surprising if we look carefully at the vast prehistory of science in general, and
of mathematics in particular [6], [7]. New mathematical abstractions and overspecializations
(with a resulting narrowing of historical perspective) during the second half of the twentieth
century have also contributed to such a lack of understanding of the extent to which we
depend on numeric models?. What has (barely) begun to facilitate this understanding,

! This situation is particularly puzzling from the point of view of computer science, in view of the central
role played by data structures and abstract data types.
2 There are, of course, rare exceptions (see [8], for example).

however, is the emergence of computer science in general, and artificial intelligence and
pattern recognition (PR) in particular®.

The relevant concept of a representational formalism is addressed briefly in Section 1.4 and
in [9]. Here we simply mention that according to the view expressed therein, we presently
have (excluding ETS) only one, albeit wvery primitive, representational formalism, i.e. the
ubiquitous numeric formalism. In this sense, it is not surprising that the numeric formalism
is, basically, the only scientific currency. With this paper, we aim to change this situation—a
goal, on the one hand, absolutely unprecedented in the history of science, but, on the other
hand, following from the development of PR and Al.

The complete monopoly of numeric models in science? suggests that it is unreasonable
to expect a transition from numerically-motivated forms of representation, which have a
millennia-old tradition behind them, to structural forms of representation to be accomplished
in one or several papers. At the same time, one should not try to justify, as is often done in
artificial intelligence, practically nonexistent progress in this direction by the long standing
difficulties involved.

For an extended discussion of related issues, see [9].

1.2 Historical perspective on pattern recognition: the need for
unification

In this work, we outline a fundamentally new formalism—evolving transformation system
(ETS)—which is the culmination of a research program originally directed towards the de-
velopment of a unified framework for pattern recognition [11]-[18].

In view of the fact that newer, more fashionable “reincarnations” of PR (see footnote 3)
have missed what is probably the most important representational development within PR
during the 1960s and 1970s, we now touch on this issue (which actually motivated the original
development of the ETS framework). Over these two decades, it gradually became clear to
a number of leading researchers in PR that the two basic approaches to PR—the classical
vector-space-based, or statistical, approach and the syntactic, or structural, approach [19]°,
each possessing the desirable features lacking in the other—should be unified [20]:

Thus the controversy between geometric and structural approaches for problem of
pattern recognition seems to me historically inevitable, but temporary. There are
problems to which the geometric approach is ... suited. Also there are some well
known problems which, though solvable by the geometric method, are more easily
solvable by the structural approach. But any difficult problems require a combination
of these approaches, and methods are gradually crystallizing to combining them; the

3 Although several “new” areas very closely related to PR—such as machine learning (ML), neural net-
works (NN), etc.—appeared during the last twenty years, we will often refer to them collectively by the name
of the original area, i.e. pattern recognition, or occasionally as inductive learning.

4 For an insightful explanation of how the stage was set for this, see [10].

® The author of [19], King-Sun Fu, was not only instrumental to founding the International Association
for Pattern Recognition (IAPR) and served as its first president, but was also the main driving force behind
the emergence of structural PR as one of the main fields in PR. His untimely death in 1985 took the wind
out of structural PR’s sails.

structural approach is the means of construction of a convenient space; the geometric
is the partitioning in it.

Although these original expectations for an impending unification were quite high, it
turned out that such hopes were quite naive, not so much with respect to timeliness but with
respect to the (underestimated) novelty of such a unified formalism: there was no formal
framework which could naturally accommodate such a unification [11]. It is interesting
to note that researchers working in the various above “reincarnations” of PR have only
relatively recently become aware of the need for, and of the difficulties associated with, such
an effort. The large number of conferences, workshops, and sessions devoted to so-called
hybrid approaches (e.g. [21]-[28]) attests to the rediscovery of the need for unification.

In fact, as we advocate in this paper, a fundamentally new scientific language is necessary
to adequately address the concept of (structural) object and class representations.

1.3 The general direction we have taken

Returning to the two formidable obstacles mentioned in Section 1.1, for us and many others
the choice of the central intelligent /information process reduced to the pattern recognition
process, or more accurately the pattern (or inductive) learning process®, with an emphasis
on the (inductive) class representation. On the other hand, overcoming the second obstacle,
i.e. developing an appropriate mathematical formalism for modeling inductive processes, has
been and will be a major undertaking.

What are some of the main issues we have encountered? In a roughly historical order,
they are as follows. How does one approach the unification of the above two basic approaches
to PR? [11] How should we approach the concept of inductive class representation (i.e. how
should the Chomsky concept of generativity be rethought)? [13],[15],[16],[18] Initiating the
formalization, how do we generalize the Peano axiomatic construction of natural numbers to
the construction of structural entities (in other words, how do we formally capture the more
general inductive, or generative, process of object construction)? How do we approach the
concept of object representation as that of its formative process? What is the connection
between a class description, or representation, and the process that generates class objects?
How is an object representation connected to its class representation, and, moreover, how
do these object representations change during the learning process? (See [1],[2],[3],[4] for
the last several issues.) How do we introduce representational stages? [2],[3],[4] How do we
deal with the periodic stages and non-periodic/transitory stages of processes? [3],[4] How
do we treat object representations as processes [3] and how do we allow the processes to
interact with each other? [4] How do we introduce multi-leveled class generating systems?
It is understood that all of the above must be accomplished naturally and within a single
general formalism.

6 Inductive learning processes have been suggested as being the central intelligent processes by a number
of philosophers and psychologists over the last several centuries (see, for example, [29], [30], [31]). An
example of a more recent testament is: “This study gives an account of thinking and judgment in which ...
everything is reduced to pattern recognition. ... That pattern recognition is central to thinking is a familiar
idea” [32].

On the formal side, we chose the path of a far-reaching generalization of the Peano
axiomatic construction of natural numbers ([33] or [34]), the axiomatics that forms the
very foundation of the present construction of mathematics. This choice appears to be a
very natural way to proceed. As well-known nineteenth-century German mathematician
L. Kronecker aptly remarked, “God made the integers; all the rest is the work of man”.
Thus, in part, the original logic behind the formalization was this: take the only existing
“representational” model, natural numbers, and generalize the process of their construction,
i.e. replace the single, essentially structureless primitive out of which natural numbers are
built (Fig. 12 (a), p. 30) by warious structural ones (Fig. 9, p. 26). Then, one can build on
that foundation (see also [9]).

1.4 On the concept of representation formalism

One should note that although the following concept of a representational formalism appears
to be quite natural, this is, as far as we know, its first articulation (see also [9]).

First of all, on the formal side, we propose that within a representational formalism, the
concept of a class should be generative and defined via the basic (postulated in the formalism)
operations. For example, in a vector space, a class must be defined by linear operations only,
i.e. one must be able to generate all class objects and only them (generativity) via linear
operations. Within the Bourbaki architecture of mathematics, this should be considered as
a standard mathematical requirement (see, for example, [35], [36]).

Second, having postulated the primacy of classes in nature, it is quite natural to demand
from any representational formalism that the representational mapping fopjee from the
physical environment (PE) to the resulting set of object representations (OR),

fobject: PE — OR7

(where fopject(po), po € PE, is the representation of physical object po) induces the
corresponding class mapping
fclass: PC — RO)

of physical classes (PC') into the representational classes (RC'), as depicted in Fig. 1.

The uniqueness of the ETS formalism (referred to at the end of Section 1.1) is related to
its development being oriented towards the above two requirements, in addition to inductive
considerations.

It is also important to emphasize the role of the above mapping f...s, which, in fact,
insists on treating classes not just as a figment of human imagination, but rather as a basic
feature of reality, as the foundations of biology strongly suggest. There are several reasons
why classes have not been perceived as real entities, the main two being the very abstract
nature of classes (and their representations) and the total lack of representational formalisms
that would support a satisfactory concept of class.

As to the mapping fopject, it should be realizable (in principle) via some generalized
sensory mechanism.

Physical objects
(and their classes)

Representational formalism
(objects and their classes)

PE

e -~

.........
. ~

-~ -

......

Figure 1: The main idea of a representational formalism.

1.5 ETS as the first proposal for a representational formalism

From an ETS perspective, there exist two related concepts or representations of object: the
global (or Universe’s) and an agent’s. The global concept of object is that encapsulating the
entire formative history of that object (as an information process in the Universe), while the
agent’s concept is that associated with the agent’s representation of the object’s formative
history (relying, of necessity, on the agent’s representational resources). Although we expect
both concepts to be captured with the same formal means in the ETS formalism as it is
presented here, we will usually address the agent’s view, unless stated otherwise; in general,
the context should clarify which sense is intended.

The foundations of ETS strongly suggests that the concept of structural object repre-
sentation cannot be divorced from that of generative object representation, i.e. that of a
representation capturing the formative/generative history of the object. Herein, we believe,
lies the fundamental difference between classical numeric and structural, or symbolic, rep-
resentations. In light of this, widely-used nonnumeric “structural representations” such as
strings, trees, and graphs cannot be considered as such. In short, it becomes clear that, since
such “representations” do not encode the formative object history”, there is insufficient con-
nection between the object representation and the corresponding class representation. Thus,
for example, the framework of formal grammars proposed by Chomsky in the 1950s for gen-
erating syntactically-correct sentences in a natural language does not address these concerns,
which is not quite surprising in view of his repeatedly-articulated opinion about the essential
irrelevance of the inductive learning process to cognitive science (see for example [37], [38]).

7 As was mentioned in the last paragraph, the latter should be understood not necessarily in the sense of
the actual formative history, but rather in the light of the agent’s “evolutionary” experience, i.e. from the
point of view of the object’s recovered (as a class element) formative history.

In particular, the generative issues so important to Chomsky simply cannot be properly
addressed within the string setting, mainly because a string does not capture the object’s
formative history; as a result, there are exponentially many formative histories® hidden be-
hind a string representation. From the vantage point of the ETS formalism, it becomes clear
that the main reason why the various generative grammar frameworks have not succeeded as
representational models has to do with their neglect of more fundamental, representational
issues, i.e. the basic inadequacy of the string as a form of structural representation (see also
9)).

With respect to (generative) representation, it is useful to note that a number of philoso-
phers and scientists have pointed out the importance of an object’s past for that object’s
representation. Here is a recent example of one such expression [39]:

[W]e shall argue that memory is always some physical object, in the present—a physical
object that some observer interprets as holding information about the past.

... The past, about which the object is holding information, is the past of the object
itself. In fact, an object becomes memory for an observer when the observer examines
certain features of the object and explains how those features were caused.

We shall argue ... that all cognitive activity proceeds via the recovery of the past from
objects in the present. Cognitive activity of any type is, on close examination, the
determination of the past.

As mentioned in the abstract, we expect that the scientific environment for understand-
ing and investigating the nature of structural representation, together with the concepts
of structural object and class representations and its various application areas—e.g. pat-
tern recognition, data mining, information retrieval, bioinformatics, molecular phylogenet-
ics, cheminformatics—will delineate a new information processing paradigm: inductive in-
formatics. To understand the power of this paradigm, it is sufficient to mention how it would
transform the widely applicable standard setting of information retrieval, relied on, for ex-
ample, by all current search engines, in which a (very poor) class representation directly
relies on a list of keywords, or on the latter plus logical connectives. Inductive informatics
would reduce all such search problems to those of retrieving all class elements based either
on a small class sample (possibly a single element) or directly on the more powerful structural
class representation. Such a uniform formulation becomes possible only with the emergence
of the more powerful concept of class representation (see Part III)

In light of the enormous difficulties related to the development of a formalism for struc-
tural representation, the best we can hope for as a result of the present attempt is to propose
and outline a possible skeleton of such a formalism. We intend to use the proposed outline as
a guide that will be modified in the course of extensive experimental work in numerous appli-
cation areas. At the same time, as is always true in science, in our immediate experimental
and theoretical work, we will also be guided by a reasonable interpretation of the present
tentative formalism (now in its sixth version) In general, it is important to understand that,

8 They correspond to sequences of transformations responsible for the formation of this string as an
element of a particular class of strings.

when facing such a radical shift in representational formalism, one has no other choice but to
begin with a theoretical framework, and only then move to the “data”. Einstein emphasized
this point in physics, but in this case the point should be even more apparent, since the
notion of data without a framework for data representation is absolutely meaningless: it is
the framework that dictates how “data’” is to be obtained and interpreted. In particular, it is
obvious that any sensor can only be built after the corresponding representational formalism
has been proposed: a sensor can output only the specified object representations.

Ultimately, what should make or break ETS as a representational formalism? Since it
explicitly postulates fundamentally different forms of object and class representation, the
utility of these forms can now be experimentally verified. It is interesting to observe that
the latter is not possible for any of the current inductive learning models, since they neither
insist on, nor even propose, any—formally or otherwise—meaningful and verifiable form of
inductive class representation, but simply adapt existing formalisms to fit the learning prob-
lem (without the availability of adequate concepts of both object and class representations
in such formalisms). Thus, one of the immediate values of the ETS formalism is that it
is the first formalism developed specifically to address the needs of the inductive learning
process, and this paper should be interpreted as a program for action rather than simply a
philosophical deliberation.

The framework’s basic tenets both elucidate the nature of information (or “intelligent”)
processes in the Universe and are subject to experimental verification. In this respect, it
is critical to keep in mind the accumulated scientific wisdom regarding the main value of
a scientific model: “Apart from prediction and control the main purpose of science is ...
explanation ...” [40] and “Whatever else science is used for, it is explanation that remains
its central aim” [41]. Current inductive learning models explain essentially nothing about the
nature of these information processes, since, as we firmly believe, hardly anything can be
explained outside an adequate representational formalism.

Finally, ETS suggests a very different picture of reality than that implied by modern
mathematics: equational descriptions of physical reality are replaced by structural descrip-
tions (or representations) of evolving classes of objects. We believe that the proposed for-
malism provides radically different insight into the nature of objects and classes and offers a
guiding metaphor badly needed by various sciences. As to progress in the development and
applications of ETS, we believe that it would be accelerated within multidisciplinary groups
(in which natural sciences are well represented), which, sadly enough, are presently lacking.

1.6 Organization of the paper

The paper is divided into five parts. Part I includes two introductory sections, the second of
which proposes a new, informational view of the Universe. The substantial size of this Part
is explained by our desire to make the main ideas accessible to a wider spectrum of scientists.
Part 1T (Sections 3, 4) presents the basic formal concepts, and in Part III (Sections 5-7),
the central part, we introduce the concepts of multi-level struct and class representation. A
detailed example illustrating the main concepts covered up to that point is also presented.
Another pair of central concepts—transformation and multi-stage inductive structure—are
introduced in Part IV (Sections 9 and 10). Part V (Sections 11, 12) sketches some of our

preliminary thoughts on learning and suggests how one should approach the ETS formalism.

In view of the tentative nature of the present outline, it does not make sense to strive
for a very rigorous form of exposition, though, as can be seen from our presentation, formal
considerations have not been ignored. At the same time, due to the presence of many
illustrative figures, the paper allows for an alternative, visual form of reading, which should
benefit those who prefer to visually skim the material first. Also, as one would expect from
an outline of a new representational formalism, we put our efforts into definitions, their
illustrations, and their justification from the point of view of the ETS rationale. (As it turns
out, even without theorems, the size of the paper is still substantial.)

For earlier expositions of the ETS formalism, see [1], [2], [4], [5], and [43]. Some prelimi-
nary applications of the earlier variations of ETS to cheminformatics are discussed in [44], to
information retrieval in [45], [46], [47], to bioinformatics in [48], and to speech representation
in [49]. Three theses on learning algorithms related to an earlier, pre-formal, stage of ETS
are [50], [51], and [52].

We wish to thank Alexander Gutkin for his numerous helpful comments and Reuben
Peter-Paul for his generous help with producing the figures in Part I1I and Appendix.

2 Proposed informational view of the Universe

What is the informational structure of the Universe that allows for the emergence of biological
information processing? First of all, a biological information processing model must be
fundamentally consistent with a prebiological information processing model: the former was
built on top of the latter. We have assumed that the common, or unifying, central theme
(for both kinds of models) has to do with the information centered around the concept of
an evolving class of immediately related objects. Moreover, the “description” of the class is
closely related to the formative structure of its elements.

Before discussing the existing state of affairs in relation to the concept of class, we present
a simple (but, we believe, important) argument supporting the above uniformity of the infor-
mational view of the Universe—as suggested by ETS and in sharp contrast to conventional
scientific paradigms. It is not difficult to see that accepting a qualitative difference be-
tween the informational capabilities of the prebiological Universe and of biological species
inevitably leads to the acceptance of a scientific principle similar to the well-known and now
almost unanimously rejected principle of vitalism®. Indeed, if biological species “invented”
fundamentally new forms of representation that have not previously existed in nature, then
this is tantamount to saying that biological information processing—and therefore biological
representation mechanisms themselves—cannot be understood on the basis of physical repre-
sentation mechanisms. In other words, postulating two fundamentally different informational
mechanisms in nature leads to the same undesirable situation (in view of the ramifications)
as postulating two fundamentally different classes of forces acting in the Universe.

9 Vitalism suggests that, in addition to the known physical forces, there are not-yet discovered “vital
forces” that are active in living organisms.

10

2.1 The lack of any adequate concept of class

It is well known that the concept of a class of objects is absolutely pervasive, both within sci-
ence (e.g. isotope families, biological taxons, categories in cognitive science) as well as outside
it (e.g. library classification schemes, fall shoes versus summer shoes). In view of the ubiquity
of the class concept, many areas of information processing—e.g. PR (including speech and
image recognition), data mining, information retrieval, bioinformatics, cheminformatics—
rely on this concept as the central one. So, since the main burden of addressing the concept
of class and the process of classification fell on these areas, of necessity they had to settle
on some formalisms, and unfortunately, but not surprisingly, the researcher’s (subconscious)
choice has typically been the classical numeric and logical formalisms. However, as was men-
tioned in Sections 1.4-1.5, these conventional formalisms were not developed to address the
needs of class representation, so the researchers have tried to adapt them for this purpose'®,
to the extent that, presently, it is these adaptations that have become an obstacle to be
overcome.

Thus, although together with many researchers, we firmly believe in the indisputability
of the need for a theory of inductive learning, where we differ with others is in our insistence
on evaluating such a theory based on the quality of class representation the theory offers:
we need a (fundamentally) new formalism that clarifies what the concept of class is, since
conventional theories contribute practically nothing towards this goal.

In light of this, on the technical side, the development of the ETS model was motivated by
two considerations: the fundamental inadequacies of existing formalisms for class description
and by the vision of the class description as a ‘generating system’ (Part III). As a result,
it turned out that the differences between the conventional (numerical and logical) views of
class and class description and those of the ETS formalism are as substantial as they could
possibly be: one main difference with numeric formalisms being our insistence on a particular
form of generativity in the definition of a class representation (Section 1.4). The main point
is that, so far, the term “class” has been improperly understood, used, and applied: most of
what are currently labelled as “classes” should not be viewed as such, but rather as sets of
somewhat related objects that, however, do not share similar formative histories.

In particular, from the emerging perspective, many universally used verbal descriptions
of classes, including those often offered in problems in various “ML challenges”, should not
be considered as such, mainly because most of them are not descriptions of classes, if the
term “class” is to be understood as advocated here.

2.2 The ETS tenet: evolution of the Universe as the evolution of
class generating systems
In general, the ETS framework is inspired by the view of the universe as a variety of in-

terconnected and interacting, evolving classes (of processes) and hence of the corresponding
class generating systems. What do we mean by a class generating system?

10 Note that, even in natural languages, words simply name classes of objects/events rather than capture
their (evolving) representations.

11

For a particular class of entities, by its generating system!! we understand a non-
deterministic system operating on actual entities and assembling them into larger entities
(and eventually into class objects), guided by some hierarchical description of the class. The
latter does not mean that the system “reads” this description, but rather that its instanti-
ation at a given location is guided in this particular manner. The appearance of a new, or
modification of an existing, generating system is a result of the interaction of several such
systems.

As will be clarified in Part III, we think of a class generating system as a hierarchical
generating system—in some sense similar to an abstraction of the embryo’s development
system!'?—that should be viewed as a class generating system that produces class objects.
It is important to emphasize that the concept of a class generating system, or class repre-
sentation system, now becomes, in a sense, more fundamental than that of the class itself,
i.e. class objects become a product of the corresponding generating system.

Thus, we think of each object, as well as that object’s representation, as a (relatively)
stable structural object /entity that is being produced, or constructed, by the class generating
system. The adjective stable, to which we will return in the next section, refers to the
fact that the same local structural patterns appear in the same structural setting. For
example, a single (vibrating) water molecule, observed over a very short time interval, can be
thought of as a stable molecular process, which itself is composed of faster-running subatomic
stable processes. Also, the production of different water molecules is guided by the same
generating system, and thus quite naturally, we get a class of water molecules. In science,
the more abstract class generating systems have, so far, remained behind the scene, while
their products, i.e. the class elements they produce, are more familiar to us.

What is the relation between an object and its ETS representation? Again, ETS repre-
sentation is a temporal event-based representation, which is supposed to capture an object’s
“informational” structure, i.e., we are postulating that “informational” structure is the same
as temporal event-based structure. So, the above question becomes: What is the relation
between a “physical” object and its event-based representation? We hypothesize that a
“physical” object is a physical instantiation of its event-based (informational) representa-
tion, i.e., as each event is being played out, the physical “flesh” is automatically being put
on the informational “bone”. Thus, as some leading physicists have anticipated, the infor-
mational structure becomes primary (see, for example [72], pp. 340, 341).

In view of its motivation and structure, we also expect ETS to be the first formalism
suitable for modeling developmental processes, a need that has been acutely felt within the
field of developmental biology:

Morphogenesis remains one of the most poorly understood aspects of development. Al-
though the genetic blueprints underlying the formation of many organs and structures
are beginning to be worked out, the mechanisms by which encoded genetic information
is translated into structure remain obscure. [53, p. 81]

[N]o unified theory of modularity that captures the various uses of the term in evo-
lutionary and developmental biology currently exists. Nor do we have all the formal

11 For a more formal description, see Part III.
12 For a popular (but inherently sloppy for a formally-trained reader) exposition, see any of [53], [54], [55],
[56].

12

tools for the analysis of such systems. [53, p. 341, emphasis ours]

2.3 Structural processes, their classes, and their transformations

It has been known for a long time that “[t]ime has its origin in the existence of both kinds
of physical change, cyclic and non-cyclic, in the natural world that we know” [57, p. 14].13
What is the importance of the two different kinds of processes?

Any physical process that is purely cyclical may be treated as an atemporal process
as long as it is considered only in its own domain, without reference to the larger,
temporal universe surrounding it. The successive oscillations of a photon as it moves
through a vacuum, for example, are identical, and there is no change that gives a time
coordinate. The motion of an electron about a nucleus, or the cycles of two isolated
astronomical bodies rotating about each other, have a similar atemporal quality. On
interaction with other systems these purely cyclic processes may become non-cyclic
and thereby gain a temporal character.

The cyclic process, then, can become a temporal process only by reference to non-cyclic
processes. We may refer to the latter as progressively changing processes, in contrast to
the cyclic processes in which we do not have progressive change except within any one
cycle. We have seen that the progressively changing process does not give us our time
concept because change in general does not provide a basis for time standardization
and measurement. But likewise, uniform cycles of change will not by themselves give
us our time concept, because without progressive change there is no distinction of any
one cycle from another. [57, p. 14]

Consistent with the above subdivision of all processes into two categories, in the ETS
formalism, the two central concepts (besides, of course, that of class) are those of the struc-
tural process and the transformation, where the former corresponds to a generalization of
the above “cyclic” process and the latter to the above “non-cyclic” process.

N Structs, multi-level . . Mext-stage primitives,
Primitivies . — Transformations f—m gep
structs, and their classes structs, classes, ete

Figure 2: Logical sequence of the central ETS concepts.

Before informally discussing some of the central concepts, Figure 2 gives their logical
sequence. Also, throughout the paper, we reserve the following special meaning for the noun
“event” an event is the interaction (‘transformation’) of one or several adjacent ‘processes’
resulting in the creation of new ‘process(es)’, e.g. the event of a photon emission by an
electron (see Fig. 3), the event of a fertilized egg formation out of sperm and egg processes,
the event of a cell division, the event of a two-car collision.

The concept of stable structural process—which is viewed and represented as a (temporal)
sequence of interconnected structured events—is associated with the concept of a structural

13 Although, in Section 2, we often come back to these two terms, they are not used within the formalism
itself.

13

object representation. Such representation can be approached from two perspectives: the
global and an agent’s perspectives. Or, more accurately, in the case of an agent’s perspective,
it is supposed to encapsulate the concept of an object observed over some period of time by
the agent, who must rely on its own representational resources. The global perspective deals
with the (complete) object representation, relying on the entire (or restricted) evolution of
the universe. From the global perspective, the adjective “stable” refers to the regular (or
periodic) nature of the process responsible for the object’s regeneration. From the agent’s
perspective, stable refers to the stability of the corresponding perceptual process: e.g. it
refers to a simple fact that, during the continuous observation of an object by the agent, the
same “perceptual features”, or subpatterns, must reappear as the observation “returns to
the same place”. Since objects are represented as structural entities in the ETS formalism,
a more accurate paraphrasing of the last sentence is: the object representation—i.e. the
corresponding above sequence of (sensed) structured events—is actually constructed during
the interaction between the observing (sensing)' agent and the target object process. It
is not difficult to see that the choice of subpatterns/subentities—out of which a structural
representation is built—must depend on both the agent’s built-in sensory capabilities as well
as its (inductive) experience!®.

At a particular (hierarchical) ‘stage’ of representation, a subpattern in the represention of
an object—in our terminology a ‘substruct’—is a temporal assembly of the very basic build-
ing units, which we call primitive transformations, or simply ‘primitives’ illustrated in Fig. 3.
Some substructs are delineated in Fig. 4 by various lines. Having fixed the representational
stage, the primitives at this stage are treated as indecomposable units designating the ba-
sic events associated with the disruption (transformation) of the above—indecomposable at
this stage—cyclic processes. In Fig. 3, cyclic processes are called ‘primal” processes and are
shown as lines connecting the primitives. At the previous representational stage, however, a
primitive can be “opened up” into a non-primitive transformation (Fig. 5). The nature of
such a transformation can most naturally be understood as denoting a macro-event that is
responsible for the transformation of one set of (interacting) structural processes into another
set of processes. In other words, ‘initial” interacting processes are transformed into ‘terminal’
processes 1% as shown in Fig. 5, where the structural processes delineated with solid lines are,
in fact, opened up prototypes of the next-stage indecomposable primal elements/processes
which connect primitives.

It is useful to think of a primitive as capturing the non-regular event—or the above
“non-cyclic” process—corresponding to the “standard”, i.e. entrenched, interaction of initial
primal processes (or the above “cyclic” processes). A typical primitive would have a terminal
process that doesn’t belong to any of the initial classes of processes, and hence it can be
thought of as capturing an event responsible for the generation of new, or transforming
existing, classes of structural processes.

14 The sensors involved, in contrast to the conventional ones, are structural. It is also important to note
that all biological sensors are of a chemical nature, and are therefore structural.

15 A substantial part of the previous experience of the agent’s “species”, for efficiency considerations, could
be embedded in hardware rather than in software. From a biological point of view, the entire cell structure
(including DNA, cytoskeleton, etc.) constitutes such hardware.

16 Recall the analogy of several particles before and after a collision.

14

Primal Primitives Segment of the

processes hydrogen process
Initial .
process N,
Emission of a photon
; by an electron
Terminal _~"
processes
Electron
Absorption of a photon
by an electron
i Nucleus
Z:I:X Emission of a photon
: =—— by a nucleus
. Photon v

Absorption of a photon
by a nucleus

Figure 3: Pictorial representation of a process corresponding to a hydrogen atom over an extremely short
time interval: three kinds/classes of subatomic entities (first column), four primitive events (second column),
and one conceivable event scenario for the hydrogen process (third column).

In light of the above (and what follows), we stress that in spite of some superficial
similarity with graphs, relying on this similarity is very counter-productive, mainly in view
of the temporal nature of ETS representation.

So, what is the mechanism responsible for maintaining the integrity of a class of struc-
tural entities? In Part III we introduce the concept of (hierarchical) class representation,
whose main component is the concept of multi-level class generating system, responsible for
“overseeing” the construction of the entities forming that class. The construction proceeds
step-wise by initiating the (class) scheme for assembling the higher-level components of a class
element and then realizing this scheme by (recursively) propagating structural constraints
to the corresponding previous-level construction processes (see Figs. 22-28) 17,

We should point out that the initial impression of ETS that one might have from the
above figures as a very visual formalism is in no way false.

17 Note that, in the context of class representation, we speak of ‘levels’, while in the context of class
interactions (i.e. the transition from a transform to a next-level primitive as shown in Fig. 5), we speak of
‘stages’. More accurately, when we speak of ‘levels’, we always refer to those associated with the descriptions
of classes within a fixed ‘stage’ of representation, where each such stage refers to an organizational unit in
the (global) multi-stage representational hierarchy.

15

Figure 4: Pictorial representation of one conceivable event scenario for a lithium atom process/struct with
four of its substructs delineated. As can be seen from the figure, the two substructs identified by solid lines
are elements of the same constituent class of patterns, which participate with elements of other classes in
the construction of the shown lithium process.

2.4 Some preliminary connections with physics

To see the connection between the above concept of structural process and the concept of
the elementary particle in modern physics, the following insight should be useful:

De Broglie’s argument began with the supposition that “the basic idea of quantum the-
ory is the impossibility of considering an isolated fragment of energy without assigning
a certain frequency to it.” The particles of radiation—and of matter as well—had a
level of existence that was fundamentally a “periodic [structural] process”. [58, empha-
sis ours]

Moreover, as also mentioned on p. 27, the very useful in quantum physics concept of Feynman
diagram ([61]-[64]) can be considered as a “pictorial” physical version of the structural
representation proposed here. However, most interestingly, the ETS formalism suggests a
compelling explanation of what some refer to as the most profound mystery in modern
physics, i.e. that of entanglement. Entanglement is a term introduced by Schrédinger, and it
presently refers (in the case of two particles) to the relatively well observed phenomenon of
the instantaneous transfer of the effects of measurement on one particle to another particle
that interacted with the first one at some earlier time, independent of the present distance

16

- -~

Ll |

Figure 5: Pictorial representation of a transformation corresponding to the formation of a lithium hydride
molecule (bottom process) from particular hydrogen (Fig. 3) and lithium processes (top: note the reoccurring
temporal/structural patterns). The “body” of the transform (heavy dashed line) depicts an over-simplified
restructuring of the two initial entities into the terminal one. On the right, we show the corresponding
next-stage (lithium hydride formation) primitive.

17

between them (for popular expositions, see [65], [66]). From the point of view of the ETS
formalism—whose main underlying assumption is the indispensability of formative history
for representation—the above “transfer” of the effects of measurement can be explained as
reflecting the following fact: conventional measurements on the first particle contribute to
the global formative history (by recording in it the effects of the measurement process itself),
which in turn affects all future measurement processes (even those addressing “past” events),
since they now have to deal with this modified formative history.

In Figs. 3-5, we offer a (crude) illustration of an ETS representation in physical chemistry,
i.e. we present a naive structural representation of the formation of a lithium hydride molecule
from its two constituent atoms: hydrogen and lithium. Note that, for simplicity, otherwise
important electron-electron interactions are neglected, a nucleus is treated as an indivisible
or single entity, and the energy, momentum, etc. of the various subatomic constituents are
also neglected. It is interesting that one does not need to differentiate between atoms and
small molecules in the ETS formalism!®: both may be considered as being stable structural
processes at the same stage.

Turning to the concept of time scales (see Fig. 6)—and keeping in mind that, in ETS, a
transition to a new stage is related to the incorporation of a new transformation as a next-
stage primitive transformation (Fig. 5)—the ETS formalism suggests that a change in the
discretely structured scale of time in the universe is associated with some such transitions: a
coarser time scale appears as more complex (next-stage) structural entities are instantiated.
In other words, once the generating system begins to assemble new, more complex enti-
ties/processes, the overall generation time increases. Historically, some of these transitions
were associated with transitions to atomic levels, molecular levels, etc.

We will come back to connections with physics at the end of the next section.

2.5 Objects as epiphenomena of class generating systems

As the section heading implies, according to the ETS formalism, observed objects are not
what they appear to be. This point is not as controversial as it seems if all objects are treated
as organisms, having developmental as well as evolutionary histories. Thus, a developed
organism should also be viewed as an epiphenomenon of both these histories as is the case in
modern biology: if we tinker with either one of the histories, we change the organism, and
the more we tinker, the bigger the changes become. This is what actually happens during
evolution. As far as objects are concerned, when we look at such an object as a chair, it
also has its “developmental” (i.e. production) and “evolutionary” (i.e. conceptual) histories.
In light of this, it makes perfect sense to assume that any biological representational model
should be based on such principles: we believe that during the period of time in which a visual
system interacts with a chair, for instance, it actually constructs a generative representation
of the chair as perceived by the viewer. The ETS formalism suggests such a view of reality.

It appears that one can “blame” classical physics for the current state of affairs in which
objects (together with the corresponding measurements), rather than their formative histo-
ries, are at the center of attention. The latter, in turn, is the result of the state of affairs in

18 This does not at all preclude the emergence, at higher stages of representation, of macromolecular
structures such as proteins.

18

Next stage

Figure 6: Simplified ETS representation with different time scales for each of the two depicted stages. The
circles stand for primitive transformations and the lines between them signify basic structural entities for
the corresponding stage. The thin dashed lines identify entities and the heavy dashed line identifies the only
shown transformation. The hierarchical decomposition of each structural entity is suppressed. (Note that
the upper stage’s time scale is measured in coarser units, i.e. t{, corresponds to tg, ¢} corresponds to t1g, etc.)

mathematics which, historically, has been concerned only with numeric forms of representa-
tion. The concept of structural representation proposed here, on the other hand, brings to
the fore the question of how the object’s structure has emerged. Any structure must have
emerged incrementally, and both level-wise (within a class) and stage-wise (class interac-
tions), which is what we observe in the universe. For example, molecular structures are now
inconceivable without reference to atomic structures. We—together with other scientists and
philosophers, e.g. see Sec. 1.5 and the epigraph on p. 36—believe that it is such currently
unobservable processes that are responsible for the generation of observable structure, and
therefore they should be of primary interest, as opposed to the observable structures them-
selves. The latter point of view is quite consistent with the one that emerged about 80 years
ago in physics, as can be seen from the following quotations from the book authored by an
outstanding physicist and astronomer Sir James Jeans (emphasis ours).

[Matter] cannot of itself make a direct impression on our senses; such impressions are
only made by physical “events” occurring in matter. Strictly speaking, we do not see
the sun; we see events taking place in the sun. The sun only affects our senses because
a continuous re-arrangement of electrons in the solar atoms results in the emission of
light. In the same way, we do not see a chair, but the event[s] of daylight or electric
light falling on a chair. If we stumble against the chair in the dark, we do not feel the
chair, but the event of a transfer of energy and momentum between the chair and our
bodies. [59, p. 11]

The remaining quotes are taken from the chapter characteristically titled “Events” of the
same book [59, pp. 293, 295]:

Thus the “world-line” of a particle is, strictly speaking, not a line at all, but is a contin-
uous and unbounded curved region, and must logically be separated into small curved
spots—the particle resolves itself into events. Most of these events are unobservable; it
s only when two particles meet or come near to one another that we have an observ-
able event which can affect our senses. We have no knowledge of the existence of the
particle between times, so that observation only warrants us in regarding its existence
as a succession of isolated events.

Matter gives us a rough and easily understood, but not a true, picture of the reality
underlying physical phenomenon. But we now begin to suspect that events and not
particles constitute the true objective reality, so that a piece of matter becomes, in
Bertrand Russell’s words,

“not a persistent thing with varying states, but a system of inter-related events. The
old solidity is gone, and with it the characteristics that, to the materialist, made matter
seem more real than fleeting thoughts.”

Then Jeans (and Russell) go on to suggest a view of nature consistent with the informational
view expounded by ETS:

This at once takes all force out of the popular objection that mind and matter are so
unlike that all interaction is impossible. With matter replaced by events, the objection

20

is no longer tenable. We see the territory on both sides of the mind-body bridge
occupied by events, and as Bertrand Russell says ([An] Outline of Philosophy, [1927,]
p. 311):

“The events that happen in our minds are part of the course of nature, and we do not
know that the events which happen elsewhere are of a totally different kind.”

2.6 ETS as a multi-stage representational formalism

As was also discussed in Section 2.3, the emergence of each new stage is associated with the
discovery and consolidation by an agent of the first transformation at the currently highest
stage. Thus, together with the new stage, the first primitive transformation at this stage
is then created on the basis of that transform as shown in Fig. 6. However, the discovery
of a transform at any, except the last, stage results in the expansion of the set of primitive
transformations at the next stage.

From the agent’s perspective, the (external) input is a sequence of sensory events, repre-
sented as primitive transformations of the initial stage (see Fig. 7). It is quite reasonable to
assume, however, that agents might be equipped with additional kinds of sensors, capable
of directly identifying some subpatterns, or classes of processes.

A useful metaphor for capturing the above multi-stage structure is a multi-stage “evolv-
ing representational tower” which can directly interact with (external) processes only at the
initial stage(s). In the language of the ETS formalism, each stage records, or represents,
observable processes by means of its own primitives, with which it represents the corre-
sponding structural fragment from the previous stage (thus compressing the representation
of the external data). Thus, each stage k of this tower is responsible for the detection of
regularities, i.e. stable processes and transforms, in the external events at the k-th resolution
stage, relying on the (condensed) representation passed up from the previous stage (Fig. 6).

We note that, although it may appear that the transition to a new stage of representation
is necessitated only by the need to deal more effectively with the complexity of representa-
tion!?, the resulting higher stage representations in turn begin to play an active organizing
role influencing the appropriate lower stages: the degrees of freedom at a lower stage are
restricted by the structures emerging at higher stages (e.g. the symbiosis of cells influences
the degrees of freedom of the constituent proteins involved).

2.7 Facing the present state of science

As an initial (but partial) applied insight and until structural sensors are built, we propose
to face the present scientific reality with the help of the following two perspectives: object
view and event view. The classical object view encapsulates the common scientific view of
reality, while the proposed event view encapsulates the ETS, or information process, view.
The conventional scientific view of reality is related to observations in the object environ-
ment. E.g. in chemistry, observations are those related to atoms and molecules (two separate
oxygen atoms covalently bond), and physical theories attempt to describe these observations
in terms of states of objects, represented via the vector space formalism. On the other hand,

19This results in the well-recognized phenomenon called “chunking” ([60]).

21

Stage i+] Stage k

Stage i : . Stage 0 Q /
1N S
Sensory ///
&7 &

data flow |

A multi-stage An agent's multi-stage
physical process representation

Figure 7: An actual multi-stage physical process (left) and an agent’s representation of it (right), mediated
by sensors (center).

the ETS model emphasizes a process view of reality, in which, as was mentioned above, trans-
forming events in the object environment, rather than the objects themselves, are the basic
subject of study (e.g. in the oxygen example, the focus is on the event corresponding to the
transformation or change responsible for the formation of an oxygen molecule). Again, the
latter view of the environment, which we call the event environment, insists on the primacy
of the information process rather than on the primacy of the objects themselves.

Given the present state of science, i.e. an object-centered view, one may choose to face
this situation, for the time being, by admitting the above two environments and creating
an interface between them: the ETS model operates with ideal events that correspond
to real events in the object environment. A real event is accounted for (in the event
environment) by its idealized version (its idealization), while in the object environment a
real event is accounted for by the realization of an ideal event (see Fig. 8). Note that the
event environment can easily account for, in particular, such events as the “appearance”
and “disappearance” (e.g. in the case of interacting particles) of objects as well as various
changes in the relationships among the objects.

22

Object Environment ("real" / physical) Event Environment ("ideal" / ETS)

]
|

State 1 @ @ I idealization
oo interaction I
ooy event 1 I

State 2 %@ I realization
7777777777777777777777777777 interaction I
P event 2

£ State 3 &é |

S ate | I
interaction I
event 3

State 4 %@ % I
&~ |
e interaction
7777777777777777777777777777 event 4 I f

State 5 @ \V I

\/ ‘ r-events I i-events

Figure 8: Event environment versus object environment. In State 1, three objects/processes (A, B, C) are
shown. As a result of the first real event, A and B merge to form D in State 2. The corresponding ideal
event (primitive) is depicted on the right. Three subsequent state changes are also illustrated: D and C
are transformed into E, F, and G; E is split into I and H; F, G, and I merge to form J.

23

Part 11
ETS basics

[T]he above remarks ... prove that whatever the [mathematical language of the central
nervous| system is, it cannot fail to differ considerably from what we consciously and
explicitly consider as mathematics.

J. von Neumann, The Computer and the Brain, 1958

3 Basic level primitives and class links between them

In this section we introduce the basic constructive elements of the formalism, in our case the
elementary transformations (or elementary “ideal events”).

In what follows, the term enumerable set refers to either a finite or countably infinite
non-empty set.

We would also like to emphasize that, in view of the present lack of an appropriate basic
mathematical language for dealing with structured entities, we must of necessity rely on
conventional set theoretic language. We do expect that this situation will be remedied once
the issue of structural representation has received adequate attention.

Notational convention 1. In this paper, the names of sets and their tuples begin with a
capital letter, while the names of mappings are in small letters.

We use the hat accent in @ to denote the special entity called the name of the associated
formal object «. Of course, “naming” can be viewed as an injective mapping from a set of
such objects to the set of their names.)

The following definition introduces the first basic concept, that of a primitive transfor-
mation. As was mentioned in the Introduction, by ‘primitive transformation’ we mean a
microevent responsible for transforming one set of adjacent/interacting structural processes
into another set of processes.?’ In other words, the concept of primitive transformation
encapsulates that of a “standard” interaction of the several processes involved.

Throughout the paper, when we speak of a “structural process”—often as being an
element of a class of such processes—this should be more accurately understood as a “rep-
resentation of the process”, i.e. as a structural entity standing for our current representation
of the process.

We assume that a set of standard or ‘primal’ disjoint?! classes of processes has been
specified. Each element of such a class is some structural entity whose intrinsic structure
is suppressed, i.e. each entity must, at this initial stage, be treated as unstructured, or
indivisible, and indistinguishable from any other entity in the class. For this reason, in the

20 Recall the analogy of several particles before and after a collision.
21 In general, assuming complete knowledge of the classes, including their representations/descriptions,
classes in nature appear to be disjoint (see the discussion after Def. 13 on p. 43).

24

following definitions we de-emphasize the concept of “process/entity” and speak simply of
elements of classes.?? Still, one must not forget that each such element is a representation of
an observed process (see Remark on p. 81).

Definition 1. Let m,n be small positive integers and

C={{C,0Cy ...,Cpn} C; is a given (enumerable) primal class,

o~

II= {7, m,. ..., 7} 7; is a given name of an abstract primitive.

We first introduce the following auxiliary concepts and notations for each 7;, 1 <i < n:*

is a given tuple of primal classes called the tu-

Init(m:) = (i Chos - Croo) ple of initial classes, or initials, p(i) > 0,

is a given set of labels associated with 7r;,
such that no two constituent elements of any
tuple (cj ..., ¢,) € Li are equal,

L, LZ‘QCJ‘lXCjQX...XCj

p(i))

is a giwven tuple of primal classes called the

Term(mi) = (Cr,, Chs» - Chyo) tuple of terminal classes, or terminals.

On the basis of the above givens, define 7r; as a set
7 = {mi(a)[ac L}
whose generic element ;(a) is:

Vac L mi(a) = m, ¥ (@, nit(7;), Term(w), a)
(see Fig. 9) 1. Set mr; is called an abstract primitive transformation, or simply ab-
stract primitive, and any one of its elements m;, is called a corresponding (concrete)
primitive. We denote by II the finite set of all abstract primitives m;, 1 <i <n, and by
IT the set of all (concrete) primitives.

[One should think of a concrete primitive m;, as designating a particular kind of in-
teraction between the (initial) processes in label-tuple a, the outcome of which is a non-
deterministically® specified element of Cy, x Cy, x ... x Cy,_,, which is the reason why
label a cannot point to a particular element in the latter set product: if one were to observe
the single event denoted by a concrete primitive, then in contrast to the initial processes, all
of the corresponding terminal processes would be “in progress”. | >

22 Clearly, the corresponding real processes from the same class must, in some sense, be similar to each
other. The sense in which they are similar is addressed later, in Part III.

3 Note that we do not forbid, for example, that Cj, = C},. Moreover, the index p(i) of j,;) simply
signifies a natural number that is a function of 7.

24 Both of the following notations, i.e. m;(a), my,, will be used. Note that m;, should more accurately
be interpreted as [m;], .

25 This is true since a terminal entity cannot be fully identified until it is “absorbed” by another primitive
event (see beginning of Section 4).

25

vy B vy R vy

Figure 9: Pictorial illustration of two abstract primitives (left) and three corresponding concrete primitives
(right). The last two concrete primitives belong to the becond abstract primitive. The initial classes are
marked as various shapes on the top, while the terminal classes are shown on the bottom. Unfortunately,
the corresponding shape does not distinguish between the class, in an abstract primitive and its element, in
the concrete primitive. (The only processes identified are the initials of mo,: b = (c} cf, ci), where ¢

1)

is the t** process from primal class Cj.)

As was mentioned in the Introduction, in general, one can think of an abstract primitive
; as an entity responsible for the modification of existing or generation of new primal
classes. In a formal setting, however, an abstract primitive can be thought of as simply
transforming a tuple of initial classes, Init(7;), into a tuple of terminal classes, Term(7r;).

[Important] Remark 1. For a generalization of the concept of primitive transformation
that is very useful in an applied setting, see Appendix. However, we advise not to study the
appendix before becoming comfortable with the basic concepts in Parts II and III, since its
main utility becomes much more apparent when one begins to work on applications.)

Remark 2 (neurons). We would like to draw one’s attention to the similarity between our
primitives and biological neurons, which in this case is less superficial than that between the
units of (artificial) neural networks and neurons: we expect that a neuron plays a similar
representational role as a primitive does, possibly participating with several other neurons
in implementing a primitive. J
Remark 3 (selection of primitives).?® Regarding the selection of primitives, one cannot
overestimate the following point: as was mentioned above, the ETS formalism insists on
approaching the process of “data” representation afresh and in a much more careful manner
than is traditional in information processing and other sciences. ETS suggests that, from an
informational point of view, “data” should now be approached and treated in a generative
setting. In other words, as will become clear from Part III, data emerges already partitioned
into classes, where the elements of a class are entities “produced” by the corresponding class
generating system, which essentially represents the class. Thus, a concrete data representa-
tion must now be treated as the result of an appropriate class generating system, ensuring
that the object and class representations are properly correlated. This is definitely not the
case with conventional generative (including graph) grammar models, in which the nature
of data representation is not addressed and is, therefore, not at all correlated with the cor-
responding generative grammar (e.g. strings do not come with grammars embedded in, or
attached to, them). Hence, the selection of primitives should be approached in this light:
they are basic class transforming events in a carefully chosen process view of the environ-
ment, i.e. the representation of an object refers to a relevant structural process in such an

26 See also Important Remark 4 on p. 86.

26

environment. In particular, we strongly recommend that all attempts to adapt conventional
discrete “representations” (e.g. strings, trees, and graphs) to the above generative setting be
abandoned, as they impede investigation into the relevant generative mechanisms based on
the hypothesized formative histories of objects in the environment.

In regard to the number and structure of primitives, we expect that an appropriate
generalization of the situation discovered in elementary particle physics will hold true: the
number of different vertices in Feynman diagrams is quite small and all of them have similar
structure (see, for example, [63]). J

It is useful to note, however, that despite the immediate analogy between our primitives
and the “vertices” of Feynman diagrams (see, for example, [61]-[64]), the approach proposed
here is a much more careful and general development, from the more abstract point of view
of a representational formalism.

Notational convention 2. To simplify the notation in what follows, instead of Init(7) or
Term(7), we will use the notation Init(w) or Term(sr), respectively, i.e. we drop the hat
accents.

Also, for the above primitives 7r; and m;,, we will use the following convenient notations:

class(m; ,r) as referring to the ' class ;. in the tuple Init(m;),

class(7; , 1) as referring to the r*" class Cj,. in the tuple Term(sr;).]

The following definition might be viewed as a continuation of (or as closely related to)
the previous one: in contrast to Definition 3, it introduces two closely connected relations
that are all potential—but not yet observed—relations among pairs of primitives.

Definition 2. Based on the definition of the abstract primitive, one can introduce the
following relation CL¢ 1,

CLcnn € II X Npgm X IT'X Ny

with
S S FP——
N = {veN | 10 < mpx(mit()]) |,
defined as follows
CLcn = { (T, ui, ™, vj) ‘ m,m €I, class(m;, w) = class(m;, v;),

w; < [Term(m)|, v; < |Init(m)] |-
We call this relation a class link between abstract primitives.

27

We also apply similar terminology and notation to the corresponding (concrete) primitives
and speak of the (enumerable) relation CL¢ 11,

CL(C,H - HXNTerm ><rIXI\IInit;

defined as follows
CLlcen = { (Tia, Wi, Tjg, V) ‘ Tias Tjs € I, class(m;, u;) = class(m;, v;),
wi < [Term(m)|, v; < [Init(mss)]| }

Since, in contrast to the situation with initial entities, none of the (concrete) terminal entities
for independently considered concrete primitive m;, can be identified (see the last paragraph
in Def. 1), it is natural to postulate that, if the above pair (m;,, m;5) of concrete primitives
has been actually observed, the non-determinism with respect to the corresponding concrete
terminal process is eliminated, i.e. what has in fact been observed is a concrete process
“connecting” the two primitives. In other words, we postulate that the observed “connecting”
process is, in fact, the v;’th element in label 6. We call relation CL¢ r a class link
between concrete primitives (see Fig. 10).

For any set Ily, IIy € II, we will use the notation CL¢ 1, to denote the subset of
CL¢,n in which all 7;,’s and m;’s are from 1l,. >

Figure 10: Generic element of the relation CL ¢ 11, where c is a structural entity from class Cj .

Thus, a class link between concrete primitives signifies the fact that one of the structural
entities produced by the first primitive becomes (at certain point in time) an “input” to the
second primitive.

4 Structs and struct assemblies

From the point of view of an agent interacting with its environment, it is quite natural to
expect that, in addition to the ability to observe primitives, the agent’s sensors must have
the capability of recording the interrelationships among observed pairs of primitives. (The
latter is accomplished by detecting primal structural processes first, and then inferring the
primitives which are “connected” by them.) These primitives and their interconnections can
be thought of as representing a macroevent, or “structural history”.

28

Definition 3. A struct o is defined as the following pair
o = (I, SL,),

where II, is a finite subset of II satisfying the condition that, for any two of its elements
Tia, Tj5 € 11, , 10 constituent element of tuple a is equal to a constituent element of tuple
b, and the relation struct link SL, is a finite subset of CL¢ 1, such that:

V(Tia, ui, mjs, v;) €SL, (a€ L, b€ L)

(i) the directed graph of the following (auxiliary) binary relation®’ representing the pro-
jection of SL, onto II, x II,

ATTACH, = { (Tia, Tjs) ‘ (Tia, Ui, Tj5, vj) € SLg }
is connected and acyclic?®
(i) V(g wi, mjs, vj), (Tirar , Uir , Tjrgr , Vjr) € SLg
Tig = Tirg, Uy = Uy <= Tj5 = Tjg, Uj = Uy,

i.e. any terminal process can be connected to at most one initial process, and visa
versa.

The set of all structs will be denoted ¥, and when II, = @ (= SL, = @), struct
o will be called the null struct, denoted 6. >

Thus, when forming a struct o, ATTACH, is the result of the sensors having recorded
the various observed interrelationships among pairs of primitives. Note the role of the
ATTACH, relation: two separately-observed primitives cannot reliably be attached to each
other, since, by Def. 1, the specification of a terminal class yields an “incomplete” element of
that class; however the “completed” element is obviously necessary to equate this terminal
with a particular initial (which is a completed element of an initial class). Hence, the basic
role of a sensor is to specify the relation ATTACH,, and therefore structs themselves.

We note that when drawing a struct o, its primitives should be positioned in the following
way: for any two attached primitives, the top primitive should be the one that “precedes”
the bottom one in the binary relation ATTACH, (see Fig. 11).

It is important to note that the above definition suggests a far-reaching structural gener-
alization of the Peano (inductive) construction of natural numbers ([7], [6], see also Fig. 12):
we still deal with the temporal, or inductive, order of steps (not structures), in which small
sets of primitive transforms are added atemporally in a single inductive step (e.g. { m14, T2y }
in o; in Fig. 11). However, the resulting binary relation between primitives cannot now
be interpreted, or understood, as a simple linearly ordered relation but is a more complex
structure.

27 The vertices of such an attachment graph are the elements of the relation’s underlying set and the
edges are defined by the ordered pairs of the relation. We will call this temporal relation between primitives
attachment.

28 A graph without cycles is called acyclic.

29

//// \\\
7/ AN
|)
\ /
N 7
) / //V\

i,

=
3
xQ
These two
primitives
are not
temporally v
ordered
(¢) (¢) 5

Figure 11: Two structs o; and os.

(a) (b)

Figure 12: (a) The single primitive involved in the ETS representation of natural numbers. (b) Structs
representing the numbers 1, 2, and 3.

[Important] Remark 4. Besides this immediate side of the generalization, one should
note that, while a natural number records the simplest, linear sequence of (structurally)
identical events, a struct records a temporal structure composed out of a variety of structural
events. Thus, obviously, there are reasons to believe that various non-temporal structures
can be extracted more reliably from this richer “temporal tapestry” as compared to that
provided by a numeric representation. D

We now introduce a part-whole relation between two structs.

30

Definition 4. For two structs o; = (Il,, , SL,,) and oy = (Il,,, SL,,), we say that oy
is a substruct of oy, denoted o; € o9, if

M, CH, and SL, CSL,,.
>

The following important but non-central definition will be useful throughout the paper.

Definition 5. By a relabeling we understand an injective mapping f with domain £,
L C U L (£ is the set of labels associated with 7r;),
i=1

fie—0s
such that
Vi o f(LnL) Cy.
| 4

To relate two structs based on their common substructures (for example, see Fig. 13), we
must be able to “intelligently” (but consistently) modify the incidental labeling of the con-
stituent primitives of one of the structs in such a way that the substructures, i.e. substructs,
of interest become identical.

Definition 6. For a struct
o = (I, SL,)

and a relabeling f: £ — [LJ L;, where
i=1

L 2 {a|m(a)ell,},

the relabeled struct
def
o{f} = (Uogpy, SLogsy)
is defined as

sy = {Wif(u) ‘ m-aEHU}
Stoty = {(m(@) s m(16) 07) | (mi(a) ue, m(8). ;) € 5L |

(see Fig. 13).

Also, for a set of primitives II; , IT; C II, we will use the notation II;{f} to denote the
corresponding set of f-relabeled primitives, where the domain L of relabeling [is always
assumed to be appropriately large. Similar assumption about domain £ will always be
implicitly made when introducing any relabeling f without explicitly specifying its domain.

>

31

o, o {f} c

Figure 13: A struct o7 (left), a relabeled struct o1{f} (center), and a third struct o (right). Relabeling
reveals some structural similarity (dashed line) between o1{f} and os.

The following definition introduces the concept of a structurally identical class of structs,
i.e. those structs which differ only in the (provisional) labelings of their primitives.

Definition 7. Two structs oy, oo will be called structurally identical, denoted o; ~ o9,
if

E| f 09 = Ul{f} .
The corresponding equivalence class containing ¢; will be denoted [o;] and is called an
abstract struct (see also Appendix and caption to Fig. 1 in it). >

We now introduce the basic operation on structs, in which at least some of the involved
structs must overlap. The latter condition is useful, for example, when putting together
several observed overlapping structs.

Definition 8. Given several structs oy, 032, ..., 0., where o; = (Il,,, SL,,), if the pair
o= (UM, USL,)
i=1 i=1

is a valid struct then this struct is called the assembly of structs o;, 05, ..., 0, and is
denoted
o = A(Jl,UQ, ceey 0r>.

32

Figure 14: Two structurally identical structs.

We note that if several structs are not assemblable, it means that they either represent
an inconsistent, contradictory, or simply non-overlapping views of the environment, i.e. it
is not possible that all corresponding macroevents occur, or they form disconnected structs
(or both). However, the absence of a link between two particular concrete primitives in a
struct does not preclude its assemblability with another struct that contains a link between
the same two primitives.

Moreover, although the legality and result of the assembly of several structs are affected
by the particular labeling of their primitives—i.e. a relabeling of one of the structs may
change the legality and/or result of their assembly (see Figs. 15 and 16)—in practice, any
two observed structs either do or do not share some primitives, which also resolves the issue
of their assemblability.

Similar to the above situation with attaching two separately-observed primitives (see p.
29), two separately-observed structs with no overlap (i.e. with no primitives in common)
cannot reliably be “connected” to each other. The only way to “connect” such structs is via
a chain of pairwise overlapping structs.

In general, one should keep in mind that if the representations of two processes share
events, i.e. their structs overlap, this indicates that the processes themselves are interacting.

It is not difficult to see that the following properties hold:

(i) for a struct o and relabelings f of struct o and ¢ of struct o{f}, we have

({9} = ofgof}

(ii) for structs o and ~, if ¢ = {f}, then there exists the inverse relabeling f~!
of struct o such that o{f™ '} =4~

(iii) if struct 0 = A(a,B) and f is a relabeling of o, then
A(AS},8{(r}) = (Ale,8)){f}.

33

A(0,,6,,0;)

Figure 15: Three structs (top row) and their assembly. Note that the second link connecting w3, and o,
in the assembly comes from o; (but not from o3, despite the delineation of o3 with a bold line). Also
note that assembly A (o1, o2) is not legal, i.e. does not exist.

34

c {f} c, c

LYY g

A(c,itf}, 6, 0;)

Figure 16: The three structs from Figure 15, the first one of which is relabeled, and their assembly.

35

Part 111
Classes of structural entities

The Universe does not consist of ready, finished objects, but instead represents a col-
lection of processes in which objects continuously appear, change, and are destroyed.
Nevertheless, from this it does not follow that they [objects] do not have a definite form
of existence, that they are unstable, or that they are indistinguishable among themselves.
However much an object changes, up to a certain point, it remains particularly that—and
not any other—qualitatively definite object. ...

Quality is the essential definiteness of an object, due to which it is, first, that object
and not any other, and second, that it is different from other objects. The quality of
an object, as a rule, is not reducible to its individual properties; rather it is connected
with the object as a whole, captures it fully, and is from it.* ... Together with qualita-
tive definiteness, all objects also possess quantitative definiteness: definite size, number,
volume,

Quantity is that definiteness of an object due to which (in reality or in thought) it could
be subdivided into homogeneous parts® that are then agglomerated. Homogeneity (the
resemblance, similarity) of parts of objects is the distinguishing feature of quantity.

The distinctions between objects that are not similar to each other carry qualitative char-
acter [i.e. they belong to different classes], while distinctions among similar objects carry
quantitative character. ... The exceptionally broad applicability of mathematical the-
ories in the different domains of natural sciences and engineering can be explained by
the fact that mathematics studies mainly quantitative relationships. Quality cannot be
reduced to quantity, as metaphysicists attempt.

Entry on “Quality and Quantity” in Philosophical Dictionary, ed. 1. T. Frolov,
5" edition, Moscow, 1987 (our translation from Russian and our emphasis)

@ Note that, in ETS, it is the concept of class representation that captures this concept
of quality.
b See also Fig. 12.

In this part, we propose a radically different view of the Universe as formed solely of
interacting and evolving classes. We must reemphasize that the material presented in this
part should be viewed as being an early formalization of the principal ETS concepts, centered
around the concept of class.

We briefly address the nature of classes of structural processes, which also clarifies the
nature of primal classes (Def. 1). As was mentioned in the Introduction, the concept of
class outlined here is much closer to that emerging from the recent research in evolutionary
developmental biology?, in which such processes as those implemented by regulatory (Hox)
genes [68] play a central role, in contrast to processes more popular in classical biology and
pattern recognition (i.e. in contrast to feature-based classes): “The embryo does not contain
a description of the animal to which it will give rise, rather it contains a generative program
for making it. ...There are thus no genes for “arm” or “leg” as such, but specific genes
which become active during their formation.” [56, pp. 199-200]

29 Three popular references are [56], [54], and [55], and two of the standard ones are [67] and [68].

36

Moreover, the entire embryo development process (starting from a single fertilized egg
cell) could serve as a suggestive example of a physical embodiment of the class generating
process postulated below.

The concept of representational level is directly associated with those of class, and hence
object, representations. Such levels should not be confused with the stages introduced in the
next Part, which are associated with still-larger jumps in the “resolution” of representation
(involving the substitution of observed macro-transformations by next-stage primitives).

This part concludes with a detailed illustrative example.

5 Single-level class representations

In this section, we first introduce the simplest concept of class, i.e. of a class whose elements
are “regularly” composed out of some subset of primitives.

In what follows, the concept of struct introduced in Def. 3 will sometimes be referred
to as that of level 0 struct, since we are about to embark on the construction of structs of
various levels.

To proceed to the definition of a single level class representation, we need to introduce
the following four definitions, upon which the former relies. They properly belong to Part 11
but are placed here for convenience of reference, since the central definition of this section
relies heavily on them.

In Def. 10, we present one tentative (and in this paper the only) way of specifying a family
of structs sharing a particular structural “backbone” 3°. We intend to use such structural
descriptions to specify restrictions on a set of (local) substructs admissible as structural
modules in a single step of a systematic process for constructing a class of “similar” structs.

Definition 10 will rely on the following definition, which introduces the concept of a family
of structs, each of which could be thought of as realizing an admissible structural unit joining
two fized concrete primitives. Such family could also be thought of as extending the concept
of link between two primitives.

Definition 9. Let m, and o be some primitives, called pivot primitives, IT* be a
subset of the set of abstract primitives, and FR be the fixed formation rules for speci-
fying various admissible sets II*’s consisting of concrete primitives from IT* 3!. The IT*-
unit-constraint, or simply unit-constraint, UCon(my, ,u;)(my,v2) (II*, FR) between
(T1a,u1) and (mg,vy) (in that order), where w; is the index of one of m,’s terminals
and vy is the index of one of 7o,’s initials, is defined as a family of structs {a = (11, SL,) }
satisfying the following conditions: 32

for one of the above IT*, IT* N {m,, mp} = &, we have

o {ma,mp} C I, CII*U{ma, T}

30 Think of a “structural formula”.

31 For example, one may want to allow II* to have up to three primitives from 7r; , exactly two from T,
etc. In general, the formation rules are application-specific.

32 Gee Defs. 2 and 3.

37

o I (mi,v;), M € IT*U{my}, such that (7., u1,me,v;) € SL,

I(mja,ui), Mg € I*U{m,}, such that (mjq,u;,mep,v2) € SL,

in ATTACH, , m, has exactly one child and is an ancestor of all m, m;e € I, \ {714}

e in ATTACH, , my, has exactly one parent and is a descendant of all wjy, m;; € I, \

{ma}

Moreover, IT* is such that there exists II* for which there exists at least one struct o
satisfying the above conditions. For any struct from the above family, we say that such a
struct satisfies unit-constraint UCon(m, ,u;)(7o, ve) (IT*, FR) . >

Note that, in general, II* could be empty. Also note that in the case when

class(myg , uy) = class(may, vo) 33, UCon{mi,,u;){ oy, ve) (IT*, FR) always contains the
struct whose only primitives are m, and g, , even when IT* = & (see the second and
third bullets in the definition; also see Fig. 17).

As will become clear later in this section, it is convenient to think of IT* primitives as
“non-primary”, i.e., as being contributed by the “environment”, including “noise” primitives.
Thus, on the one hand, possible environmental variations are being taken into consideration,
since the basic concept of a link between two primitives is now extended to allow for envi-
ronmental influences. On the other hand, two structs that differ in substructs, both of which
satisfy the unit-constraint, could be treated as equivalent with respect to this unit-constraint.

Definition 10. A (structural, level 0) constraint Con (II, U7)—involving a set of pivot
primitives II and a tuple of sets of primitives U7 —is defined as a tuple of unit-constraints

Con (IT, uT) =
<UCOH(7T1a7U1><7T2b,U2> (II}, FRy) , ..., UCon(mop—1,c, tok—1) { Tok,a , var) (I, FRy) > ’
such that

o Vij i#j (e, wi) # (mig,w;)

o 1T = {m, Topy -, T2k 1.c, T2k d}

e u7 = (I}, FRy), ..., (I}, FRy))

e the graph, whose vertices correspond to pivot primitives and edges to unit-constraints,

is connected.

The tuple of unit-constraints must also satisfy the following condition: there exists struct
a, a = (II,, SL,), and its relabeling f, such that

for each unit-constraint UCon(ma;_1,e, U2i—1) (T, 4,02) (II;,FR;) , 1 =1,...,k, there exists
a struct o; = (Il,,, SL,,) satisfying this unit-constraint and

33 See notational convention 2.

38

ﬁaﬁ A4S
Y

UCon <z, 1> <m,, 2> (IT", FR)

Q

Figure 17: A unit-constraint UCon{ 74,1)(map,2) (II*,FR) and two sets of structs, satisfying (oq,09,03)
as well as not satisfying (o4 ,05,06) this constraint: for example, in o5, m4q is not a descendant of w1,
and in g, 73, is not an ancestor of moy. An example of the rules FR is: at most two occurrences of s,
at most five occurrences of 73, one occurrence of 74, and at most three occurrences of mg. At bottom-left
is a pictorial representation of the unit-constraint with pivot primitives m, and may, where the light gray
ellipse connecting them stands for a corresponding admissible substruct. On the right, non-pivot primitives
are shown shaded light gray.

o Ha{f} = LZJHUi

° USLUi - SLa{f} .

We say that struct « satisfies constraint Con (II, U7T), see Fig. 19. The set of primitives
in o that are relabeled primitives in II is also called the set of pivot primitives of o,
and denoted TII,. In the case when the above tuple defining Con (II, U7) is the null tuple
(its length is 0), we call the constraint the null constraint and denote it O. >

39

UCon <r,, 2> <m,;, 2> (IT", FR) c

Figure 18: Another example of a unit-constraint, with only the top two structs oy and o satisfying it.

Thus the pivot primitives (IT) and the unit-constraints involved specify the necessary
structural components in every struct « satisfying constraint Con (II, U7), while the
primitives in II} are incidental events that may accompany the necessary component of
the constraint in « , allowing for a reasonable degree of variation. As was mentioned above,
such incidental events may include “environmental” and/or noise events.

Definition 11. For a constraint Con (II, UT), a corresponding active constraint is de-
fined as the following triple

ACon (TI, i, ™, ™) = (Con (II, ur), T™, T),

where

40

Con (TT,UT) o, o,

Figure 19: An example of a structural constraint Con (I, u7), with II = {714, may, T3k, Teu } and II}’s
as shown on the top left; FR;’s are not included. On the right are two sets of structs: o; and oy satisfy
the constraint (the two light-shaded ellipses correspond to the dashed ellipse at bottom left, which is part
of the unit-constraint shown in Fig. 18) , while o3 and o4 do not: in o3, ms is attached to the wrong
terminal of 74, and in o4, pivot primitive 7g, is not an ancestor of pivot primitive 7y¢ , according to the
corresponding unit-constraint shown on the left.

41

Figure 20: Three more structs satisfying the constraint shown in Fig. 19.

e the set of anchor primitives, denoted I, is a non-empty proper subset of II

(I™° c 1)

e the set of open primitives, denoted II™", is a subset of II.

A struct o satisfying an active constraint, or simply active struct, is a
struct that satisfies the corresponding constraint Con (I, ©7) and its pivot primitives
inherit (under relabeling) all anchor and open markings from the active constraint

ACon (II, uT, II™, TI™"). The sets of anchor and open primitives in « are de-

7T anc

noted 11, (IL)" # @) and II;™ | respectively.
In the case when Con (II, u7) = ©, we call the active constraint the null active
constraint and denote it © also. >

The role of open primitives will be clarified in the next (important) definition, which
restricts the family of active structs satisfying constraint ACon (II, w7, I™, T™") to a
particular subfamily.

42

Definition 12. A working struct o¢" is a struct some of whose primitives, sub-
set IIw, II0" C Il,w, are marked as open 3.

ACon (II, uz, I™, TI™") 35, the set Ext (0%, ACon (II, uz, I, II*™")) of active
extensions of Worklng struct o% with respect to the active constraint is defined
as the set of active structs a satisfying the following conditions (see Fig. 21):

For a non-null active constraint

(i) « satisfies ACon (II, w7, TI™™, TT*™")
(i) assembly A(c",) exists
(iii) T2 C TIJn" 36

(iv) T, \ Hpw # @
In this case, the resulting assembly A(c",«), also denoted o S is defined to be a

working struct with open primitives specified as follows: they are the primitives in (ﬁsgn \
I,) UIl™ .

For the null active constraint, we define the set Ext (0, ACon (II, @7, TT™, T))
to be {6}. >

Note that since II.~ # @ , (iii) ensures that o and o share at least one pivot primi-
tive. Condition (iv) ensures that o & o*. Moreover, even if ACon (II, a7, TT™, TT™™") #

O , set Ext (a, ACon (II, @7, TT™, T)) could still be @.

The anchor primitives in « specify structural “anchors” on which the two structs «
and ¢“ must overlap. The open primitives in ¢ specify all of the allowable “interface
points”, where an active extension is allowed to overlap with ¢". Hence, for a to be a
non-null active extension of ¢%, all anchor primitives in « must be open in o%

We are now ready to introduce the central concept of this section.

Definition 13. A single-level class representation R is a triple
R = <ﬁ9‘{a Hz;%v gﬁ)‘{>7

where Ty is a set of constituent pivot abstract primitives (for the class), IT} is a set
of constituent non-pivot abstract primitives (for the class), and %y is a partial stepwise
specification of a (level 0) class generating system:

ggg = <{ ACon l,i(ﬁl,iv "UTLZ‘, ﬁla;lc’ ﬁilzn) } {ACOH 2,i<ﬁ2,ia "U{IZ“ ﬁza;lc, ﬁ;};n) }

i€l icly’

34 Note that “anchor” markings are not applicable in this case., while “open” markings are always
specific to a particular process generating a class element, see Def. 13.
35 Struct o™ has no relation to the active constraint.

36 Note that when ﬁﬁﬁf“ = &, this condition is violated (since by definition ﬁjnc # @) and hence
Ext (a, ACon (I, uwz, W™, T)) - .

43

Con (I1,UT)

Figure 21: Active struct « satisfying the active constraint corresponding to the constraint given in Fig. 19.
Struct « is also an active extension of working struct o, and their assembly is shown on the right.

ey {ACOI] t,i(ﬁt,’h uTt,ia ﬁta’,?cy ﬁt(?fn) }iEIt> ’

where each 7 € II;; is taken from some m, m € Ily, each tuple UT;; is formed from
subsets of II;, and each of the above sets of active constraints specifies the corresponding
step by ¥x. The actions of this generating system are described next.

Each step in the operation of the generating system %y follows a “step” in the action
of the level 0 environment €¢. Such environment could be thought of as comprised of a
finite set of level 0 classes that can immediately interact with “x. Each such “step” by €&
is specified by its own sets of active constraints. This interaction typically manifests itself in
the environmental structs being attached to the current incomplete class element in between
the steps of the generating system. Specifically, at step j, the system “responds” to the
following j*" step by @ in a manner specified below:

e step j by €: the environment & may assemble several structs (each taken from a
corresponding class) to the previous working struct oy(j_1) to produce the current
working struct o251, whose pivot primitive markings are unchanged; such step by €&
could in fact be comprised of several “actual” steps (depending on the nature of the
classes in & participating in this step);

e step j by ¥m: in turn®’, denoting by ;-1 , ;-1 € 02j-1, the j — 1 working class

37 The class generating system acts without reference to the structure of &, i.e. it does not know the
structure of the classes that affected the working struct.

44

element, i.e., the substruct of the current working struct formed by the primitives
that have been contributed so far by %x only, the class generating system

— first nondeterministically /probabilistically chooses struct [3; from one of the non-

empty sets of structs {Ext ('yj_l, ACon ;,;(II;,;, UT,;, ﬁﬁm, ﬁ;?n))} and
’ ’ i€l
also satisfying: ’
* Hﬁj \ﬁﬁj - HUijl
* A(B;, 09j—1) exists

— assembles 3; to o09;_1 to produce the next working struct oy;; moreover,
it is not difficult to see that performing the latter assembly also accomplishes
the following assembly (since 7;_1 € 091) producing the next working class
element v; = 7,4 = B; (to appropriately allocate “open” markings). See Fig.
22.

Note that the initial step is a simplified version of the above generic step, in which the
very first step by the environment produces not only (the current working) struct oy, but
also its substruct, the initial working class element ~, with the appropriate markings.

The generating system %y contains its own terminating condition (not presently spec-
ified) for completing struct ~, where v = A(S1,02,...,0s), 7 € 095 (0325 is the final
working struct). For any such struct -y, the pair

¢ = <’7’g9‘§>

is called a class element of the single-level class €(R, €) —or simply € —induced by
R in environment € (see Fig. 23). >

Note that the presence of a null constraint in the constraint set adds the option of leaving
the working class element unchanged at the corresponding step. Moreover, for a given step,
(in the case of a non-null constraint) the action of the generating system must lead to the
extension of the working class element, but it does not have to extend the working struct:
this is the case when all primitives added to the working class element at this step are already
present in the working struct (because they were previously added by the environment).

Also note that some of the active constraints may account for various environmental
contingencies, allowing generating system to respond sensibly to the environmental reality.
Thus, the generating system outputs not only ideal class elements but also so-called “noisy”
ones, i.e. it should be able to produce class elements of appropriate (for that class and its
environment) structural variability, some being more typical than others. On the other hand,
there are some situations which modify class elements in such a way that the representation
of the class changes. The relevant ETS mechanism—a transformation—that addresses such
changes of class representations (as well as the production of new classes) will be considered
in Section 9.

We draw your attention to the following synonymous terms: single-level class (element)
and level 0 class (element).

45

G2-1) Gyi1 Sy
Previous working struct The current working struct The next working struct after the
before the j step by € after the j step by & j step by the class generating
system

Figure 22: Pictorial representation of a two-step generative unit—a step by the environment & and the
corresponding step by the class generating system %yx—in the construction of class element ¢, ¢ € €.
Dark shaded primitives are those added by the environment, and the dotted line delineates the active struct
assembled to o241 (and satisfying the corresponding active constraint). Primitives that remain dark shaded
at the end of the generating process are not part of the class element ¢ that is being generated. Note that
because primitives w3y, 7T3m, in 0241 happened to be in 3;, they became part of ¢ in 09542

The adjective “partial” qualifying the specification of a level 0 class generating system (in
the first paragraph of the definition), suggests that this specification is, in a sense, incomplete:
not only is the terminating condition implicit, but the above “actions” of the system are also
not integrated into its specification.

We draw your attention to the fact that the class representation R —in contrast to its
output, i.e. the associated class € —is independent® of the environment €.

Moreover, %y can be thought of as being a semi-autonomous system “responsible for
producing” class elements. Also note that, when a generating system terminates, it does

38 Or, more accurately, acts independently.

46

contraction

e

(e

final b

Figure 23: Left: Pictorial representation of a final output of the class generating system, the working struct
Ofinal (Which is a “completion” of the last struct shown in Fig. 22). Right: The final working class element
v, which is a substruct of struct oana, where ~ is the struct of the class element ¢, ¢ = (v, %). On
the far right, we show a contracted v as a (potential) constituent element of a level 1 struct (Def. 15), a
simplified depiction which will be used in the sequel: solid dots stand for contracted primitives and struct
links are omitted.

not necessarily mean that the corresponding output process is fully “terminated”, but it
is possible that another, closely related, generating system takes over, e.g. a fetus versus a
newborn infant.

An important difference between the ETS formalism and other formalisms (e.g. generative
grammar models) is that ETS is structured in such a way as to allow for an inductive
“bridging” of the two components of the pair defining ¢. In other words, it is expected that
the temporal information embodied in the first component (the struct) allows for a reliable
recovery of the second component, based on a small training set of structs.

Recalling our assumption about the disjointness of primal classes (before Def. 1), indeed
any two classes are disjoint, since each class element carries within itself its class represen-
tation. A fundamental pragmatic implication of this is that the stored form of every class
element must include the corresponding class representation®®, though this is not necessarily
accessible to an external agent.

39 A well-known example of class representation is that with which DNA is associated.

47

As to the importance of the role of the environment, it suffices to quote one of the leading
developmental biologists, Scott Gilbert [68, p. 721]:

[R]ecent studies have shown that the environmental context plays significant roles in
the development of almost all species, and that animal and plant genomes have evolved
to respond to environmental conditions. ... Moreover, symbiotic associations, wherein
the genes of one organism are regulated by the products of another organism, appear
to be rule, rather than the exception.

How tentative is the above generating system specification? At present, one should
approach that issue with due caution, in view of the lack of relevant experience. The main
difficulty in addressing this issue is related to the lack of a precise language for describing such
a generative mechanism in the structural setting outlined above. However, it appears that
a hint in this direction may lie in the appropriate modification of the structural constraint
concept introduced in Def. 10.

Important Remark 2. For a fixed level 0 class setting, each class generating system has
a range of “states”, having passed though which the system always remains in a “mature”
state, and continues to produce mature class elements. Having passed this range of states,
the struct ~ within class element ¢ is supposed to carry almost all structural information
associated with the class. Moreover, some class elements are “extensions” of other class
elements—some immature, some mature—and one branch of the class generating system
responsible for producing a complete (temporal) chain of class elements may be called a
class system instance. In the Introduction (and also throughout the paper), when we
speak of “structural processes”, it is the latter concept that comes closest to describing such
processes. Hence, it is quite reasonable to expect that, in the future, a class element will
become a more dynamic entity, capturing the idea of a concrete structural process.

For an organism, one can view its embryonic stage as corresponding to an immature state
of the class generating process. The adult stage of an organism corresponds to the mature
part of a class system instance, i.e. when the organism/process becomes ready for interaction
with other processes. D

Definition 14. We introduce a finite set of single-level classes
C = {¢,¢&,....¢},
lop is the number of single-level classes, which we call a level 0 class setting. >

The next definition introduces the concept of level 1 struct, as that of a struct assembled
from several level 0 class elements.

1

Definition 15. Having fixed class setting C, a level 1 struct o' is defined as a pair

ol = (€, ,0),

48

where the level 0 class-based representation of level 0 struct o
(ga - {Cl,CQ,--.,CSO}

is defined in such a way that ¢; € &, ¢; = (7, %,), and 0 = A(%, Yo, ... ,750). We
refer to ¢; as a constituent element of o'. See Figure 24.

The set of all level 1 structs will be denoted X!, and when ¢, = @, struct o' will be
called the null level 1 struct, denoted 6'. >

Figure 24: Simplified pictorial representation of a level 1 struct (using the contracted form of its constituent
elements, as shown in in Fig. 23).

We now generalize the concept of substruct to level 1 structs.

Definition 16. For two level 1 structs o' = (€, , a) and ' = (%3, 3), we say that o'
is a substruct of 3!, denoted® o' e 3!, if

Co C €.

Next, we generalize the concept of struct assembly to level 1 structs.

40 For simplicity, we suppress the level index on the substruct operator €' since both operands carry the
corresponding index and thus no ambiguity arises.

49

Definition 17. Assume we are given several level 1 structs o1, o4, ..., o}, where o} =

(€,,, 0;). If the assembly A (o1, 09, ..., O’r) is a valid struct o, then the pair
ol = < O Cgoi) 0>
i=1

is a level 1 struct called the assembly of level 1 structs o}, 05, ..., 0!, denoted

1 _ 11 1
o = A(O'I,UQ,...,O'T>.

6 'Two-level class representations

In this section, we make the next step towards a generalization of the concept of single-level
class and introduce the concept of two-level class representation.

We will use the following notation for a finite set whose elements are some selected
elements of various (not necessarily distinct) classes from level 0 class setting C:

€ = {CZ'|C1'EQ:]%EC,1§Z'§7’}.

Definition 18. For a level 0 class setting C, a level 1 class element link,
CEL'(%, Con (I, uT)), between (level 0 class) elements in a set ¢ is defined as
the pair

CEL'(%, Con (I, ur)) = (¢, Con(Il, uT)),

where
(i) for ¢; €€, ¢; = (v, %,), assembly 0 = A(y1,72,...,7) exists
(ii) for each ~; there exists its substruct 7, such that
o= (m,syy, TcI

and
7. satisfies Con (II, UT) .

(See Figure 25.) >

In particular, the above elements ¢;s in 4 must share primitives from II;, while ~.’s
can only differ in non-pivot primitives from the constraint.

Note that the constraint Con (II, ¥T) need not have any particular relation to the
constraints involved in the specification of the above classes €, , €, € C.

As was the case with the primitives in II and U7 involved in the definition of a level
0 constraint (Def. 10), the concept of a level 1 constraint (Def. 19) relies on two finite sets
of class elements € and %*. Moreover, one should note the overall analogy between these
two definitions, with the two sets of class elements playing a role somewhat similar to that
played by IT and UII;.

50

Con (I1,UT)

Y] '}’2 y3
s fo \l Y,
,’) I j

([]
([]
-~ Cid
- - \'~-.0’
[]
~ -
[]

- - -
- -_——--
-~

cececccccccnad
.au
-

(]

[]
\ --
eNease==""",

<
/
!
P *
\
\

Figure 25: Illustration of a level 1 class element link. Left: depiction of a (level 0) constraint. Top Right:
structs corresponding to three level 0 class elements (from %), with the corresponding substructs ~;’s
satisfying constraint Con (IT, UT) (see Fig. 19) delineated with dotted lines; the primitives from IT}’s are
shaded. Bottom Right: the struct o that is the assembly of the above three structs where the two primitives
from II are depicted as stars and ~v;’s are not delineated. Shading here is not related to that on the left,
but rather to indicate the overlap area that will be shown in a similar way in some of the following.

51

Definition 19. For a level 0 class setting C, alevel 1 constraint Con'(%, €*)—involving

two sets of level 0 class elements: %, the pivot class elements, and €*, € N€* = ©
—is defined as a pair

Conl(?, ¢*) = <{CEL1(ng7 Con (ﬁj’ ﬂTj))}1<j<J7 (g*>7

where | €; = % and the following condition is satisfied.

J
There exists:
level 1 struct

set of class elements €', € C €' C € UE*,
relabeling f, and bijection

such that
(i) Ve, €€, ¢ €€ — g(¢) €y,
(i) Vj CEL'(g(%;), Con(IL;{f}, uT;)) is a level 1 class element link between ele-
ments in ¢(%6;).

We say that the above level 1 struct o' satisfies level 1 constraint gon1 (¢, ¢,
and in the case when €* = @ we write simply Con'(%). In the case when € = ¢* = @
we call the constraint the null constraint, and denote it O!. >

Analogous to Def. 10, the set of pivot class elements € and the set of class element links

{CELl(cgj, Con (I1;, UT j))}1<j<J identify the necessary structural components in every

struct o' satisfying constraint Con' (%, €*), while the class elements in € are optional
constituent elements that may accompany in o' the necessary component of the constraint,
thus allowing for a reasonable degree of freedom. Such optional constituent elements may
include particular “environmental” and/or spurious class elements.

As can be seen from Fig. 26, it is convenient (although incomplete) to think of a level 1
constraint as a combination of previous-level constraints.

Definition 20. For a level 1 constraint Con'(%, €*) a corresponding level 1 active con-
straint is defined as the following triple

ACon!(Z, ¢, ™, ™) = (Con'(@.¢"), T, 7™,

where

92

A (level 0) constraint
linking the first two
class elements
A (level 0) constraint
linking the first three

class elements

A (level 0) constraint
linking the fifth and
seventh class elements

A (level 0) constraint
linking the last two
class elements

(&}

Figure 26: Pictorial illustration of a level 1 struct ¢! that satisfies some constraint Con'(%, €*). Class

element ¢4 is from set €*.

e the set of anchor class element, denoted %™, is a non-empty proper subset of €

(?anc C?)

e the set of open class elements, denoted ", is a subset of % .

A level 1 struct o' satisfying a level 1 active constraint, or simply active level
1 struct, is a struct that satisfies the corresponding level 1 constraint Con'(%, €*) and its
pivot class elements inherit (under a class element bijection g) all anchor and open markings
from the active constraint ACon'(%, €*, €, """). The sets of anchor and open

class elements in o' are denoted %, (€. # @)and €. ", respectively.

53

In the case when Con'(%, €*) = ©', we call the active constraint the null active
level 1 constraint and denote it ©! also. >

Analogous to Def. 12, the next definition restm’cts the above family of level 1 structs,
satisfying active constraint ACon'(%€, €*, €™, €°""), to a particular subfamily of level
1 structs.

Definition 21. A level 1 working struct o“! is a level 1 struct some of whose class

opn . .
elements, subset ‘KUU, 1, € yu1 C Gy, are marked as open. For non-null active constraint

ACon' (€, ¢*, €™, €™) %', the set Ext (o¥!, ACon' (€, ¢*, €™, ™")) of active
extensions of working struct oc“! with respect to the level 1 active constraint is
defined as the set of active structs o' satisfying the following conditions:

(i

) a
(ii) level 1 assembly A(c™!, a') exists
) €

anc opn)

! satisfies ACon' (€, 6%, ¢ , €

anC opn
(iii C Coon ©

(iv) ?a \ Gpon £ @

w,1

In this case, the resulting level 1 assembly A(c™! al) | also denoted o o) o, is defined

to be a level 1 Worklng struct with open class elements specified as follows they are the
class elements in (Coun \ €a) UEC, .

anc

For the null active constraint, we define the set Ext (0“”1, ACon (€, €, €™, €™"))
to be {6'}. >

The two paragraphs of comments following Def. 12 apply here also.
We now proceed to the definition of a two-level class representation, remembering that
class setting C is fixed. (This definition is practically a copy of Definition 13.)

Definition 22. A two-level class representation R! is a triple

R = <€9‘{7 ;Q)gi)}{>v

where Cx (Cx C C) is a set of constituent pivot level 0 classes, Cy (Cx CC) is a
set of constituent non-pivot level 0 classes, and ¥ is a partial specification of a level
1 class generating system:

93 = ({ACond (Br. 6, BB by { AComd (T 65, BT T30

iel}”’

451 w has no relation to the active constraint.

opn anc

42 Note that when %,.. = @, this condition is violated (since by definition €,
Ext (0%, ACon' (€, ¢*, €™, %"pn)) = 2.

@) and hence

o4

{ACODH(%W (gt*m (gta;lc’ cg()pn) }ieltl > ’

where each ¢ € €;;, ¢ € € € Cx and ¢ € ¢, ¢ € & € Cy. Moreover, each of the
above sets of active constraints specifies the corresponding step by % . The actions of this
generating system are described next.

Each step in the operation of the generating system %5 follows a “step” in the action
of the level 1 environment ¢!. Such environment could be thought of as comprised of a
finite set of level 1 classes that can immediately interact with % . Each such “step” by ¢!
is specified by its own sets of active constraints. This interaction typically manifests itself in
the environmental structs being attached to the current incomplete class element in between
the steps of the generating system. Specifically, at step j, the system “responds” to the
following j' step by &! in a manner specified below:

e step j by €': the environment ¢! may assemble several level 1 structs (each taken
from a corresponding class) to the previous level 1 working struct a%(_1y to pro-
duce the current level 1 working struct O%j_l, whose pivot class element markings
are unchanged; such step by @&! could in fact be comprised of several “actual” steps
(depending on the nature of the level 1 classes in ¢! participating in this step);

e step j by ¥g: in turn®, denoting by ~j_,, 7j_; € 03, , the j —1 level 1 working
class element, i.e., the substruct of the current level 1 working struct formed by the
class elements that have been contributed so far by %3 only, the class generating
system

— first nondeterministically /probabilistically generates ** level 1 struct 3] from one

of the non-empty sets of structs {Ext (% B ACon (Cja, € G %Opn)})
iel!

g @i o
and also satisfying:
k Cgﬁl \ %61 C cg 1

x A(B}, 03 1) ex1sts

-1

— assembles 3 to o3; ; toproduce the next level 1 working struct o; ; moreover,

it is not difficult to see that performing the latter assembly also accomplishes the
following assembly (since ’y}fl c 0211-71) producing the next working class element
Y = Y =) B; (to appropriately allocate “open” markings). See Fig. 27.

Note that the initial step is a simplified version of the above generic step, in which the
very first step by the environment produces not only (the current working) struct of , but
also its substruct, the initial working class element 7} with the appropriate markings.

43 The class generating system acts without reference to the structure of &!, i.e. it does not know the
structure of the classes that affected the working struct.

4 We draw attention to the process of generation (of (3}), which relies on the relevant part of the working
struct as well as on the active constraint as it instantiates—usually in parallel—the appropriate level 0 class
elements (via the corresponding level 0 generating systems).

%)

The generating system % contains its own terminating condition (not presently spec-
ified) for completing struct ', where v' = A(B{,5},...,8}), v* € 03, (04, is the final
working struct). For any such struct ~', the pair

¢ = (7, %R)

is called a class element of the two-level class €(R!, ¢') induced by R' in envi-
ronment ¢! (see Fig. 28). When no confusion arises, this class is also denoted €. >

5

1

1
G2 -1 Gyj.1 Oy;
Previous working struct The current working struct The next working struct after the
before the j™ step by E' after the j™ step by E! j step by the class generating
system

Figure 27: Pictorial representation of two steps—a step by the environment &! and the corresponding step
by level 1 class generating system %jﬁ —in the construction of class element ¢!, ¢! € ¢'. Dots stand for
primitives, and lines delineate level 0 class elements. Grey class elements are those added by the environment,
and the dotted line delineates the level 1 active struct assembled to a%j 41 (and satisfying the corresponding
level 1 active constraint). Elements that remain shaded at the end of the generating process are not part of
¢! . Note that because the bottom grey class element in U%J» 41 happened to be in ﬂ} , it became part of the
working class element in 03,5 .

All comments following Def. 13 apply here also.

We draw your attention to the following synonymous terms: two-level class (element)
and level 1 class (element).

As was done in the previous section for level 0 classes, we are now ready to define a class
setting for level 1.

56

contraction

&
57
N

SIS

1

1
Gfmal Y

Figure 28: Left: Pictorial representation of the final output of the class generating system, the level 1
working struct o} ., (which is a “completion” of the last struct shown in Fig. 27). Right: The final working
class element ~', which is a substruct of struct of .;, where ' is the struct of the class element ¢!,
¢l = (41, 4L). On the far right, we show a depiction of ¢! as a (potential) component of a level 2 struct:
squares stand for contracted class elements.

Definition 23. We introduce a finite set of two-level classes
ct = {et, e}, ... ¢},
[y is the number of two-level classes, which we call a level 1 class setting. >

The evolution of the universe suggests that the following inequalities between the corre-
sponding cardinalities emerge with time:

m<l0<l1.

Indeed, these inequalities are quite natural since, for example, the number of classes is much
larger than the number of primitives.

Level 2 analogues of Definitions 15-17 (including level 2 struct, substruct, and as-
sembly of level 2 structs) follow immediately. For convenience, we present an analogue
of Definition 15 only.

57

Definition 24. Having fixed class setting C!, a level 2 struct o2 is defined as a pair

o = <ng711701>>

where the level 1 class-based representation of level 1 struct o!

¢h = {c,d,....c}
is defined in such a way that ¢} € €, ¢f = (v}, %), and o' = A(vll,%l, ,7;1).
We refer to ¢! as a constituent element of o2.
The set of all level 2 structs will be denoted Y2, and when €4 = @, struct o? will
be called the null level 2 struct, denoted 62. >

[Important] Remark 6. We draw the reader’s attention to the following incompleteness in
our presentation: we have not yet finalized the generalization of the concept of primitive
attachment (and therefore the relation SL) to class elements in a higher-level struct in
such a way that would describe the interrelationships between the various constituent class
elements. J

7 Higher-level class representations

Finally, we are going to discuss the general form of class representation, which is a straight-
forward adaptation of a two-level class representation. To avoid a bacchanalia of level-related
indices in the class representation for a general level k—which is absolutely analogous to the
one presented below and in Def. 22—it is sufficient to restate the level 1 (2) definitions for
level 2 (3), particularly in view of the fact that the number of levels is always expected to
be very small.

We proceed to the definition of a three-level class representation, where analogues of
Defs. 18, 19, 20 and 21 are omitted (since they are trivial modifications of the latter def-

initions). The corresponding notations are: CEL?*(6", Con'(%, ¢*)), Conz(?l,),
AConQ(?l, g gt g), and Ext (02, AConz(?l, g gt gt).

Definition 25. A three-level class representation 2R? is a triple
R = (Cy, G, %3,
where Cy (Cy C C) is a set of constituent pivot level 1 classes, Cx' (Cx! C C!)

is a set of constituent non-pivot level 1 classes, and %3 is a partial specification of a
level 2 class generating system:

2 2 ol x,1 ¢panc,l csopn,l
G = < {AConu(CfLi, %1,2‘) %1,1') %1,2') }Z-GI% y e
AC 2 ?1 Cg*vl ?anc,l ?opn,l
R { Ont,i(tir Yt o ti t,5)}ielf)

58

where each ¢! € ?jlz, clecl eCy and c€ %', o € ¢ €Cx'. Moreover, each of the
above sets of active constraints specifies the corresponding step by % . The actions of this
generating system are described next.

Each step in the operation of the generating system %3 follows a “step” in the action
of the level 2 environment ¢2. Such environment could be thought of as comprised of a
finite set of level 2 classes that can immediately interact with %z. Each such “step” by &2
is specified by its own sets of active constraints. This interaction typically manifests itself in
the environmental structs being attached to the current incomplete class element in between
the steps of the generating system. Specifically, at step j, the system “responds” to the

following j*" step by @2 in a manner specified below:

e step j by €2: the environment €2 may assemble several level 2 structs (each taken
from a corresponding class) to the previous level 2 working struct ag(j_l) to pro-
duce the current level 2 working struct agjfl, whose pivot class element markings
are unchanged; such step by &2 could in fact be comprised of several “actual” steps
(depending on the nature of the level 2 classes in €* participating in this step);

e step j by %g: in turn®®, denoting by ~7 ,, 77, € 03, , , the j —1 level 2 working
class element, i.c., the substruct of the current level 2 working struct formed by the
class elements that have been contributed so far by %% only, the class generating

system
— first nondeterministically /probabilistically generates? level 2
struct BJQ from one of the non-empty sets of structs
{Ext (73271, AConii(?jl-yi, %;;1, ?ﬁ?c’l, ?JO fn’l) }Z,e 2 and also satisfying:
j

1 7z 1
* ngz \%5]2 C Cgaz

2j—1
x A(B7, 03, 1) exists

— assembles 37 to o03; ; toproduce the next level 2 working struct o3; ; moreover,

it is not difficult to see that performing the latter assembly also accomplishes the
following assembly (since 7]2_1 S agj_l) producing the next working class element
=7 2 37 (to appropriately allocate “open” markings).

Note that the initial step is a simplified version of the above generic step, in which the
very first step by the environment produces not only (the current working) struct o}, but
also its substruct, the initial working class element ~2 with the appropriate markings.

The generating system %3 contains its own terminating condition (not presently spec-
ified) for completing struct 2, where v* = A(B%,063,...,5?), v* € 03, (03, is the final

45 The class generating system acts without reference to the structure of &2, i.e. it does not know the
structure of the classes that affected the working struct.

46 We draw attention to the process of generation (of 5]2), which relies on the relevant part of the working
struct as well as on the active constraint as it instantiates—usually in parallel—the appropriate level 1 class
elements (via the corresponding level 1 generating systems).

59

working struct). For any such struct ~?, the pair
= (7 9R)

is called a class element of the three-level class €(%R?, ¢?) induced by 2? in envi-
ronment ¢2. When no confusion arises, this class is also denoted €2. >

Obviously, for some chosen application, for a particular level, the effect of the environment
on a class may manifest itself to a “larger or lesser extent” as compared to that on a class
at a different level, i.e. at a particular level, there may either be more or less environmental
classes interacting with the class in question.

Next, level 2 analogues of level 2 class setting and ¢? w.r.t. C?, and level 3 analogues
of level 3 struct, its substruct, and assembly of level 3 structs, follow immediately.

Speculative remark. One of the anticipated consequences of the above class represen-
tation definition is that it should facilitate the introduction of an analogue of the concept
of a topology for a class (i.e. how “close”) and also facilitates the emergence of a “class
topography” (i.e. how “typical”). Moreover, it is natural to assume that a fixed set of
classes (at all previous levels) do not uniquely induce the topology of a next-level class: it is
the overall structure, or “structural features”, of the generating system that should ensure
uniqueness. D

For a very early attempt to implement the concept of structural generativity via Markov
stochastic processes in the ETS formalism, see [1], [42], [43] (where this was accomplished in
a more conventional manner by attaching numeric weights to transforms, where the latter
concept is introduced in the next section).

8 An illustrative example: the class of “Bubble Men”

In this section we present, in diagrammatic form, a relatively simple but in some sense char-
acteristic example of a 3-level class and its generating system, the Bubble Man class. In
the choice, we were motivated by considerations coming from both developmental biology
and ETS. We want, at least to some extent, to “hit two targets with one stone”: to illus-
trate, one, the concept of the ETS generating system (as it might apply, for example, to
shape representation) as well as, two, the emerging overall view of biological developmental
processes 47. The example is presented in a pictorial form and the following figures should
be read sequentially.

As far as the biological analogy of our Bubble Man example is concerned, as one can
readily see, some level 0 classes correspond to different biological developmental stages, i.e.,
to local groups of (biological) cells appearing at different times during development. This is
because a horizontal slice through a level 0 struct corresponds to a particular time instant
in the development (see Fig. 40). Thus, one can draw analogy between our bubble-man

47 Obviously, the concrete details of the example should in no way be interpreted as related to the actual
developmental processes.

60

Level 2 class Level 1 classes Level 0 classes

Initial Division (€))

Proto Body (€)) Upper Part (€,)

Lower Part (€,)

Torso (€}

P Final Torso (€,)
s
/
Bubble Man (€) Arm (€}) i // ~~~~~~~~~~~~~~~~ ~z= Proto Limb (€5)
P St
e -7 T Final Arm (&)
s - -
- .

Leg (€) ¢=————————————— Final Leg (€.

Head (€,)
Head-Neck (€}) ‘
Neck (€,)

Figure 29: Names of various classes in this example (at three levels). Lines point to the constituent classes.

ovals and biological cells: analogous to cells, our ovals also become more “specialized” as
time progresses. We have “cells” at the beginning, and we have (many more specialized)
“cells” at the end, but the representational language is the same for all stages. However, it
is important to keep in mind that each of our primitives (in the next figure) correspond not
a cell but to the appropriate event transforming one or several cells.

We should note that all depicted level 0 structs are abstract structs (see Def. 7), since
we do not show the labels for the primal processes, i.e. for the elements of the primal
“sub-classes” involved (see Appendix). Also, the considerations of symmetry dictate that—
when generating concrete left /right proto limbs, final arms and final legs—the corresponding
generating system should make identical choices (except for left /right variations in the primal
“sub-classes”) of the constraints at each of its steps.

61

ez - — O

Germination

& 0 —

Vertical Division

4 O

Horizontal Division

@ 0 —

Internal Growth

Legis
‘external’ to
e.g. upper leg torso
External Growth (primary)

growth Induces
the (secondary)
growth of torso

-

Foot Growth

) -

Hand Growth

Figure 30: Left: The primitive-classes (see Appendix) used in this example. All primal processes (except
the initials for germination) belong to the same class of oval-like “cells”, i.e., there is only one primal class
with its “sub-classes” shown in the next two figures. The last three primitives have similar structure: the
left initial is associated with a single cell and the right initial is associated with one of its neighbours, while
the left terminal is associated with the enlarged original cell and the right, with the appropriately modified
neighbouring cell. So, the three events each produce the modification of the original cell and also of its
neighbour. (Obviously, we could have introduced similar primitives with more initial and terminal sites,
responsible for the modification of several neighbouring cells, and in general, we could have split each of
these primitive into several.) Right: “Geometric” encapsulations of the corresponding primitive events.

62

ub

hn

Lu

Ll

Abbreviations for the primal “Sub-Classes” of the Basic Cell

— germ cell

— upper body cell
— lower body cell
— head-neck cell
— torso cell

— head cell

— neck cell

— upper Limb cell

— lower Limb cell

Lur —

Llr —

LGur —

LGlr —

Aur —

Alr —

fr —

far —

upper right Limb cell
lower right Limb cell
upper right Leg cell
lower right Leg cell
upper right Arm cell
lower right Arm cell
right foreleg cell
right forearm cell
right foot cell

right hand cell

Lul

LIl

LGul

LGl

Aul

All

fll

fal

hl

Figure 31: All postulated primal “sub-classes” of the single primal class that we

abbreviations capitals stand for: L for “limb”, LG for “leg”, and A for “arm”.

63

primal class

upper left Limb cell
lower left Limb cell
upper left Leg cell
lower left Leg cell
upper left Arm cell
lower left Arm cell
left foreleg cell

left forearm cell
left foot cell

left hand cell

call Basic Cell. In the

(I3 ub Ib hn Ll Lir 3
ub Ib hn Lu t Ll h n LGul LGl LGur LGIr
< g
Lul Lur LGl LGIr All Alr
L Aul All Aur Alr fil f flr fr fal hl far hr
L1 Lu n t
LIl Lir Lul Lur n t
r N
h n Lul n Lur n Lul t Lur t Ll t Lir t
h n Lul n Lur n Lul t Lur t Ll t Llir t
< >
fal Aul far Aur fll LGul flr LGur LGul t LGur t
fal Aul far Aur fll LGul flr LGur LGul t LGur t J
e GH
fl fll fr fir hl All hr Alr
fl fll fr flr hl All hr Alr

Figure 32: Primitive-Classes and their elements, except for the germination primitive-class (since the speci-

fication of the last one not critical). See Appendix for the concept of primtive-class.

64

Env 1

Proto Body

Upper Part

Lower Part

Step 1
/
/ []
< /
/
—
(n /
N -
Head- Arm
Neck (left)
\

“Bubble Man” Class Generating System

Figure 33: Pictorial description of level 2 (the highest level) for the Bubble Man generating system. This
descriptions is comprised of two steps only, one by the environment (left) and one by the generating system
itself. (Reminder: The above shapes should be interpreted temporally.) Top Right: the singleton set (large
braces) consisting of the level 2 active constraint specifying the only step by the generating system. Various
lines delineate level 1 class elements with the class names identified, while the dark squares stand for their
constituent level 0 class elements (expanded in the following figures). Above the constraint, two shaded
regions—each of which is the overlap of several level 1 structs involved in a level 2 class element link—are
expanded to show the corresponding level 1 structs fy{’l and 'y;’l (without the associated level 1 constraints,
analogous to Fig. 25). In this case, each %{’1 happens to consist of a single constituent level 0 class element.
Bottom: The only level 2 struct.

)
&)
L

4

65

Env 1 Step 1
Lower Part

Upper Part (o}
0 <

" Final Torso 7

ACon]

“Torso” Class Generating System

a torso a wider torso

Figure 34: Pictorial description of level 1 generating system for class Torso. This description is comprised
of two steps, one by the environment and one by the generating system itself. Various lines delineate the
constituent level 0 class elements with the class names identified, while the dots stand for their constituent
primitives. Top: The above two steps: the step by the generating system is depicted as a singleton set
containing a level 1 active constraint with the corresponding level 0 constraints shown above. Bottom: Two
examples of level 1 structs generated by this generating system.

66

Env 1 Step 1 Step 2 (" Proto Limb _;': 3
(e]
Lower Part
< >
Proto Limb
" J
L Final Leg J
ACon) ACon]

“Leg” Class Generating System

& &2
&) &

a leg a longer leg

Figure 35: Pictorial description of level 1 generating system for class Leg. This description is comprised
of three steps, one by the environment and two by the generating system itself. Various lines delineate the
constituent level 0 class elements with the class names identified, while the dots stand for their constituent
primitives Top: The above three steps: the two steps by the generating system are depicted by singleton sets
of level 1 active constraints with the corresponding level 0 constraints shown above. Bottom: Two examples
of level 1 structs generated by this generating system.

67

“Proto Body” Class Generating System

Initial
Env 1 Step 1 Division
a
®
Initial Division N
~ 7
Upper Lower
Part Part
ACon,
“Arm” Class Generating System
Env 1 Step 1 ¢ Upper 3 Step 2 proto Limb)

Part

a (o]
; (> ""
< g
o < d

Upper Part
Proto Limb
~ Py
Final Arm J
ACon; ACon}
“Head-Neck” Class Generating System
Env 1 Step 1 Upper N Step 2 3
Part Head
a
o a
< e < q
Upper Part
(o]
Head Neck
7 ~ 7
ACon) ACon;

Figure 36: Stepwise specification (via sets of active constraints) of the remaining three level 1 class generating
systems. The corresponding level 0 constraints are not shown.

68

“Final Torso” Class Generating System

@ (@)

I 1L
Step 1~ g 9 Step2 (©) Step 3 (b)
a a 0] a
w | {1 Hu , @ 1oL
< ¢ LS < m > < m o>
ub Ib .
o t
_hn Lu t LI
. t s . t S
ACon, ACon, ACon,

Figure 37: Pictorial description of level 0 generating system for class Final Torso. This description is
comprised of three steps by the generating system, where for simplicity, the following steps by the environment
are omitted. The first environmental step results in the initial Vertical Division primitive and the later steps
result in the addition of one or several External Growth primitives, which are contributed by the various
limb generating systems. The shown three steps are those by the generating system: each step is specified
by a set containing one or two level 0 active constraints. (For this and other level 0 class representations
in this example: in all unit-constraints all formation rules FR do not impose any restrictions on the set of
admissible pivot primitives.)

69

a torso a wider torso

Figure 37 (continued): Two examples of level 0 structs generated by the above generating system. Some
primal “sub-class” labels are omitted. Note the substantial contribution of the environment to the elements
of this class.

70

Step 1

Step 3

Figure 38: Pictorial description of level 0 generating system for class Final Leg. This description is com-
prised of four steps by the generating system. For simplicity, the steps by the environment are not modeled.
Each step is specified by the depicted set of level 0 active constraints. If a primitive doesn’t have labels on
some of its primal processes, it denotes a family of all (admissible) primitives containing only those primitives
whose primal processes with shown labels are fixed while other primal processes can vary. In this manner
one specifies the subset of admissible primitives from the corresponding primitive class (see Appendix).

ACon

ACony

4

“Final Leg” Class Generating System

ACon,

Step 2

71

Step 4

ACon6

ACon,,

ACon7

n;; , ®

ACon,

a right leg a left leg a longer right leg

flr LGur

Figure 38 (continued): Two examples of level 0 structs generated by the above generating system.

72

“Initial Division” Class Generating System

Step 1 ’a &y

AL
>
=
Y

L uw b)

ACon,

“Upper Part” Class Generating System

' 3\ 2 Y
Step 1 a oo Step 2 a Step 3
g ub b
3 (el ¢ < d S
g ub
AAYY o
ub b hn Lu hn hn Lul Lur
S P S 7 Y 7
ACon,, ACon , ACon,
“Lower Part” Class Generating System
g 1b
Step 1 a o Step 2 a Step 3
Ll
Y ub b t d)
()¢ !
£ b Ll
(VYo o
ub Ib t LI LIl Ll
ACon, ACon,, ACon,,
“Head” Class Generating System
b
Step 1 a . Step 2 a :hno Step 3
hn Lu h n
hn h n
o
h n h n
ACon,, ACon,, ACon,,

Figure 39: Stepwise specification (via sets of active constraints) of the remaining six level 0 class generating
systems. The set IIf = { GE }. Steps by the environment are omitted.

73

“Neck” Class

Generating System

Step 1 Step 2
P a (M) b
h n
o ()()e
h n
0)
h n
~
ACon,,
“Proto Limb” Class Generating System
Step 1 Step 2 A A) Step 3)
tep a tep a a tep a
o
< ¢4 3 . * ’ ¢
1 V)
o o o
L J | Py
7
ACon,, ACon, ACon, ACon,,
“Final Arm” Class Generating System
Step 1 D Step 2 3
a
)¢
< alNo > ’ >
)
AAY
\ J J
ACon,, ACony,

Figure 41 (continued)

74

Figure 40: Left: A level 0 abstract struct from the Bubble Man class. All primal processes are labeled by the
corresponding “sub-class” names. Right: A sequence of stylized spatial instantiations of the indicated (by
dotted lines) level 0 substructs of the struct on the left (in order to illustrate the translation of the temporal
event-based representation into a spatial one).

5

Figure 41: Two substructs of two different level 0 abstract structs from the Bubble Man class: one substruct
represents a torso together with the leg and the other a larger torso with a larger leg.

76

Proto Body

Right Leg

Figure 42: Illustration of the top two levels of abstraction in the Bubble Man class generating system. This
particular form of hierarchical representation, novel to Biology, hints at the possibility of a similar (obviously
more sophisticated) biological system actually guiding biological developmental processes.

7

Some general remarks on the organization of actual biological and physical processes are
in order. First, in a biological situation, there would be many more level 0 classes, especially
at later points in development. Also, in a biological or physical generating system, one should
be more careful when deciding to skip a step (our null constraint ©), since this particular
algorithmic view is not quite “realistic”.

In our example, one can observe the general idea that higher levels are more protected,
or, more ‘“rigid”, and hence less amenable to change, compared to the lower levels which are
“cheaper” for the generating system to modify.

Finally, it is instructive to compare a “biological” generating system with a typical non-
biological one: the former is expected to output quickly widening structs, while the latter
outputs structs whose width is more or less constant (e.g., the hydrogen or lithium structs
shown in Introduction). Thus, physical processes tend to be relatively simple and peri-
odic, while biological processes have more levels, since they need to organize the underlying
physical processes in complex ways.

78

Part IV
Transformations and stages

Our understanding of the world is built up of innumerable layers. Each layer is worth
exploring, as long as we do not forget that it is one of many. Knowing all there is to
know about one layer—a most unlikely event—would not teach us much about the rest.

E. Chargaff, Heraclitean Fire: Sketches from a Life before Nature, 1978

9 Transformations

In this section, we introduce several additional central concepts, i.e. those of abstract and
concrete transformations, which, in particular, are supposed to clarify those of abstract and
concrete primitives. As was mentioned in the Introduction, by a ‘transformation’” we mean
a macroevent that encapsulates the metamorphosis of one set of interacting structural pro-
cesses into another set of processes. This macroevent signals the disruption of the previously
stable flow of events associated with the corresponding structural processes, due to new,
“disruptive” interactions of the latter processes, i.e. those not already a part of their regular
flows. Thus, a transformation entrenches the nature of a particular (and possibly recurring)
pattern of interactions for the ‘“initial’ structural processes which results in modified ‘terminal’
structural processes: we say that the result of the interaction of the initial class generating
systems is a set of terminal class generating systems. An abstract transform, then, can be
viewed as an apparatus responsible for generating/modifing classes out of existing ones. In
view of the unresolved complexity of the transform concept, the exposition in this section is
more sketchy.

It might be useful to note that the concept of a transformation can also be considered as
a far-reaching generalization of the concept of an element of an (algebraic) transformation
group, where such an element is supposed to represent one of the transformations preserving
object invariance, and the whole transformation group is supposed to capture the various
symmetries of the object.

Definition 26. In what follows we assume that, at this (basic or 0*") stage of represen-
tation, we have constructed classes of up to level r, culminating in the following (basic)
stage class setting

C = yc.
i=1
We set m’ = |C| and, for simplicity, when referring to a class QI; from C, we will drop
its level index ¢ (keeping in mind that classes, their elements, etc. have implicit indices
referring to levels). >

Before introducing transformations, we need the following notations.

79

Notational convention 3. A p-tuple of classes selected from C
(€, Ciyy oo, €

is called a tuple of classes (TC). Moreover, a p-tuple
(Cir s Cigy oovs €y) s

such that
¢, €¢, and ¢ #¢ for j#£kK,

is called a tuple of class elements (TCE) associated with TC.

We will need to distinguish between two kinds of tuples of classes, which we refer to
as an initial tuple of classes (ITC) and terminal tuple of classes (TTC), and the
corresponding tuples of class elements (referred to as ITCE and TTCE, respectively).

Given a TC, the corresponding set of all tuples of class elements is denoted
TCE 1¢c, TCE ¢ C ¢€;, x...x¢; .)

Moving on to the central definition in this section and relying on the terminology of
Notational Convention 3, we note that the following concept of a transformation in fact des-
ignates a particular kind of interaction*® between the constituent processes of ITC, resulting
in the generation of the terminal tuple of processes TTC.

Definition 27. For a given abstract transformation name 7, the corresponding ab-
stract transformation of classes (from C), or simply abstract transform, is an enu-

merable set 7%
7 = {7(TCE) | ITCE € TCE (7 |

whose generic element 7(ITCE), called a corresponding (concrete) transform, is defined
as follows:?

for cach ITCE from TCE ;) the corresponding transform is defined as®
T(ITCE) = mrer © (7, ITC(7), TTC(7), ITCE),

where

48 At present, given our limited applied experience, we do not propose any classification of these interactions
(into concrete categories).

49 Note that, here, the set TCE irc(-) Plays a role analogous to that of the set of labels L associated
with a primitive 7 (see Def. 1). The latter important analogy will be exploited in the next section, when
transforms are replaced by next-level primitives (see mapping tabst ;a1 in Def. 29).

50 As in Def. 1, both of the following notations, i.e. 7(ITCE) and 7ircg, will be used.

51 For simplicity, the hat accent on 7 is dropped when it is used as a lower index.

80

ITC(T) = (P, ..., &) ¢ is the (given) *" initial class for 7, p >0

¢; is the ¢! initial class element

ITCE = (t&1,....5 |
(e) for T(ITCE), g € ¢l

TTC(T) = (¢, ..., ¢) ¢ s the (given) j** terminal class for 7.

We denote by T¢, or simply T, the set of all abstract transforms associated with C,
and by T¢, or simply T, the set of all corresponding (concrete) transforms. >

LR R R e |
M

Figure 43: An illustration of two concrete transforms in which the structural processes are only partially
shown.

It is useful to note that a convenient view of the concrete transform is one that takes
initial class system instances and outputs terminal class system instances.

Remark 7 (on the relationship between transforms and the classes involved).
When observing two transforms directly “connected” by some class element, it is useful to
note that, if a particular initial class element of the top transform is identical to the connect-
ing class element, this means that the top transform simply “regenerated” the corresponding
process. Note that, if an initial process is observed “passing through” a transform, i.e. non-
interacting with other initial processes, then, when identifying the transform, this process
should not be treated as part of the transform.)

We are now ready to introduce another (radical and unique) feature of the proposed for-
malism, the natural emergence of the next stage of representation. Which of the structural
elements of the ETS formalism allows this? As suggested in this section, processes produced
by various class generating systems can be subject to various transformations, thus leading

81

naturally to a more global hierarchy, introduced next, of structural processes and trans-
forms. The latter hierarchy is supposed to correspond to the more conventional hierarchy of
processes in nature.

10 Multi-stage inductive structures

In this section, we shall see why the ETS formalism allows a natural transition to the next
stage of representation. Such a transition consists of the construction of a new (next-stage)
set of primitives, which can then be used to introduce next-stage structs, transforms, etc. in
a manner similar to that outlined above in this paper.

As was mentioned in the introduction to Part III, one should not confuse levels with the
stages introduced in this Section.

Stage ascension principle. The pattern of class interactions encapsulated by an ab-
stract transform may be adequately captured at the next representational stage by a new
abstract primitive whose initials and terminals are obtained by suppressing the structure of
the transform’s initial and terminal classes (in the manner described below, in Def. 29). »

Notational convention 4. From this section onwards, notations associated with the next-
stage will be marked by the addition of a prime (') to the corresponding present-stage
notation. Moreover, the lower (subscript) index of a mapping name refers to the codomain
of the mapping.)

We now consider the situation in which the agent has already identified (i.e. constructed)
a set of transformations relevant to the present observations.

Definition 28. Having identified a set C = {€;, &, ..., &, } of classes in Def. 26, we
further assume that a set TS¢, or simply TS, of abstract transforms,

r]I‘SC = {Tla T2, -+, Tn’}7
called a transformation system, is also identified. Recall that a generic element 7;(ITCE)

of 7; is
7,(ITCE) = (7, ITC(7), TTC(7), ITCE),

where R it it
TTC(7) = <QI_,T_§r{n e QI_,T_ff;‘(IZ-))

>

The following definition introduces the concept of next-stage primitive transformation,
both abstract and concrete. (Since the structure of the next definition follows that of Def.
1, one might find it useful to review it now.)

82

Definition 29. For the above transformation system TS¢, the set C' of next-stage
classes is defined as follows:

def
C = {C,Ch ..., Ch},
where |C!| = |&|, 1 <i<m/, ie. we have a bijection
abst i class: & — C!

which abstracts away the structure of each element in €;. The set of names of next-stage
primitives is:

< {75 .. 7wl
ie. 7/1'2 = 7;. As in Def. 1, before defining 7], we need to introduce the following three

concepts. For each 7/7:’», define the tuple of initial next-stage classes

Ny def
nit(w;) = (C%,C, ..., Cyl‘pm)5
where .
C]/k = abst i—class(Q:E:tjk) 1 < k < p(l) :

Then, the set of next-stage labels associated with = is

; def ’ / /
L = O x O, x...xC}

and we have a bijection

def
tabst j1apl = @St j,_class X AbST j,class X ... X abst Jpiy-class 5

hence the name “tuple abstraction” (see Notational Convention 3 and Def. 27), which is

defined as a product of mappings. The concept of Term(?

7
to Init(7r}).

Define 7} as a set

) is defined in a manner similar

= {ml@)|derl)
whose generic element 7}(a’) is:*?
Vd €z wi(d) = 7, < (x, it(x), Term(n), o').

see Fig. 44. Set ! is called a next-stage abstract primitive transformation, or simply
next-stage abstract primitive, and its generic element 7, is called a corresponding
(concrete) next-stage primitive. We denote by II' the finite set of all next-stage abstract
primitives 7}, 1 <i <n and by II' the set of all (concrete) next-stage primitives. >

83

l
&

Figure 44: A transform (left) and the corresponding next-stage primitive (right).

Since the structure of a next-stage primitive is absolutely identical to that of the initial-
stage primitive, all remaining initial-stage concepts are immediately applicable.

Definition 30. Next-stage analogues of definitions 2 through 27 follow immediately. >

We are now ready to state a formal version of the above stage ascension principle, which
might be viewed as a convenient encapsulation of the main concepts in Def. 29.

Definition 31. For the above transformation system TSe,
TSe = {71, 72 .-, T },

the corresponding stage transition mappings (between consecutive stages) are the fol-
lowing three bijective mappings:

(i) stage; .: € — C! 1<i<m/
def
Sta’ge i-class = abst i-class »
(ii) stage, i TS¢ — IT
Sta’gea—prim(Ti) déf 77,2)
(iii) stage ;1,0 TCE 1107y — L4

def
stage ., = tabstjap .

52 As in Def. 1, both of the following notations, i.e. w/(a’) and =/, , will be used.

ia’

84

| 2

It is not difficult to see how the above consecutive stage correspondence can be extended
to include the following mapping from concrete transforms to concrete primitives:
stage i, T — 11

stage i, (Ti(ITCE)) = w}(d),

where
/

Sta’gea-prim< Ti) = T; stage i-lab(ITCE) = 4.

Finally, we can encapsulate the entire developed mathematical structure as a single con-
cept in the following definition. Note that we substitute the arrow " for the various
stage-mappings.

Definition 32. A (single-stage) inductive structure is a pair
(IT, TSe¢),

where IT is a set of abstract primitives and TS¢ is a transformation system. However this
pair will also encompass all relevant concepts, such as structs and classes at various levels,
transforms, etc.

A multi-stage, or more precisely an [-stage, inductive structure MZS is an [-tuple®

MIS = <<H, TS), (II', TS'), ..., <1—I(l—1)7 TS(1_1)>>7

where TSU™V = g, <H(k) , TS(k)> is the k'™ stage inductive structure, and the transition
between two consecutive inductive structures is accomplished in the manner outlined above
in this section (see Fig. 45). For the k™ stage inductive structure in MZS we will use the
notation

MIS(k) = (II®, TS®) k=0,1...,1—1

¢® ot k=0,1...,1—2

) 2 gt k=0,1...,1—2

ITCE® A~ gk+D) k=0,1...,1—2

T®(ITCE®) & wkt1)(gk+1)) or TI(?CEW yd Wl(l?:fl{ k=0,1...,1—2,
where the arrow ' stands for the appropriate stage-mapping. >

53 For simplicity, we drop the index ¢ from ’]I‘S(ck&.) .

85

In general, we expect that as stages emerge, the lower stages gradually rigidify, i.e.
stabilize, and do so at a faster pace than the upper stages.

Finally, it is important to note that, for example, a class identified at stage 3 is not
readily identified at stage 1 even though it also “exists” at that stage, hence the main role
of stages.

[Important] Remark 8. As to the choice of the basic representational stage (stage 0)—and
thus the stage 0 primitives—it is useful to make sure that most stage 0 classes persist, i.e.
can be reliably observed between transforms, for a reasonable period of time. Otherwise, the
constructed multi-stage inductive structure is unreliable. This consideration should guide
the evaluation of the quality of the initial representation stage.)

cCO 11O 300 0O IO 1O Cc© T (0

Figure 45: Schematic representation of a multi-stage inductive structure.

86

Part V
Conclusion

I do admit that at any moment we are prisoners caught in the framework of our
theories; our expectations; our past experiences; our language. But we are prisoners in a
Pickwickian sense: if we try we can break out of our framework at any time. Admittedly,
we shall find ourselves again in a framework, but it will be a better and roomier one;
and we can at any moment break out of it again.

The Myth of the Framework is, in our time, the central bulwark of irrationalism.
My counter-thesis is that it simply exaggerates a difficulty into an impossibility. The
difficulty of discussion between people brought up in different frameworks is to be ad-
mitted. But nothing is more fruitful than such a discussion; than the culture clash which
has stimulated some of the greatest intellectual revolutions.

Karl Popper, Normal science and its dangers, 1970 (our emphasis)

11 Preliminary general thoughts on learning

In this section, we briefly discuss our preliminary ideas regarding (inductive) learning. In
general, we strongly believe that, from an applied point of view and for the near future at
least, the emphasis in learning should be less on the statistical activity called learning and
more on the (structural) representational issues, as follows from Parts III and IV. In the
proposed framework, it should not come as a surprise that learning is, in fact, learning of
classes and transforms.

As far as the learning of classes is concerned, we mean, of course, the learning of classes
of structural entities (both initial and terminal). This learning involves the construction of
application-specific class generating systems, which in turn involve some (structural) opti-
mization process, based on a training set °*. Consider, for example, the case when one is faced
with learning a three-level class representation, and assume that the necessary constituent
classes at levels 0 and 1 have previously been learned. Then, the corresponding optimization
process is related to the selection of optimal constraints { Con ?1(%]11) }ie ;» Where optimal-
ity is understood in terms of “structural simplicity”. An appropriate consistency measure
should indicate when it is impossible to do so, i.e. when the available constituent classes are
inadequate, or insufficient. Note that, to learn a three-level class, the training elements must
be represented as level 2 structs (which, in turn, require the relevant level 1 classes, level 1
structs, and so on).

Next, once almost all of the identified /learned class elements maintain their integrity, or
class identity, or autonomy, for a sufficiently long period of time, we call them structural pro-

54 Ideally, by a training set, we mean a non-conventional analogue of the traditional concept, where the
representation of each object is the result of a sophisticated dynamic process of interaction between an
observer and the target object/process—mediated by structural (as opposed to numeric) sensors—which
delivers structs. However, in the immediate future, before such structural event sensors are available, it is
sufficient for developers to intuit (and postulate) such a dynamic process.

87

cesses for that representational stage, at which point one can proceed with the identification
of transforms, followed by a transition to the next stage.

Keeping in mind that a transform encapsulates the pattern of interaction of several
structural processes, one can first identify transforms (relying on the initial and terminal
class representations) and then, if necessary, modify the corresponding class representations
if the “transform evidence” suggests their inadequacy.

As far as computational complexity issues are concerned, we note that, computationally,
learning is bounded by the number of various restricted partitions of the training structs (each
into an assembly of substructs). The computational cost associated with the construction of
a candidate optimal partition appears to be low order polynomial, since, locally, a struct is
“almost linear”: although the “width” of an entire struct is not constant, the width (and also
length) of the substructs are always bounded by a small number (since, for all primitives,
the branching factor is bounded by the maximal number of terminals). In addition, with
each new stage of representation, since the size of the next-stage struct shrinks by at least an
order of magnitude as compared to its previous-stage counterpart, the complexity of learning
at the new stage is also reduced. Recall that we have assumed (and this assumption seems
to be borne out by reality) that, at each stage, the number of classes as well as the number
of levels for various class generating systems within a stage is relatively small.

12 How one should approach the ETS formalism

This section was written to address the situation we often find ourselves in when presenting
talks on the ETS formalism. At the end of a talk, instead of discussing the various features
of the formalism, we are often faced with answering the following questions (common in PR
and ML communities): “Did you compare the performance of your approach with that of
neural networks (or some other popular model)?” We would like to stress that these types
of questions are currently quite unproductive. Such questions presume that an evaluation of
ETS should proceed under conventional assumptions, i.e. the first thing one should do is to
compare the performance of ETS learning algorithms with other learning algorithms. Hoever,
even a cursory reading of this paper should immediately suggest that the very formulation of
the inductive learning problem has changed radically and thus “the first thing one should do”
is to better understand what this new formulation offers, rather than focusing prematurely
on non-central issues.

So, which new insights into the nature of the inductive learning problem does the ETS
formalism offer? It turns out that the new formulation of this problem®can be stated as fol-
lows: given a small training set for a class, construct the corresponding class representation.
As one can now see, for the first time, the concept of class representation comes to the fore.
So what is a ‘class representation’? Although a hint at the answer to this question was sug-
gested by the concept of generative grammars (i.e. a set of production rules), as we discussed
in Section 1.5, this answer is inadequate for a more profound reason: the lack of representa-
tional formalisms in science in general, and in mathematics in particular ([9]). Put simply,
there is no adequate formal representational setting for strings as object representations,

%5 See also a quotation from Vapnik and Chervonenkis given in [69], online.

88

and therefore all inductive constructions based on such an unsound foundation cannot be
effective. Thus, the new problem formulation inevitably focuses one’s attention on the very
profound issues of both class and object representations, since the former cannot be properly
addressed without the latter. Again, as can be seen from this paper, the development of the
underlying representational formalism turned out to be an enormous undertaking.

Returning to the issue of the evaluation of the ETS formalism, the immediate focus
should be on answering the following kinds of scientific questions:

e Is the new (multi-stage struct) representation more useful and/or powerful as the pri-
mary form of representation? That is, given a concrete application, develop an intu-
ition about struct representation in that setting, and then ask the question, “Do these
structs contain additional, important information about the actual objects/processes
of the application?”5

If the struct concept, as defined in this paper, turns out to be somewhat inadequate
as a primary form of representation, can it be “repaired” within the current overall
framework, or does the framework itself have to be rethought?

e What is an appropriate generalization of the concepts of structural constraint (Def.
10)7

e Can the proposed concept of class representation fulfill its intended purpose? Is the
proposed overall approach to the class generating system a sufficiently powerful way
of describing, or representing, actual classes in the chosen applied setting? Is the link
between a small training set and its corresponding class representation computationally
effective? In fact, it should be clear that the introduced concept of multi-level struct
substantially reduces the gap between representations of objects and their classes as it
exists in the current formalisms.

e What are the options for introducing a more explicit concept of transform, aligned
with the definition of class generating system (once the above choice of the definition
of a class generating system is settled)?

e In particular, what is an appropriate answer to the intuitive notion of “adjacency” of
structural processes in a transform?

e What are the options for addressing the specification of the generative mechanism in
the definition of class representation? A closely related issue is the one mentioned in
Important Remark 6 on p. 58, i.e. how do we adequately generalize the concept of
primitive attachment to the constituent class elements in a higher-level struct?

During this initial period, we believe that the most productive way to approach these
issues is by exploring in a concrete empirical setting the nature of the class generating system
by building class representations for the corresponding training structs (from level 0 structs,
to level 0 classes, to level 1 structs, level 1 classes, etc., eventually considering transforms).

56 We believe that there is preliminary support for this claim, e.g. for the first time, an object’s formative
history is now a part of the representation.

89

Appendix

Primitive-class: a very useful generalization of the
concept of primitive transformation

We introduce a relatively simple but extremely useful generalization of the concept of prim-
itive transformation, which is presented in Definition 1. This generalization appears in this
appendix since we realized its usefulness sometime after the paper was completed, when we
began to explore various applications (see for example [70, 71]). Such simple generalization
gives one greater freedom to choose more appropriate primal classes without being concerned
about an explosion in the number of primitives, many of which turn out to have practically
identical structure.

Another reason we decided not to replace Definition 1 with the following definition is that
such generalization would complicate the already non-trivial (basic) concept of a primitive
with auxiliary considerations, and in addition such modification would similarly complicate
all the subsequent basic concepts and notations.

Definition 1. Suppose that among the introduced abstract primitives II, we have the
following family II, of “closely-related” primitives:

H*:{T‘-laﬂ-%"'aﬂ-t}?
where V1

Vol

J2 7 "

Init(m;) = <C'jil , o C'jip>

_ i i i
Term(m;) = (Cy,, C, s -, Cp)
(i.e., all 7; have the same number of initial and terminal primal classes), and moreover,

Vr (Vi ig (C'ji1 and C'j’f are “similarly-structured” classes whose representations are
refinements of the representation of some class Cj,)), ®*

Vr (Vi i (C)! and C’kkf are “similarly-structured” classes whose representations are
refinements of the representation of some class Cy,)).

In this case, it is useful to treat family IT, —which can be thought of as a class of abstract
primitives—as a single primitive-class, denoted [m,], i.e. II, = [m,], as the name of the
class induced by the corresponding equivalence relation on II (associated with all such
disjoint classes of abstract primitives). >

To motivate the above definition, we present a simple but typical example from Part III.
Figure 1 shows three primitive-classes and a corresponding “generalized” struct that relies on
such primitive-classes, depicting a Final Torso class element. If instead of primitive-classes

57 Unlike the above primal classes CJ”T , class C, does not have to be one of the primal classes for IT (the
same applies to the terminal classes). Given current prejudices, it might be convenient (although formally
not quite correct) to think of C} as a “sub-class” of Cj, .

90

one would rely on (regular) primitives only, then on the one hand, the separate introduction
of each of the corresponding primal processes would necessitate (unjustifiably) a separate
set of primitives, and on the other hand, would make representation of the Final Torso class
very unwieldy, requiring (also quite unjustifiably) a corresponding substantial increase in the
number of class constraints, which artificially obscures the actual state of affairs.

4_’; Vertical Split
@ Internal Growth

External Growth

—— the only primal class

Figure 1: Three primitive-classes and an abstract struct (see Def. 7) relying on them. Note that we have
only one primal class in our primitive-classes, which may be called the Basic Cell primal class, and the labels
shown are those of the corresponding primal “sub-classes”, see Figs. 31, 32 (there are no labels for concrete
primal processes). Without the use of primitive-classes, for example, each instance of the GE primitive-class
would have to appear as a distinct primitive (under its own distinct name, e.g. GE1, GE2, GE3, ...). The
latter would have a complicating effect on the structs involved by obscuring their structural identity.

91

References

1]

2]

[10]
[11]

[12]

[13]

[14]

L. Goldfarb, O. Golubitsky, D. Korkin, What is a structural representation?, Technical
Report TR00-137, Faculty of Computer Science, UNB, 2000.

L. Goldfarb, D. Gay, O. Golubitsky, D. Korkin, What is a structural representation?
Second variation, Technical Report TR04-165, Faculty of Computer Science, UNB, 2004.

L. Goldfarb, D. Gay, O. Golubitsky, What is a structural representation? Third varia-
tion, 2005 (unpublished).

L. Goldfarb, D. Gay, O. Golubitsky, What is a structural representation? Fourth vari-
ation, Technical Report TR05-174, Faculty of Computer Science, UNB, July 2005.

L. Goldfarb, D. Gay, What is a structural representation? Fifth variation, Technical
Report TR05-175, Faculty of Computer Science, UNB, December 2005.

G. Ifrah, The Universal History of Numbers, J. Wiley, New York, 2000.
G. Sarton, Ancient Science Through the Golden Age of Greece, Dover, New York, 1993.

E. Schrédinger, Nature and the Greeks and Science and Humanism, Cambridge Univer-
sity Press, Cambridge, 1996, pp. 143-145, 158.

L. Goldfarb, Representational formalisms: what they are and why we haven’t had one,
this special issue, 2006.

A. W. Crosby, The Measure of Reality, Cambridge University Press, 1997.

L. Goldfarb, On the foundations of intelligent processes I: An evolving model for pattern
learning, Pattern Recognition 23 (6), 1990, pp. 595-616.

L. Goldfarb, What is distance and why do we need the metric model for pattern learning,
Pattern Recognition 25 (4), 1992, pp. 431-438.

L. Goldfarb, S. Nigam, The unified learning paradigm: A foundation for AI, in: V.
Honavar, L. Uhr (eds.), Artificial Intelligence and Neural Networks: Steps toward Prin-
cipled Integration, Academic Press, Boston, 1994, pp. 533-559.

L. Goldfarb, J. Abela, V. C. Bhavsar, V. N. Kamat, Can a vector space based learn-
ing model discover inductive class generalization in a symbolic environment?, Pattern
Recognition Letters 16 (7), 1995, pp. 719-726.

L. Goldfarb, Inductive class representation and its central role in pattern recognition,
Proc. Conf. Intelligent Systems: A Semiotic Perspective, Vol. 1, NIST, Gaithersburg,
Maryland, USA, 1996, pp. 53-58.

L. Goldfarb, What is inductive learning”? Construction of inductive class representa-
tion, Proc. Workshop “What Is Inductive Learning” in Conjunction with 11th Biennial
Canadian Al Conf., 1996, pp. 9-21.

92

[17]

18]

[19]

[20]

[21]
[22]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

L. Goldfarb, S. Deshpande, What is a symbolic measurement process?, Proc. IEEE
Conf. Systems, Man, and Cybernetics, Vol. 5, Orlando, Florida, USA, 1997, pp. 4139—
4145.

L. Goldfarb, J. Hook, Why classical models for pattern recognition are not pattern
recognition models, Proc. Intern. Conf. On Advances in Pattern Recognition, Plymouth,
UK, 1998, pp. 405-414.

K. S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood
Cliffs, New Jersey, 1982.

M. A. Aiserman, Remarks on two problems connected with pattern recognition, in: S.
Watanabe (ed.), Methodologies of Pattern Recognition, Academic Press, 1969, p. 1.

S. Wermter, R. Sun, Hybrid Neural Systems, Springer-Verlag, Heidelberg, 2000.

H. Bunke, A. Kandel (eds.), Hybrid Methods in Pattern Recognition, World Scientific,
2002.

3rd International Workshop on Hybrid Methods for Adaptive Systems, Oulu, Finland,
July 2003.
http://adiret.cs.uni-magdeburg.de/~nuernb /hmas2003/

4th International Workshop on Hybrid Methods for Adaptive Systems, Aachen, Ger-
many, June 2004.
http://adiret.cs.uni-magdeburg.de/hmas2004/

2004 AAAT Fall Symposium Series Workshop on Compositional Connectionism in Cog-
nitive Science, Washington, D.C., October 2004.
http://www.cs.wlu.edu/~levy /aaai04/

SRL2004 Workshop: Statistical Relational Learning and its Connections to Other
Fields, Banff, Canada, July 2004.
http://www.cs.umd.edu/projects/sr12004 /

MRDM 2005: 4*" Workshop on Multi-Relational Data Mining, Chicago, August 2005.
http://www-ai.ijs.si/SasoDzeroski/ MRDM2005/

Machine Learning Journal Special Issue on Multi-relational Data Mining and Statistical
Relational Learning, 2005.
http://www.cs.kuleuven.ac.be/~ml/mrdm-srl.html

A. Bird, Philosophy of Science, McGill-Queen’s University Press, Montreal, 1998.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, P. R. Thagard, Induction, MIT Press,
Cambridge, Mass., 1986.

J. Losee, A Historical Introduction to the Philosophy of Science, 3rd ed., Oxford Uni-
versity Press, Oxford, 1993.

93

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

H. Margolis, Patterns, Thinking, and Cognition, University of Chicago Press, 1987, pp.
1, 3.

E. G. H. Landau, Foundations of Analysis, Chelsea, New York, 1951.

C. Lee, Notes for Math 502, 1998.
http://www.ms.uky.edu/~lee/ma502/notes2/node7.html

N. Bourbaki, The Architecture of Mathematics, Amer. Math. Monthly, 57 (4), 1950,
pp. 221232,

J. Dieudonne, The Work of Nicholas Bourbaki, Amer. Math. Monthly, 77, 1970, pp.
134-145.

N. Chomsky, Knowledge of Language: Its Nature, Origin, and Use, Praeger, New York,
1986, p. 12.

M. Piattelli-Palmarini (ed.), Language and Learning: The Debate between Jean Piaget
and Noam Chomsky, HUP, Cambridge, USA, 1980, pp. 100-103, 255-272.

M. Leyton, Symmetry, Causality, Mind, MIT Press, Cambridge, Mass., 1992, p. 1-2.
A. R. Lacey, A Dictionary of Philosophy, 3rd ed., Routledge, London, UK, 1996, p. 308.
R. Dunbar, The Trouble with Science, Faber and Faber, London, UK, 1996, p. 17.

O. Golubitsky, On the generating process and the class typicality measure, Technical
Report TR02-151, Faculty of Computer Science, UNB, 2002.

O. Golubitsky, On the Formalization of the Evolving Transformation System Model,
Ph.D. thesis, Faculty of Computer Science, UNB, March 2004.

D. Korkin, A New Model for Molecular Representation and Classification: Formal Ap-
proach Based on the ETS Framework, Ph.D. thesis, Faculty of Computer Science, UNB,
2003.

D. Clement, Information Retrieval via the ETS Model, Master’s thesis, Faculty of Com-
puter Science, UNB, 2003.

S. Falconer, D. Gay, L. Goldfarb, ETS representation of fairy tales, Proc. ICPR 200/
Satellite Workshop on Pattern Representation and the Future of Pattern Recognition,
ed. L. Goldfarb, Cambridge, UK, August 2004.

S. Falconer, On the Ewvolving Transformation System Model Representation of Fairy
Tales, Master’s thesis, Faculty of Computer Science, UNB, 2005.

M. Al-Digeil, Towards an FEvolving Transformation System Representation of Proteins,
Master’s thesis, Faculty of Computer Science, UNB, 2005.

94

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

A. Gutkin, Towards Formal Structural Representation of Spoken Language: An Evolving
Transformation System (ETS) Approach, Ph.D. thesis, School of Informatics, University
of Edinburgh, 2005.

J. M. Abela, ETS Learning of Kernel Languages, Ph.D. thesis, Faculty of Computer
Science, UNB, 2002.

V. N. Kamat, Inductive Learning with the Evolving Tree Transformation System, Ph.D.
thesis, Faculty of Computer Science, UNB, 1995.

S. Nigam, Metric Model Based Generalization and Generalization Capabilities of Con-
nectionist Models, Master’s thesis, Faculty of Computer Science, UNB, 1993.

B. K. Hall and W. M. Olson (eds.), Keywords and Concepts in Evolutionary Develop-
mental Biology, Harvard University Press, Cambridge, USA, 2003.

S. B. Carol, Endless Forms Most Beautiful: The New Science of Evo Devo, Norton,
New York, 2005.

S. B. Carol, J. K. Grenier, S. D. Weatherbee, From DNA to Diversity, 2nd ed., Blackwell,
Massachusetts, 2004.

L. Wolpert, Triumph of the Embryo, Oxford University Press, Oxford, 1992.
R. Schlegel, Time and the Physical World, Dover, New York, 1968.
W. H. Cropper, Great Physicists, Oxford University Press, Oxford, 2001, p. 277.

J. Jeans, The New Background of Science, University of Michigan Press, Ann Arbor,
1959.

H. A. Simon, The Sciences of the Artificial, MIT Press, Cambridge, Mass., 1996.

R. P. Feynman, QED: The Strange Theory of Light and Matter, Penguin Books, London,
UK, 1990.

G. Kane, The Particle Garden: Our Universe as Understood by Particle Physicists,
Addison-Wesley, Reading, Massachusetts, 1995, Appendix A.

K. W. Ford, The Quantum World: Quantum Physics for Everyone, Harvard University
Press, Cambridge, MA, 2005, pp. 86-91.

H. Quinn, Theory: Feynman Diagrams, 2003.
http://www2.slac.stanford.edu/vve/theory /feynman.html

N. David Mermin, Boojums All the Way through, Cambridge University Press, Cam-
bridge, 1990.

Amir Aczel, Entanglement, Plume, New York, 2003.

95

[67]

[68]

[69]

[72]

L. Wolpert et al., Principles of Development, 2nd ed., Oxford University Press, Oxford,
2002.

S. F. Gilbert, Developmental Biology, Tth ed., Sinauer, Sunderland, Massachusetts,
2003.

ICPR 2004 Satellite Workshop on Pattern Representation and the Future of Pattern
Recognition: A Program for Action, chair L. Goldfarb, Cambridge, UK, August 2004.
http://www.cs.unb.ca/~goldfarb/conf/ICPR-2004_Workshop.html

L. Goldfarb and I. Scrimger, On ETS Representation of human movement, Technical
Report TRO7-184, Faculty of Computer Science, UNB, 2007
http://www.cs.unb.ca/~goldfarb/ETSbook/Walking.pdf

L. Goldfarb, I. Scrimger, and B. R. Peter-Paul, ETS as a Tool for Decision Modeling
and Analysis: Planning, Anticipation, and Monitoring, Technical Report TRO7-1877,
Faculty of Computer Science, UNB, 2007
http://www.cs.unb.ca/~goldfarb/conf/DecisionRisk.pdf

J. A. Wheeler, Geons, Black Holes, and Quantum Foam: A Life in Physics, 1st ed., W.
W. Norton & Company, New York, 1998.

96

