
What Is a Structural Representation?

Lev Goldfarb, Oleg Golubitsky, Dmitry Korkin

Faculty of Computer Science
University of New Brunswick

Canada

October 25, 2001

Abstract

We outline a formal foundation for a “structural” (or “symbolic”) object/event representa-
tion, the necessity of which is acutely felt in all sciences, including mathematics and computer
science. The proposed foundation incorporates two hypotheses: 1) the object’s formative history
must be an integral part of the object representation and 2) the process of object construction
is irreversible, i.e. the “trajectory” of the object’s formative evolution does not intersect itself.
The last hypothesis is equivalent to the generalized axiom of (structural) induction. Some of the
main difficulties associated with the transition from the classical numeric to the structural rep-
resentations appear to be related precisely to the development of a formal framework satisfying
these two hypotheses.

The concept of (inductive) class representation—which has inspired the development of this
approach to structural representation—differs fundamentally from the known concepts of class.
In the proposed, evolving transformations system (ETS), model, the class is defined by the
transformation system—a finite set of weighted transformations acting on the class progenitor—
and the generation of the class elements is associated with the corresponding generative process
which also induces the class typicality measure.

Moreover, in the ETS model, a fundamental role of the object’s class in the object’s repre-
sentation is clarified: the representation of an object must include the class.

From the point of view of ETS model, the classical discrete representations, e.g. strings
and graphs, appear now as incomplete special cases, the proper completion of which should
incorporate the corresponding formative histories, i.e. those of the corresponding strings or
graphs.

1

Concepts which have proved useful for ordinary things easily assume so great
an authority over us, that we forget their terrestrial origin and accept them
as unalterable facts. They then become labeled as “conceptual necessities”,
a priori situations, etc. The road of scientific progress is frequently blocked
for long periods by such errors.

A. Einstein

1 Introduction

In this paper, a vision of the concept of structural representation is outlined. On the one hand,
although the overwhelming importance of structural, or symbolic, representations in all sciences
has become increasingly clear during the second half of the 20th century, there were hardly any
systematic attempts to address this topic at a fundamental level 1(and, from the point of view
of computer science, this is particularly puzzling in view of the central role played by the “data
structures” and “abstract data types” in computer science). On the other hand, it is not that
difficult to understand the main reasons behind this situation. It appears that there are two
related formidable obstacles to be cleared: 1) the choice of the central “intelligent” process, the
structure and requirements of which would both drive and justify the choice of the particular form
of structural representation, and 2) the lack of any fundamental mathematical model whose roots
are not related to or motivated by the numeric models. Unfortunately, the role of the latter obstacle
is usually completely underestimated. Why is it so? This is explained by the fact that during the
mankind’s scientific history, so far, we have dealt, basically, only with the numeric models and,
during the last two centuries, with their derivatives. The latter should not be really surprising if we
look carefully at the vast prehistory of science in general and of mathematics in particular [1],[2].
The new level of mathematical abstractions and the excessive overspecialization (with the resulting
narrowing of the view) during the second half of the twentieth century have also contributed to this
lack of understanding of the extent of our dependence on the numeric models. 2 What has begun
to facilitate this understanding, however, is the emergence of computer “science” in general and
artificial intelligence and pattern recognition (PR) in particular. (Although, for political reasons,
during the last 20 years, there appeared several very closely related to PR areas, such as machine
learning, neural networks, etc, we will refer to all of them collectively by the name of the original
area, i.e. pattern recognition, or, occasionally, as inductive learning.)

In light of the above, it is not reasonable to expect to see the transition from the numerically
motivated forms of representation, which have a millenia old tradition behind them, to the structural
forms of representation to be accomplished in one or several papers. At the same time, one should
not try to justify, as it is often done in artificial intelligence, a practically non-existing progress
toward that goal by the complexity of the task.

In this work, a fundamentally new formalism, which is a culmination of the research program
originally directed towards the development of a unified framework for pattern recognition [4]–[11],
is outlined. On the formal side, we have chosen the path of a far-reaching generalization of the
Peano axiomatization of natural numbers,3 the axiomatics that lies at, as well as forms, the very
foundation of the present construction of mathematics. With respect to the latter choice, in some

1The Chomsky’s formal grammar model will be discussed later in the Introduction and in the paper.
2There are, of course, rare exceptions (see, for example, [3]).
3See, for example, [12] or [13].

2

sense, there is no other reasonable way to proceed.4

In view of the fact that the above newer, more fashionable “reincarnation” of PR have missed
probably the most important development within PR during 1960’s and 1970’s, we very briefly
mention this issue, which actually motivated the original development of the proposed model.
During these two decades, it gradually became clear to a number of leading researchers in PR that
the two basic approaches to PR—the classical vector-space-based approach and the syntactic, or
formal-grammar-based approach—each possessing the desirable features lacking in the other should
be unified [14]:

Thus the controversy between geometric and structural approaches for prob-
lem of pattern recognition seems to me historically inevitable, but tempo-
rary. There are problems to which the geometric approach is . . . suited. Also
there are some well known problems which, through solvable by the geomet-
ric method, are more easily solvable be the structural approach. But any
difficult problems require a combination of these approaches, and methods
are gradually crystallizing to combining them; the structural approach is the
means of construction of a convenient space; the geometric is the partitioning
in it.

And although the original expectations for an impending unification were quite high, it turned
out that such hopes were naive, not so much with respect to timeliness but with respect to the
underestimated novelty of the unified formalism: there was no formal framework that could nat-
urally accommodate the unification. It is interesting to note that the researchers working in the
various “reincarnations” of PR are only now becoming aware of the need for, and of the difficulties
associated with, the above unification. The enormous number of conferences, workshops, and ses-
sions devoted to so-called “hybrid” approaches attest to the rediscovery of the need for the above
unification.

With respect to the above two formidable obstacles, for us, the choice of the central intelligent
process reduced to the pattern recognition, or, more accurately, pattern (or inductive) learning
process,5 with the emphasis on the inductive class representation. On the other hand, the develop-
ment of the appropriate mathematical formalism, not surprisingly, has been and will continue to
be a major undertaking (influenced by non-formal considerations coming from biology, chemistry,
and astrophysics).

What are some of the main difficulties that we have encountered? In a somewhat historical order,
they are as follows. On which foundation should the unification of the above two basic approaches
to PR be approached? How do we formalize the concept of inductive class representation? How
should the Chomsky’s concept of generativity be revised? How do we generalize the Peano axiomatic
construction (of natural numbers) to the construction of structural objects? In other words, how do
we formally capture the more general inductive (or evolutionary) process of object construction?
What is the connection between the class description and the process that generates the class
objects? How do we naturally integrate the structural and the metric information in a chosen
formalism? And finally, how does an object representation is connected to its class representation
and, moreover, how does the object representation changes during the learning process? It is
understood that all of this must be accomplished naturally within a single general model.

At present, we strongly believe that the concept of “structural” object representation cannot be
4As a well-known 19th century German mathematician L. Kronecker mentioned in an after-dinner speech, “God

made the integers; all the rest is the work of man”.
5Inductive learning processes have been marked as the central intelligent processes by a number of great philoso-

phers and psychologists over the last several centuries (see, for example, [15]–[17]).

3

divorced from that of “evolutionary” object representation, i.e. of the representation capturing the
formative object history, and herein lies the fundamental difference between the classical numeric
and the structural, or symbolic, representations. In view of this, the currently widely used non-
numeric “representations”, such as strings, trees, and graphs, in our opinion, cannot be considered
as such: since such representations do not record how the corresponding object was constructed, or
generated, there is hardly any connection between the object and the class of objects with respect
to which, in the current context, the object is to be represented (and interpreted). Moreover, the
framework of formal grammars proposed by Chomsky in the 1950’s for generating syntactically
valid sentences in a natural language does not address these concerns, which is not quite surprising
in view of his repeatedly articulated opinion about the essential irrelevance of the inductive learning
process to cognitive science (see for example [18], [19]).

In light of the above monumental difficulties related to the development of a formal model for
structural representation, the best we can hope for as a result of the present attempt is to propose
and outline some key features of such a formalism. We intend to use the proposed outline only as
a guide that will be modified in the course of the extensive experimental work in cheminformatics,
molecular phylogenetics, data mining, pattern recognition, computer science, and other application
areas. At the same time, as always is the case in science, in our immediate experimental and
theoretical work, we will be guided by a reasonable interpretation of the current outline.

As far as the state of our main area of research is concerned, we are encouraged by the fact
that some other researchers in the area also strongly feel about its unsatisfactory state [20]:

To summarize, we are missing [in inductive learning]

a. any kind of consensus on what framework to use;

b. any kind of consensus on where we want to go and what issues we want
to answer;

c. any kind of consensus on what new approaches to the issue of assumptions
we should be investigating.

For supervised learning to become a science, these missing consensus’ must
be found.

Ultimately, what should make or break the model outlined in this paper—evolving transfor-
mations system (ETS)—as an inductive learning model? Since it is the first inductive model
postulating explicitly a new form of class representation (which is not borrowed from any existing
mathematical formalism), this postulate for inductive learning, as is the case in all natural sciences,
can now be experimentally verified. The latter is not possible to do for any other of the current
inductive learning models, since they are not insisting on any form of (inductive) class represen-
tation, but simply adopting the existing mathematical formalisms, mainly vector-space-based, to
the learning problem. Thus, the immediate value of the ETS model is that it is the first formalism
developed specifically to address the needs of the inductive learning process; and, moreover, what
is more, the model’s postulates, first, explain the nature of this central intelligent process, and,
second, can now be experimentally verified. In this respect, it is very important to keep in mind
the accumulated scientific wisdom regarding the main value of a scientific model: “Apart from
prediction and control the main purpose of science is perhaps explanation. . . ” [21] and “Whatever
else science is used for, it is explanation that remains its central aim” [22]. The current inductive
learning models explain essentially nothing about the nature of this, quite possibly the central,

4

intelligent process.
The paper, including Introduction, is divided into five sections. The second section is devoted to

the explication of the underlying, fundamentally new, mathematical structure—inductive structure.
The third section introduces the central concepts of the transformation system, the generating
process, the class and its typicality measure, as well as presents several simple illustrative examples.
The fourth section, although very short, outlines in a very sketchy format some important issues
related to the process of inductive learning within the ETS model. It might be useful to note that
the size of the fourth section is not proportional to the concentration of ideas in it. In the last
section, we mention some of the larger interesting topics for future research.

Finally, a relatively large number of definitions in the paper is easily explained by the absolute
novelty of the underlying model and of all the basic concepts. In order to maintain a reasonable
length of the paper, the presence of proofs is tapering off as we progress. On first reading, the
proofs might be omitted.

2 The inductive structure

2.1 Initial definitions: primitives and composites

We will use the following notation (m,n ∈ Z+)

{m,m + 1, . . . , n} = [m,n].

If m > n, then [m,n] denotes the empty set. As always, for B ⊆ X and a mapping f : X → Y , we
denote by f

∣∣
B

the restriction of f to B, and for another mapping g : Y → Z, g ◦ f denotes the
composition of mappings. Note that we will not distinguish between f : X → Y and f : X → f(X).
As always, idA denote the identity mapping of A onto itself.

Definition 1. Let Π be a finite set whose elements are called primitive types, or simply primtypes.
Moreover, for every π ∈ Π two sets

init(π) and term(π) ,

where both sets are subsets of a fixed set A, are given. These sets specify the sets of initial and
terminal a-sites, or abstract sites, for the primtype π. I

π1

a

π2 π2

b

Figure 1: (a) Pictorially, it is convenient to represent primtypes as spheres with the initial a-sites as
marked points on its upper part, and the terminal a-sites as marked points on its lower part. Thus,
the sites in init(π) ∩ term(π) are points on the equator. (b) To simplify subsequent drawings, we
replace the spheres by circles and the equator reduces to two, left and right, points.

For every primtype π we introduce the set of all a-sites

sites(π) = init(π) ∪ term(π) .

5

Let S be a fixed countably infinite set whose elements are called concrete sites, or simply sites.
The following definition should be viewed as a far-reaching generalization of the Peano (inductive)
definition, or construction, of natural numbers ([12] or [13]).

Definition 2. The set Γ of composites is defined inductively6 as follows. For each γ ∈ Γ, three
subsets of S— init(γ), term(γ) and sites(γ),7 called the sets of initial, terminal, and all sites of
the composite γ —will be constructed inductively.

• λ is the null composite whose sets of sites are

init(λ) = term(λ) = sites(λ) = ∅.

• For π ∈ Π and a fixed injective mapping

f : sites(π) → S

(called the site realization for primtype π) the expression

π〈f〉

signifies the primitive composite, or simply primitive8, whose sets of (concrete) sites are
constructed as follows

init(π〈f〉) = f(init(π)) (1)
term(π〈f〉) = f(term(π)) (2)
sites(π〈f〉) = f(sites(π)) . (3)

π2

s1

s2

s4
s5s3

Figure 2: Pictorial representation of primitive π2〈f〉 corresponding to the primtype in Fig. 1b.

• For γ ∈ Γ, γ 6= λ and π〈f〉 ∈ Γ satisfying 9

sites(γ) ∩ sites(π〈f〉) = term(γ) ∩ init(π〈f〉) , (4)

the expression
γ C π〈f〉

6See the discussion after this definition.
7We use the same notation as that used in Def. 1, since these sets play a similar role.
8The difference between primtype π and primitive π〈f〉 can be compared, for example, to the difference between

an element in the periodic table and the same element in a particular compound.
9This condition insures the correctness of (5)-(7) below.

6

signifies the composite γ′, whose sets of (concrete) sites are constructed as follows

init(γ′) = init(γ) ∪ [init(π〈f〉) \ term(γ)] (5)
term(γ′) = [term(γ) \ init(π〈f〉)] ∪ term(π〈f〉) (6)
sites(γ′) = sites(γ) ∪ sites(π〈f〉). (7)

We will call γ′ the composite obtained from γ by attachment of primitive π〈f〉, where
the “attachment” means attaching to each other the identical sites in term(γ) and init(π〈f〉).

Thus, every composite γ is specified by the following inductive expression encapsulating its
construction process

γ = π1〈f1〉 C π2〈f2〉 C . . . C πn〈fn〉.
(See Fig. 3, 4, 5.) We will assume that the above expression is valid for n = 0 and in this case
denotes λ. I

For a composite γ, the set
cont(γ) = init(γ) ∩ term(γ) (8)

will be called the set of continuation sites.

π5

s2

s4

π4
s3

π3

s1

s2 s3

γ

s4 s3

s1s2 s3s4

s5 s6 s7 s8

s5 s6

s7

s8

Figure 3: A simplified (left) and a detailed pictorial representation of composite γ = π3〈f3〉 C
π5〈f5〉 C π4〈f4〉 with two continuation sites.

It is important to note that, conceptually, we view the set Γ not as derivative with respect
to the set of natural numbers, but rather as a more basic set. In particular, we view the set of
natural numbers as a very special case of Γ. Consequently, to achieve a necessary degree of rigor, we
should rely on the appropriate generalization of Peano axioms (for natural numbers [12]), including
the generalization of the induction axiom (see Def. 19). In this paper, however, to retain both a
reasonable degree of rigor and accessibility of the exposition, we will adapt the following inductive
schemes.

7

π8

s
4

s5

s6

π6

s1

π7

s2

Figure 4: Pictorial representation of a “decoupled” composite β = π6〈f6〉 C π7〈f7〉 C π8〈f8〉.

Under the inductive proof of a statement A(γ) about composites, or proof by induction
on γ, we mean the following proof scheme.

• Prove that A(λ) is true.

• For all π〈f〉 prove that A(π〈f〉) is true.

• If A(α) is true and γ = α C π〈f〉, prove that A(γ) is true.

Under the inductive definition, or construction, of objects B(γ) for composites γ ∈ Γ, we
mean the following definition (construction) scheme.

• Construct B(λ).

• For any π〈f〉 construct B(π〈f〉).
• Assume that B(α) has been constructed and that γ = α C π〈f〉, then construct B(γ).

Note that for a composite γ, the union of its initial and terminal sites could now be smaller
than the set of all sites. Therefore, for a composite γ, it will also be useful to define the set of its
external and internal sites

ext(γ) = init(γ) ∪ term(γ)
int(γ) = sites(γ) \ ext(γ) .

(9)

It is quite possible that the fuzzy boundary between the “living” and “non-living” objects can be
understood in terms of the assymptotic growth rate of the size of set ext(γ) during the (generative)
process of object “development” 10: normally, the faster the growth rate of | ext(γ)| during the
“generation” of object γ, the more complex γ is.

10See section 3.6.

8

π9

s3

π10
s3

s1

s2

π11

s3

s5s4

s7

s6

Figure 5: Pictorial representation of composite γ = π9〈f9〉 C π10〈f10〉 C π11〈f11〉 with one contin-
uation (s2) and one internal (s3) sites.

Definition 3. For γ ∈ Γ and any injective mapping

h : sites(γ) → S ,

called site replacement, the composite γ〈h〉 is defined inductively as follows.

• λ〈h〉 def= λ

• If γ = π〈f〉, then γ〈h〉 def= π〈g〉, where g = h ◦ f .

• Assume that α〈h′〉 has been constructed for any site replacement h′ : sites(α) → S and
γ = α C π〈f〉, then

γ〈h〉 def= α〈h′〉 C π〈g〉 ,
where h′ = h

∣∣
sites(α)

and g is as above.

I

Lemma 1. For γ ∈ Γ and any site replacement h : sites(γ) → S, Def. 3 correctly defines composite
γ〈h〉, and, moreover, the following useful relationships are true

init(γ〈h〉) = h(init(γ))
term(γ〈h〉) = h(term(γ))
sites(γ〈h〉) = h(sites(γ)) .

(10)

Proof.
The proof is by induction on γ.

• By Def. 3, λ〈h〉 = λ, hence all the sets in (10) are empty and the equalities hold.

9

• Let γ = π〈f〉 and h : sites(γ) → S be a site replacement. By (3), f(sites(π)) = sites(γ) and
h ◦ f : sites(π) → S is an injective mapping. By Def. 2, γ〈h〉 = π〈h ◦ f 〉 is defined correctly.
Next, according to (1–3)

init(π〈f〉) = f(init(π))
term(π〈f〉) = f(term(π))
sites(π〈f〉) = f(sites(π))

and

init(π〈h ◦ f 〉) = (h ◦ f)(init(π)) = h
(
f(init(π))

)

term(π〈h ◦ f 〉) = (h ◦ f)(term(π)) = h
(
f(term(π))

)

sites(π〈h ◦ f 〉) = (h ◦ f)(sites(π)) = h
(
f(sites(π))

)
.

From the last equations we obtain (10):

init(π〈h ◦ f 〉) = h(init(π〈f〉))
term(π〈h ◦ f 〉) = h(term(π〈f〉))
sites(π〈h ◦ f 〉) = h(sites(π〈f〉)) .

(∗)

• Suppose that for α ∈ Γ the following statement is true: for any site replacement h′ : sites(α) →
S the composite α〈h′〉 has been correctly defined and

init(α〈h′〉) = h′(init(α))
term(α〈h′〉) = h′(term(α))
sites(α〈h′〉) = h′(sites(α)) .

(∗∗)

Let γ = α C π〈f〉 and h : sites(γ) → S be a site replacement. It follows from (7) that
sites(γ) = sites(α) ∪ sites(π〈f〉). Take h′ = h

∣∣
sites(α)

. We want to verify (4) for α〈h′〉 and
π〈h ◦ f 〉 in order to check the existence of the composite γ〈h〉 = α〈h′〉 C π〈h ◦ f 〉.

sites(α〈h′〉) ∩ sites(π〈h ◦ f 〉) (∗),(∗∗)
=

h′(sites(α)) ∩ h(sites(π〈f〉)) =
h (sites(α)) ∩ h(sites(π〈f〉)) =

h [sites(α) ∩ sites(π〈f〉)] (4)
=

h [term(α) ∩ init(π〈f〉)] =
h [term(α)] ∩ h[init(π〈f〉)] =

h′(term(α)) ∩ h(init(π〈f〉)) (∗),(∗∗)
=

term(α〈h′〉) ∩ init(π〈h ◦ f 〉) .

Finally, we check (10) for γ〈h〉:

init(γ〈h〉) (5)
=

init(α〈h′〉) ∪ [init(π〈h ◦ f 〉) \ term(α〈h′〉)] (∗),(∗∗)
=

h′(init(α)) ∪ [h(init(π〈f〉)) \ h′(term(α))] =
h (init(α)) ∪ [h(init(π〈f〉)) \ h (term(α))] =

h [init(α) ∪ (init(π〈f〉) \ term(α))]
(5)
=

h [init(α C π〈f〉)] =
h (init(γ)) .

10

The proof of the equalities

term(γ〈h〉) = h(term(γ))
sites(γ〈h〉) = h(sites(γ))

is similar.

¥

Lemma 2. Let γ be a composite, and h1 : sites(γ) → S, h2 : sites(γ〈h1〉) → S be site replacements.
Then,

(γ〈h1〉)〈h2〉 = γ〈h2 ◦ h1〉.
Proof.

The proof is by induction on γ.

• By Def. 3, (λ〈h1〉)〈h2〉 = λ〈h2〉 = λ = λ〈h2 ◦ h1〉.
• Let γ = π〈f〉. Then,

(γ〈h1〉)〈h2〉 D.3= (π〈h1 ◦ f 〉)〈h2〉 D.3= π〈h2 ◦ (h1 ◦ f)〉 = π〈(h2 ◦ h1) ◦ f 〉 D.3= π〈f〉〈h2 ◦ h1〉.

• Suppose that for α ∈ Γ the following statement is true: for all site replacements g1 :
sites(α) → S, g2 : sites(α〈g1〉) → S,

(α〈g1〉)〈g2〉 = α.〈g2 ◦ g1.〉 (∗)

Let γ = α C π〈f〉, and h1 : sites(γ) → S, h2 : sites(γ〈h1〉) → S be site replacements. Let

g1 = h1

∣∣
sites(α)

, h = h2 ◦ h1, g = h2 ◦ g1 = h
∣∣
sites(α)

.

Then,

(γ〈h1〉)〈h2〉 D.3= (α〈g1〉 C π〈h1 ◦ f 〉)〈h2〉 D.3= (α〈g1〉)〈h2〉 C π〈h2 ◦ h1 ◦ f 〉 (∗)
=

α〈h2 ◦ g1〉 C π 〈h2 ◦ h1 ◦ f 〉 = α〈g〉 C π〈h ◦ f 〉 D.3= γ〈h〉.

¥

Lemma 3. Let γ′ = γ〈h〉. Then, there exists site replacement h′ : sites(γ′) → S such that γ′〈h′〉 = γ.

Proof. By Lemma 1, sites(γ′) = h(sites(γ)). Since h is an injective mapping, let h′ = h−1,
h′ : sites(γ′) → S. Then,

(γ〈h〉)〈h′〉 L.2= γ〈h′ ◦ h〉 = γ〈idsites(γ)〉 D.3= γ.

¥

11

Definition 4. Two composites α and β will be called similar and denoted as α ≈ β, if there exists
site replacement h : sites(β) → S such that

h
∣∣
ext(β)

= id

and
α = β〈h〉.

I

Thus, two composites are similar, if one of them can be obtained from the other by relabeling
its internal sites. The basic relationships between the sites of two similar composites are given next.

Lemma 4. If α and β are two similar composites and h is the corresponding site replacement, then

init(α) = init(β), term(α) = term(β), int(α) = h(int(β)).

Proof. By Lemma 3,

init(α) = h(init(β))
term(α) = h(term(β))
sites(α) = h(sites(β)).

Therefore, it follows from (9) that
int(α) = h(int(β)).

Again from (9), since h
∣∣
ext(β)

= id ,

init(α) = init(β)
term(α) = term(β).

¥

How do we construct new composites out of the old ones? The following definition introduces
the relevant operation of composition of two composites.

Definition 5. Let α and β be two composites satisfying

sites(α) ∩ sites(β) = term(α) ∩ init(β) . (11)

The composition of the above two composites,

α C β ,

is defined by induction on β as follows.

• α C λ
def= α

•
α C π〈f〉 def=

{
π〈f〉, α = λ
α C π〈f〉, α 6= λ (see Def. 2)

12

• Assume that α C γ has been constructed and that β = γ C π〈f〉, then

α C β
def= (α C γ) C π〈f〉.

I

Lemma 5. The sets of sites for the composition of two composites α and β are

init(α C β) = init(α) ∪ [init(β) \ term(α)]
term(α C β) = [term(α) \ init(β)] ∪ term(β)
sites(α C β) = sites(α) ∪ sites(β)
cont(α C β) = [cont(α) ∩ cont(β)] ∪ [cont(α) \ sites(β)] ∪ [cont(β) \ sites(α)].

With respect to definition of the continuation sites (8) one should note that these sites are the
only ones that allow the “continuation” of external sites during the composition.

Lemma 6. Composition is associative, i.e. if α, β, γ are composites such that compositions α C β
and (α C β) C γ exist, then the compositions β C γ and α C (β C γ) also exist and

(α C β) C γ = α C (β C γ) .

2.2 Semantic relations, istructs, and parallel composition

As it often happens in science, the accumulated (mainly experimentally) knowledge in a par-
ticular domain strongly suggests the “indistinguishability” of some objects or their parts in the
following sense: if the corresponding two parts in the object representation are interchanged, no
visible/detectable differences in the “behaviour” of the reference physical objects are observed. It
is for this reason that we, as always, need the following concept.

Definition 6. Let α, β be two composites such that

init(α) = init(β), term(α) = term(β).

The expression
α ≡ β

is called semantic identity and signifies the indistinguishability of the corresponding two parts
in an object representation (Fig 6). I

Definition 7. Let I be a specified set of semantic identities.11 This set induces naturally the
semantic equivalence relation, or simply semantic relation, denoted ∼ , on the set of composites
Γ as follows.

11Note that, usually, I is a relatively small set.

13

π s2

s1

π s3s2

≡
π s2

π s3
s2

13

19

14

12

s4

5

s1 s4

s

5
s6

s s7s7
s8s8 s6

Figure 6: Example of a semantic identity.

1. If α ≡ β is a semantic identity (from I), then α ∼ β.

2. If α ∼ β and
f : sites(α) → S
g : sites(β) → S

are externally consistent site replacements, i.e.

f
∣∣
ext(α)

= g
∣∣
ext(β)

,

then
α〈f〉 ∼ β〈g〉.

3. If α ∼ β, γ ∼ δ and compositions α C γ, β C δ exist, then

α C γ ∼ β C δ.

4. Finally, the binary relation ∼ is defined as the minimal equivalence relation satisfying the
above two conditions, i.e. it is the intersection of all the equivalence relations satisfying the
above conditions.

I

Note that if I = ∅, then the semantic relation becomes the similarity relation (see Def. 4).

Lemma 7. If two composites are semantically equivalent, α ∼ β, then their sets of initial and
terminal sites are identical.

Proof. Let
B = {(α, β) | init(α) = init(β), term(α) = term(β)}.

Note that B is an equivalence relation on Γ. Let us check that B satisfies 1–3 from Def. 7.

1. If α ≡ β, then, by Def. 6, (α, β) ∈ B.

14

2. If (α, β) ∈ B and f, g are the corresponding externally consistent site replacements, then

init(α〈f〉) L.1= f(init(α))
(9)
= f

∣∣
ext(α)

(init(α)) = g
∣∣
ext(β)

(init(α))
(α, β) ∈ B

=

g
∣∣
ext(β)

(init(β))
(9)
= g(init(β)) L.1= init(β〈g〉) ,

and, similarly,
term(α〈f〉) = term(β〈g〉).

Hence, (α〈f〉, β〈g〉) ∈ B.

3. If (α, β), (γ, δ) ∈ B, and the compositions α C γ, β C δ exist, then

init(α C γ) L.5= init(α) ∪ [init(γ) \ term(α)] =

init(β) ∪ [init(δ) \ term(β)] L.5= init(β C δ).

and, similarly,
term(α C γ) = init(β C δ).

Hence, (α C γ, β C δ) ∈ B.

From condition 4 of Def. 7, we have ∼ ⊆ B. ¥

Lemma 8. If α ≈ β, then α ∼ β.

One of the simplest semantic identities specifies the indistinguishability between some of the
sites in a primitive.

Definition 8. For primitive π〈f〉 and site replacement h : sites(π〈f〉) → S satisfying

h[init(π〈f〉)] = init(π〈f〉)
h[term(π〈f〉)] = term(π〈f〉) ,

the semantic identity
π〈f〉 ≡ π〈h ◦ f 〉

will be called the site equivalence identity. We will denote by Eqsite(Π) the set of all possible
such identities. I

Judging by our present knowledge in physics, i.e. by the indistinguishability between any two
elementary particles of the same type, the set Eqsite(Π) or its generalization might be of particular
importance in a large number of applications.

It is not difficult to anticipate now that, as always is the case, the set of equivalent composites
should be considered as representing the same physical object.

15

Definition 9. Let Π, I be specified sets of primtypes and semantic identities. The quotient set

Θ = Γ/∼ = { [γ] | γ ∈ Γ }
will be called the set of instance structs, or simply istructs (for (Π, I)). Istruct [λ] will be called
the empty istruct and denoted λ. For each istruct [γ], also denoted, γ the three sets of sites are
defined as follows

init(γ) = init(γ), term(γ) = term(γ), ext(γ) = ext(γ) .

I
Note that the correctness of the last definition follows from Lemma 7.

The concept of quotient set plays an important role in the proposed representation model: the
concept of istruct should be considered as the first step in the process of connecting the “abstract”
representation by means of composites with the “actual” objects.12 In view of this, it might
be useful to remember how to work with quotient sets. Some of the most known examples of
equivalence relations are rational numbers (1/2 ∼ 2/4 ∼ . . .) and systems of (linear) equations
(systems are equivalent, iff they have the same solutions). So, in order to work with the quotient
set, one should be able, first, to find (algorithmically) a “canonical” element of the equivalence
class (which represents the class), and, second, learn how to operate with the original set (add,
multiply, and, in our case, attach or replace sites). Note that, although the general problem of
finding a canonical composite is undecidable, in each application of the proposed model one should
make sure that there is an efficient algorithm for finding the canonical composite for any istruct.

Definition 10. For an istruct γ and an injective mapping h : ext(γ) → S , called istruct site
replacement, the istruct γ〈h〉 is defined as

γ〈h〉 = [γ〈h〉] ,

where γ ∈ γ and h : sites(γ) → S is a site replacement satisfying

h
∣∣
ext(γ)

= h.

I
Note that although a composite, typically, has internal sites, we do not introduce the concept

of internal sites for an istruct, since an istruct is “independent” of the labels of the internal sites
in its canonical composite. Also, as was the case with composites, in general, we cannot arbitrarily
modify the labels of the external sites of an istruct, since the modification may change the manner
of attachment of this istruct to other istructs.

Lemma 9. For an istruct γ and an injective mapping h : ext(γ) → S , the istruct γ〈h〉 is
correctly defined in Def. 10, i.e. it does not depend on the choice of γ and h.
Proof. Let γ1, γ2 ∈ γ, and h1 : sites(γ1) → S, h2 : sites(γ2) → S be site replacements satisfying

h1

∣∣
ext(γ1)

= h2

∣∣
ext(γ2)

= h,

i.e. h1 and h2 are externally consistent. By Def. 9, γ1 ∼ γ2. Therefore, according to Def. 7.2,
γ1〈h1〉 ∼ γ2〈h2〉. ¥

12For the next step, see the concept of struct introduced in Def. 21.

16

Lemma 10. Let γ be a composite, and h1 : ext(γ) → S, h2 : ext(γ〈h1〉) → S be site replacements.
Then,

(γ〈h1〉)〈h2〉 = γ〈h2 ◦ h1〉.
Proof. Take any γ ∈ γ, h1 : sites(γ) → S, h2 : sites(γ〈h1〉) → S satisfying

h1

∣∣
ext()

= h1, h2

∣∣
ext (〈h1 〉) = h2.

Then,
(γ〈h1〉)〈h2〉 D.10= [(γ〈h1〉)〈h2〉] L.2= [γ〈h2 ◦ h1〉] D.10= γ〈h2 ◦ h1〉.

¥

Lemma 11. Let γ ′ = γ〈h〉. Then, there exists site replacement h′ : ext(γ ′) → S such that
γ ′〈h′〉 = γ.

Proof. The proof of this lemma is similar to that of Lemma 3. ¥

Lemma 12. If α〈h〉 = β〈h〉, then α = β.

Lemma 13. Let S ′ ⊆ S be a finite subset of the set of sites. Let γ be an istruct, and {αi}∞i=1 be a
sequence of istructs, {hi}∞i=1 be a sequence of site replacements such that for all i ∈ Z+,

• ext(αi) ⊆ S ′

• γ = αi〈hi〉.
Then there exist indices i 6= j such that αi = αj .

Proof. For each i ∈ Z+, the domain of hi is a subset of S ′ and the image of hi is equal to ext(γ).
Both, S ′ and ext(γ) are finite sets. Therefore, there exist indices i 6= j, such that hi = hj , and, by
Lemma 12, we have αi = αj . ¥

As we did for the composites, we now introduce the concept of composition for istructs.

Definition 11. Let α, β be two istructs satisfying

ext(α) ∩ ext(β) = term(α) ∩ init(β) .

The composition of the above two istructs, α C β , is defined as

α C β = [α C β] ,

where
α ∈ α, β ∈ β, and α C β exists.

I

Lemma 14. The composition of the above istructs α and β is correctly defined, i.e. it does not
depend on the choice of α and β, and exists.

17

Proof. To prove the existence, we need to find γ ∈ α and δ ∈ β, such that γ C δ exists. Take any
α ∈ α, β ∈ β. There exist site replacements

f : sites(α) → S, g : sites(β) → S
satisfying

f
∣∣
ext(α)

= id, g
∣∣
ext(β)

= id

and
int(α〈f〉) ∩ sites(β〈g〉) = ∅
int(β〈g〉) ∩ sites(α〈f〉) = ∅.

(∗)

Note that by Def. 7,
α〈f〉 ∼ α and β〈g〉 ∼ β, or,

α〈f〉 ∈ α and β〈g〉 ∈ β. (∗∗)
Therefore,

sites(α〈f〉) ∩ sites(β〈g〉) (9)
=

[ext(α〈f〉) ∪ int(α〈f〉)] ∩ [ext(β〈g〉) ∪ int(β〈g〉)] (∗)
=

ext(α〈f〉) ∩ ext(β〈g〉) (∗∗)
= ext(α) ∩ ext(β) Def.11=

term(α) ∩ init(β)
(∗∗)
= term(α〈f〉) ∩ init(β〈g〉),

and it follows from (4) that the composition α〈f〉 C β〈g〉 exists.

If α ∼ α′, β ∼ β′, then by Def. 7

α C β ∼ α′ C β′ ,

and so α C β does not depend on the choice of α and β, i.e. the correctness of Def. 11 is proved.
¥

Lemma 15. Composition of istructs is associative.

The next two definitions single out a certain subclass of compositions that can be thought of
as representing “independent”, or “parallel”, attachment of composites.

Definition 12. For α, β ∈ Γ, for which

sites(α) ∩ sites(β) = cont(α) ∩ cont(β) , (12)

the composite α C β will be denoted as
α ‖β

and called the parallel composition of α and β. I

Lemma 16. The above definition is correct, i.e. from (12) it follows that parallel compositions α ‖β
and β ‖α exist. Moreover,

init(α ‖β) = init(α) ∪ init(β)
term(α ‖β) = term(α) ∪ term(β)
cont(α ‖β) = cont(α) ∪ cont(β).

(13)

18

Definition 13. If
α = π1〈f1〉 ‖ π2〈f2〉 , β = π2〈f2〉 ‖ π1〈f1〉 ,

then the semantic identity
α ≡ β

is called the commutativity identity. We will denote by Comm(Π) the set of all possible such
identities (See Fig. 7). I

s2s1

s3s2

≡
s2s1

s3
s2

π16

π15

π15

π16

s2

s1s2s3

≡
π16

π15

s2

s2s3 π16

π15

s1

s2

s1s3
s1

≡
π16

π15

s2

s3s1 π16

π15

s1

s2s1

≡
π15

s2s1 π16

s2s1 π16

s2s1 π15

s2s1

≡
π15

s1s2 π16

s2s1 π16

s1s2 π15

s2s1

s4s3

≡
π16

π15

s2s1

s4s3 π16

π15

s4

s4

s4

s4

s4

s4

s5

s5

s4

s4

s4

s4

Figure 7: Example of Comm(Π) for Π = {π15, π16}, each of which has two continuation sites.

19

Lemma 17. Let I ⊇ Comm(Π). If for composites α, β the parallel composition α ‖β exists, then

α ‖β ∼ β ‖α.

Lemma 18. Let I = Comm(Π) and B be the set of all bijections b : [1, n] → [1, n] . If γ =
π1〈f1〉 ‖ . . . ‖πn〈fn〉, then int(γ) = ∅ and

γ =
{

πb(1)〈fb(1)〉 ‖ . . . ‖ πb(n)〈fb(n)〉
∣∣ b ∈ B

}
.

2.3 Itransformations

In this section, we make the next big step by introducing the next central concept, the concept of
istruct transformation, i.e. the concept of istruct “operation”.

Definition 14. Let (Π, I) be given and let Θ be the corresponding set of istructs. A pair τ =
(α,β) of istructs such that there exists istruct δ satisfying

β = α C δ ,

will be called an instance transformation, or simply itransformation, α will be called the
context of itransformation τ , and

ext(τ) def= ext(α) ∪ ext(β).

If α = [λ], the itransformation will be called context free. The set of all itransformations for
(Π, I) will be denoted by T (See Fig. 8). I

s3s2

s4s3

s2s1 π18

π17

s5

π17

α

δ

β

Figure 8: Pictorial represenatation of itransformation τ = ([π17〈f17〉], [π17〈f17〉 C π17〈g17〉 C
π18〈f18〉]). The shaded composite π17〈f17〉 is an element from the context [π17〈f17〉].

As was the case with composites and istructs, it is useful to introduce the concept of itransfor-
mation site replacement.

20

Definition 15. For an itransformation τ = (α,β) and an injective mapping h : ext(τ) → S,
called the itransformation site replacement, the itransformation τ 〈h〉 is defined as

τ 〈h〉 def= (α〈h∣∣
ext(�)

〉, β〈h∣∣
ext(�)

〉).

I

Definition 16. (See Fig. 9.) For an istruct γ and itransformation τ = (α,β) satisfying

γ = γfront C α,

the τ -itransformation of istruct γ, denoted γ C τ , is defined as the istruct

γfront C β.

I

Remark 1. Note that usually τ -itransformation of γ is not affected by the site replacements of τ
that modifies only the initial sites of the context α.

Lemma 19. The above definition is correct, i.e. γ C τ does not depend on the choice of γfront.

Proof. Let γ = γ1 C α = γ2 C α. By Def. 14, there exists istruct ε such that β = α C ε.
Therefore,

γ1 C β = γ1 C (α C ε) L.15= (γ1 C α) C ε = (γ2 C α) C ε
L.15= γ2 C (α C ε) = γ2 C β.

¥

Lemma 20. Let γ, γ ′ be istructs and τ = (α, β) be an itransformation. If γ ′ = γ C τ , then there
exists istruct δ such that γ ′ = γ C δ.

Proof. By Def. 14, there exists δ such that β = α C δ. By Def. 16, there exists ε such that
γ = ε C α, and

γ ′ = ε C β = ε C (α C δ) L. 15= (ε C α) C δ = γ C δ.

¥

Lemma 21. Let γ, γ ′, ε, ρ be istructs and τ = (α,β) be an itransformation. If γ ′ = γ C τ and
ρ = ε C γ, then

ρ C τ = ε C γ ′.

Proof. Since γ ′ = γ C τ , there exists istruct γfront such that γ = γfront C α (by Def. 16). Then,

ρ = ε C γ = ε C (γfront C α) L. 15= (ε C γfront) C α,

therefore,
ρ C τ = (ε C γfront) C β

L. 15= ε C (γfront C β) = ε C γ ′.

¥

21

According to the above definition, the action of an itransformation τ can be viewed as an
“attachment” of τ to some istruct which contains the corresponding context. Thus, one can think
of an istruct as of a representation of the object’s constructive history (via the history of applied
itransformations). To put it more precisely, an istruct represents all possible indistinguishable
construction pathways for a given object. An itransformation context is a part of the istruct, it
represents a part of the object’s constructive history. The itransformation does not “delete” any
information from the istruct, and therefore it can be thought of as an evolutionary transformation.

One should also emphasize some basic distinctions (of transformations) from Chomsky produc-
tion rules.

• Although the context of a Chomsky production rule (regardless of whether it is a context-free,
context-sensitive or unrestricted production) is a part of the string, since the string does not
capture its constructive history, the production cannot refer to the corresponding part of the
history.

• When a production is applied, the non-terminal symbol, which served as the production
context, is erased, and cannot serve as a context for further productions. Therefore, in
Chomsky’s model, productions erase the string’s evolutionary history.

It is interesting to note that in [23] Chomsky speaks of certain grammatical rules which can be
applied to sentences only if we “. . . know not only the final shape of these sentences but also their
‘history of derivation’.” He does not offer, however, any formal definition of such rules.

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

s2s1

s4s2

s1s6

π17

π17

π18

s2s1 π18

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

s2s1 π17

s3

s1 π18

τ
s2

s3

s5

α

γ
front

γ
front

β

Figure 9: Example of τ -itransformation (from Fig. 8) of istruct γ = [π18〈g18〉 C π17〈f17〉]. The
shaded parts in the representative composites correspond to the context of τ .

Definition 17. If γ, γ ′ ∈ Θ, τ = (α, β) ∈ T , and there exists a site replacement h such that

γ ′ = γ C τ 〈h〉,
then we will signify it

γ
�→ γ ′ .

I

22

As in the classical case (for which we recommend [24]), to formulate the axiom of induction we
need an auxiliary definition.

Definition 18. The set of immediate ancestors of an istruct γ is defined as

AI(γ) def= {α ∈ Θ | (α 6= γ) and (∃ τ ∈ T α
�→ γ) } .

I

Definition 19. (Induction axiom for istructs.) If Θ′ is a subset of Θ satisfying the following
conditions

• λ ∈ Θ′

• ∀γ ∈ Θ [AI(γ) ⊆ Θ′ =⇒ γ ∈ Θ′] ,

then Θ′ = Θ. I

This axiom is necessary whenever a proof or definition by induction on istructs is required.
We are ready now to introduce our underlying, or basic, mathematical structure.

Definition 20. Let Π be a finite set of primtypes, I be a specified set of semantic identities, and
Θ, T be the corresponding sets of istructs and itransformations. If the induction axiom for istructs
holds, we will call (Π, I) an inductive structure. I

2.4 The string inductive structure

In this and the following examples, function f : [1, n] → Z+ will be specified by the list of its values
f(1), . . . , f(n). Also, for simplicity, we will use the same notation if f : {a1, a2, . . . , an} → Z+,
where the domain of f is a finite subset of set A of abstract sites (see Def. 1).

Example 1. Let Σ = {a, b, . . . , z} be a finite alphabet. Consider a set of primtypes Π =
{πa, πb, . . . , πz} indexed by the elements of Σ. Let the set A of a-sites be {a1, a2, a3}, and for
each π ∈ Π,

init(π) = {a1}
term(π) = {a2, a3}.

The set S of sites is N. Then, each composite corresponds to a string or to a finite set of strings 13

over Σ. E.g., both composites πa〈1, 2, 3〉 C πb〈3, 4, 5〉 and πb〈1, 3, 5〉 C πa〈3, 2, 4〉 correspond to the
same string ab. However, each composite represents different “construction path” for this string:
the first composite corresponds to the concatenation of letter b after a, and the second one, to the
concatenation of a in front of b.

To model ”strings”, we would like to model the situation where these construction paths are
equivalent. To this end, let us, for each α, β ∈ Σ, denote by idαβ the following semantic identity:

πα〈1, 2, 3〉 C πβ 〈3, 4, 5〉 ≡ πβ 〈1, 3, 5〉 C πα〈3, 2, 4〉.
13This is the case when the composite is “decoupled” (see Fig. 4).

23

Let
I = Comm(Π) ∪ {idαβ | α, β ∈ Σ}.

Then, each istruct represents the set of all construction paths for a given string (or a set of
strings). E.g., istruct

[πb〈1, 3, 5〉 C πa〈3, 2, 4〉]
represents all construction paths for the string ab, and, therefore, could be thought of as the string
ab itself. We will denote by str(γ) the string (or the set of strings) corresponding to istruct γ.
Below, for simplicity, we will restrict ourselves to istructs that correspond to one string only.

Each itransformation τ = (α, β) corresponds to a set of context-dependent insertions of sub-
strings:

• str(α) is a subsequence of str(β)

• if itransformation τ is applicable to istruct γ, then str(α) is a substring of str(γ), i.e. str(γ) =
u str(α)v for some u, v ∈ Σ∗

• str(γ C τ) = u str(β)v.

We will refer to the above inductive structure as the string inductive structure (SIS). ♦

3 Transformation systems and classes

In this section we will assume that some inductive structure (Π, I) is fixed. Moreover, note that
each example builds on the previous ones.

3.1 Structs, transformations, transformation sets

The next definition, as was mentioned above, completes the process of connecting the “abstract”
representation (by means of composites) with the “actual” objects, or structs.

Definition 21. For an istruct γ ∈ Θ, the set

γ̄
def= {γ〈h〉 |h is a site replacement}

will be called the struct corresponding to γ.
For an itransformation τ ∈ T , the set

τ̄
def= {τ 〈h〉 |h is a site replacement}

will be called the transformation corresponding to τ .
The sets of structs and transformations, in the inductive structure (Π, I), will be denoted as
Θ̄ def= {γ̄ |γ ∈ Θ} and T̄ def= {τ̄ | τ ∈ T } respectively. I

24

Example 2. For each string u ∈ Σ∗, there are infinitely many istructs in the string inductive
structure of Example 1 corresponding to u. E.g., if u = ab, then istructs

πa〈1, 2, 3〉 C πb〈3, 4, 5〉
πa〈2, 3, 4〉 C πb〈4, 5, 6〉

etc.

differing only in site labels, correspond to u.
However, for each string u ∈ Σ∗, there exists unique struct γ̄u corresponding to it, which, for

convenience, we will denote identically (γ̄u = u).
Similarly, every set of context-dependent insertion operations uniquely corresponds to a trans-

formation. The transformation which corresponds to the insertion of string v between strings u
and w will be denoted as uw → uvw. ♦

Lemma 22. Let α, β be two istructs and let h : ext(α) → S be a site replacement such that
β = α〈h〉. Then ᾱ = β̄.

Proof. Let γ ∈ β̄. Then γ = β〈f〉 for some site replacement f : ext(β) → S. According to
Lemma 10,

γ = (α〈h〉)〈f〉 = α〈f ◦ h〉 ∈ ᾱ.

Therefore, β̄ ⊆ ᾱ.
By Lemma 11, there exists site replacement h′ : ext(β) → S such that α = β〈h′〉, so we have

ᾱ ⊆ β̄ .
Hence, ᾱ = β̄. ¥

Definition 22. A finite set of transformations T ⊂ T̄ will be called a transformation set. I

As was mentioned above and as can be seen from the above example, it is structs that encode
the real-world objects, since, if we used istructs or composites for this purpose, we would have had
infinitely many encodings of the same object. However, now, having adopted this interpretation,
we are faced with the situation in which it is impossible to define the action of a transformation on
a struct. We address this problem by introducing, in the next section, the concepts of ipaths and
paths induced by a transformation set. We will then define,in the following sections, operations of
composition and embedding on paths via ipaths.

3.2 Ipaths and paths

We first introduce the concept of ipath.

Definition 23. Let T be a transformation set in (Π, I). If α1, α2, . . . ,αn+1 are istructs and
τ 1, . . . , τn are itransformations such that τ̄ 1, . . . , τ̄n ∈ T and

αi+1 = αi C τ i, i ∈ [1, n],

then the tuple
(α1, τ 1, α2, τ 2, . . . , τn, αn+1)

25

will be called a T -ipath from α1 to αn+1, or simply ipath when no confusion arises. The set of
all T -ipaths will be denoted by IP T .

For an ipath c, begin(c) def= α1, end(c) def= αn+1 will be called the beginning and the end of
ipath c, respectively.

The length, |c|, of the above ipath c is defined to be n:

|c| def= n.

I

Definition 24. Ipaths (α1, τ 1, . . . , τm,αm+1), (β1, δ1, . . . , δn, βn+1) ∈ IP T will be called equiv-
alent, if m = n and there exist site replacements gi : ext(αi) → S, i ∈ [1, n + 1] and
hi : ext(τ j) → S, i ∈ [1, n] such that

βi = αi〈gi〉, i ∈ [1, n + 1]
δi = τ i〈hi〉, i ∈ [1, n]

and for i ∈ [1, n]
hi

∣∣
ext(� i)∩ ext(�i)

= gi

∣∣
ext(� i)∩ ext(�i)

hi

∣∣
ext(� i)∩ ext(�i+1)

= gi

∣∣
ext(� i)∩ ext(�i+1)

.

We will denote the equivalence of ipaths c1, c2 ∈ IP T as c1 ∼ c2. I

Example 3. In SIS, let T be a transformation set consisting of one transformation τ̄ = (λ̄, β̄),
where β = [πa〈1, 2, 3〉]. This transformation corresponds to the context-independent insertion of
letter a. Consider two T -ipaths:

c1 = (πa〈1, 2, 3〉, τ 〈2, 4, 5〉, πa〈1, 2, 3〉 C τ 〈2, 4, 5〉)
c2 = (πa〈1, 2, 3〉, τ 〈3, 4, 5〉, πa〈1, 2, 3〉 C τ 〈3, 4, 5〉).

These ipaths correspond to the insertions of letter a at the beginning and at the end of string
“a”. They are not equivalent. Indeed, assume otherwise, and let h1, g1, h2 be site replacements
that establish the equivalence. By Def. 24, h1 = id and g1

∣∣
{2} = h1

∣∣
{2}, which implies that

τ 〈3, 4, 5〉 = τ 〈2, 4, 5〉, contradiction!
However, ipath

c3 = (πa〈2, 3, 4〉, τ 〈3, 5, 6〉, πa〈2, 3, 4〉 C τ 〈3, 5, 6〉)
is equivalent to c1. The corresponding site replacements are defined as follows:

g1(i) = i + 1, i ∈ {1, 2, 3}
h1(i) = i + 1, i ∈ {2, 4, 5}
g2(i) = i + 1, i ∈ {1, 3, 4, 5}.

♦

We now introduce the concept of path.

26

Definition 25. For an ipath c, the set

c̄
def= {c′ ∈ IP T | c′ ∼ c}

will be called the T -path, or simply path, corresponding to c.
For a path c̄, begin(c̄) def= begin(c) and end(c̄) def= end(c) will be called the beginning and the

end of path c̄, respectively; |c̄| def= |c| is the length of path c̄.
For n ≥ 0, Pn

T will denote the set of all paths of length n, and PT
def= ∪∞n=0P

n
T will denote the

set of all paths.
For ᾱ, β̄ ∈ Θ̄,

PT (ᾱ, β̄) def= {p ∈ PT | begin(p) = ᾱ, end(p) = β̄}
is the set of all paths from ᾱ to β̄. Finally,

Pn
T (ᾱ, β̄) def= PT (ᾱ, β̄) ∩ Pn

T .

I

Example 4. For the transformation set T from the previous example, there are two different paths
between structs a and aa:

PT (a, aa) = {c̄1, c̄2}.
♦

Lemma 23. For any path p, begin(p) and end(p) are correctly defined, i.e. they do not depend on
the choice of ipath c ∈ p.

Proof. Let
c1 = (α1, τ 1, . . . ,αm+1)
c2 = (β1, δ1, . . . , βn+1)

and c1, c2 ∈ p. By Def. 25, c1 ∼ c2. Therefore, by Def. 24, in particular, there exists a site
replacement h1 : ext(α1) → S such that β1 = α1〈h1〉. According to Lemma 22, β̄1 = ᾱ1, i.e.
begin(p) does not depend on the choice of ipath c ∈ p.

Similarly, m = n, and β̄n+1 = ᾱm+1 . Hence, end(p) does not depend on the choice of c ∈ p.
¥

3.3 Path composition

Definition 26. If c1 = (α1, τ 1, . . . , τn,αn+1) and c2 = (αn+1, τn+1, . . . , τn+m, αn+m+1) are T -
ipaths, then T -ipath

c2 ◦ c1
def= (α1, τ 1, . . . , τn+m, αn+m+1)

will be called the composition of c1 and c2.
For convenience, we define c2 ◦ c1 = c1, if end(c1) 6= begin(c2). I

27

Definition 27. For two paths p1, p2 ∈ PT satisfying end(p1) = begin(p2), the composition of p1

and p2 is defined as
p2 ◦ p1

def= c̄,

where c = c2 ◦ c1, c1 ∈ p1, c2 ∈ p2, and end(c1) = begin(c2).
Again, if end(p1) 6= begin(p2), then p2 ◦ p1

def= p1.
I

Lemma 24. The composition of paths is defined correctly, i.e. it does not depend on the choice of
ipaths c1 and c2.

Proof. Let c1, c2, c
′
1, c

′
2 be ipaths, such that c1 ∼ c′1, c2 ∼ c′2 and

end(c1) = begin(c2)
end(c′1) = begin(c′2).

(∗)

We need to show that c2 ◦ c1 ∼ c′2 ◦ c′1.
By Def. 24, for j ∈ {1, 2}, we have

cj = (αj
1, τ

j
1, . . . , α

j
nj+1)

c′j = (βj
1, δ

j
1, . . . ,β

j
nj+1),

where
α1

n1
= α2

1, β1
n1

= β2
1,

and there exist site replacements

hj
i : ext(αj

i) → S, i ∈ [1, nj]
gj
i : ext(τ j

i) → S, i ∈ [1, nj],

such that the conditions in Def. 24 are fulfilled. It follows from (∗) that one can choose these
site replacements in such a way that h1

n1+1 = h2
1 and g1

n1
= g2

1. Therefore, the following site
replacements are correctly specified:

hi = h1
i , i ∈ [1, n1 + 1]

hi = h2
i−n1

, i ∈ [n1 + 1, n1 + 1 + n2]
gi = g1

i , i ∈ [1, n1]
gi = g2

i−n1
, i ∈ [n1 + 1, n1 + n2].

This set of site replacements satisfies the conditions of Def. 24. Hence, c2 ◦ c1 ∼ c′2 ◦ c′1. ¥

3.4 Elementary paths

In an inductive structure, the set of all “basic” (with respect to T) paths beginning at a struct γ̄
will play a useful role below.

28

Definition 28. Let, as above, T be a transformation set in inductive structure (Π, I). For a struct
γ̄ ∈ Θ̄,

EP T (γ̄) def=
⋃

�̄∈Θ̄

P 1
T (γ̄, ᾱ)

will be called the set of elementary path from γ̄.
For an elementary path c̄ ∈ EP T (γ̄), where c = (γ, τ , α), the transformation τ̄ ∈ T̄ will be

called the transformation for elementary path c̄. I

Lemma 25. For all γ̄ ∈ Θ̄, EP T (γ̄) is finite.

Proof. Since T is finite, it is sufficient to prove that for every τ̄ ∈ T , the set
⋃

̄′∈Θ̄

P 1
{�̄}(γ̄, γ̄ ′)

is finite.
Suppose that on the contrary

⋃

̄′∈Θ̄

P 1
{�̄}(γ̄, γ̄ ′) = {pi | i ∈ Z+},

where pi 6= pj if i 6= j.
Let γ, τ be some fixed elements from γ̄, τ̄ , respectively.
For each i ∈ Z+, choose an ipath ci ∈ pi, ci = (γi, τ i, γ

′
i). There exist site replacements

fi : ext(γi) → S, gi : ext(τ i) → S such that γ = γi〈fi〉, τ = τ i〈gi〉.
Let hi : ext(γi) → S be a site replacement defined as

hi(s) =
{

gi(s), s ∈ ext(τ i)
fi(s), s 6∈ ext(τ i).

Let
δi = γi〈hi〉
δ′i = δi C τ .

We have c′i = (δi, τ , δ′i) ∼ ci. Moreover, ext(δi) ⊆ ext(γ) ∪ ext(τ). By Lemma 13, there exist
indices i, j, i 6= j, such that δi = δj . Hence, δ′i = δ′j , c′i = c′j and pi = pj , contradiction! ¥

3.5 Path embedding

Since in an inductive structure its T -path are of great importance, in this section, we introduce in
the simplest but important relationship between two path.

Definition 29. For two T -ipaths c1 = (α1, τ 1, . . . , τm, αm+1) and c2 = (β1, δ1, . . . , δm, βm+1),
we will say that c1 can be embedded in c2 and denote this fact by c1 ↪→ c2, if m = n and there
exists istruct γ such that β1 = γ C α1 and for all i ∈ [1, n], δi = τ i.

A path p1 can be embedded in path p2 (p1 ↪→ p2), if there exist ipaths c1 ∈ p1, c2 ∈ p2,
such that c1 can be embedded in c2. I

29

Example 5. Continuing Example 3, let two ipath be

c6 = (πa〈2, 4, 5〉, τ 〈4, 6, 7〉, πa〈2, 4, 5〉 C τ 〈4, 6, 7〉)
c7 = (πa〈1, 2, 3〉 C τ 〈2, 4, 5〉, τ 〈4, 6, 7〉, πa〈1, 2, 3〉 C τ 〈2, 4, 5〉 C τ 〈4, 6, 7〉).

Then, c6 ↪→ c7, and the corresponding γ from Def. 29 is equal to [πa〈1, 2, 3〉].
Path c̄6 corresponds to the insertion of letter a at the beginning of string “a”, and path c̄7

corresponds to the insertion of letter a in the middle of string “aa”.
For ipath

c9 = (πa〈1, 2, 3〉 C τ 〈2, 4, 5〉, τ 〈5, 6, 7〉, πa〈1, 2, 3〉 C τ 〈2, 4, 5〉 C τ 〈5, 6, 7〉),

which represents insertion of a at the end of “aa”, c6 6↪→ c9, and c̄6 6↪→ c̄9. ♦

Lemma 26. If c1 ↪→ c2, then for all i ∈ [1,m + 1], βi = γ C αi.

Proof. By Def. 29, β1 = γ C α1. Let i ∈ [1,m] and βi = γ C αi. Then,

βi+1 = βi C τ i = (γ C αi) C τ i
L. 21= γ C (αi C τ i) = γ C αi+1,

and the Lemma is proved by induction on i. ¥

Lemma 27. If p1 ↪→ p2, then for all c1 ∈ p1 there exists c2 ∈ p2 such that c1 ↪→ c2.

Proof. Let p1 ↪→ p2. By Def. 29, there exist ipaths c0
1 ∈ p1, c0

2 ∈ p2 such that c0
1 ↪→ c0

2.
Let

c1 = (α1, τ 1, . . . ,αm+1) ∈ p1

c0
1 = (α0

1, τ
0
1, . . . ,α

0
m0+1)

c0
2 = (β0

1, τ
0
1, . . . ,β

0
m0+1).

Since c1 ∼ c0
1, m = m0 and, by Def. 24 there exist site replacements gi : ext(α0

i) → S, hi :
ext(τ 0

i) → S.
Let g′i : ext(β0

i) → S be any site replacements satisfying

g′i
∣∣
ext(�0

i)
= gi,

and, for convenience, let h′i = hi. Then

c2 = (β0
1〈g′1〉, τ 0

1〈h′1〉, . . . ,β0
m+1〈g′m+1〉) ∼ c0

2,

and c1 ↪→ c2. ¥

3.6 Generating process, typicality measure, and class

As we have seen in the previous sections, a transformation set induces a set of paths between
structs. From now on, we will interpret them as struct generation paths and will introduce in this
section the corresponding generating process. For transformation set itself, we introduce a numeric
parameter for each transformation (which controls the flow of the process in time) and a distinct
struct with which the process starts.

30

Definition 30. A pair WT = (T, l), where T is a transformation set and l : T → R+ is a mapping,
will be called a weighted transformation set. Perhaps, the simplest but not neccessesarily
the best interpretation of the transformation weight l(τ̄) is the “average time it takes for the
transformation τ̄ ∈ T to be completed”.

A triple TS = (T, l, κ̄), where (T, l) is a weighted transformation set and κ̄ ∈ Θ̄ is a struct
called the progenitor, will be called a transformation system. I

Definition 31. For a transformation system TS = (T, l, κ̄), T = {τ 1, τ 2, . . . , τm}, we will call set

TS
def= {γ̄ ∈ Θ̄ |PT (κ̄, γ̄) 6= ∅}

the set of structs generated by TS. I

Definition 32. Let TS = (T, l, κ̄) be a transformation system in inductive structure (Π, I), and
let

c = (α1, τ 1, . . . , τn, αn+1) ∈ IP T .

The duration of ipath c (and also of path c̄) is defined as

l(c̄) = l(c) def= l(τ 1) + . . . + l(τn).

I

The motivation for the following, one of the central concepts is given right after its definition.
In short, for a transformation system, we need the process that actually constructs the structs
generated by the transformation system. We want to emphasize that we do not insist on this
particular way of “unfolding” (in time) the information provided by the transformation system, i.e.
via the stochastic process, and, in fact, in section Future work are encouraging others to look for
different/interesting approaches to the generation of the class elements, not relying on stochastic
processes.

Definition 33. For a transformation system TS = (T, l, κ̄), the generating process GTS (or
simply G) is a countable state Markov stochastic process defined as follows:14

1. The states of G are elements of the set TS of structs generated by TS.

2. The amount of time which G spends in state γ̄ is a random variable distributed exponentially
with mean

L =
1∑

p∈EP T (̄)

1/l(p)
. (∗)

3. When G leaves state γ̄, it chooses randomly an elementary path p ∈ EP T (γ̄) with probability

L

l(p)
(∗∗)

and enters state end(p).
14We intentionally use “physical” terminology referring to the “states of the system”.

31

4. All random variables in 2 and 3 are mutually independent.

I

Remark 2. We view the process of struct generation (by a transformation system) as a stochastic
process, since the choice of the next elementary path and the time it takes is variable (in nature),
and, in general, depends not only on the transformation system itself but also on the external
factors the influence of which cannot be taken into account.

The choice by the process of the next state is modeled based on the following assumptions.
First, all elementary paths are indivisible. I.e., an elementary path is either “completed” or not
“completed”, since there are no “intermediate” elementary paths. Therefore, the expected amount
of time for an elementary path to be completed is independent of the time one has already been
waiting for the completion of the elementary path. And this property gives us the exponential
distribution for the amount of time which the process spends in each state. Second, the elements of
EP T (γ̄) are all, independently of each other and simultaneously, “competing” for the application
but only one of them is actually completed first. These two assumptions lead to formulas (∗) and
(∗∗).

We assume all random variables to be independent, since we postulate that the choice of the
transformation that is applied to a particular struct and the time of its application depend only on
the struct’s structure. I.e., these random variables depend neither on the path that has lead to the
struct, nor on the time it took to generate the struct.

Definition 34. Let TS be a transformation system and G be the generating process for TS. Let
EG(γ̄) be the expected time spent by G in state γ̄. We define

ĒG
def=

∑

̄∈TS

EG(γ̄).

If ĒG is finite, we will say that transformation system TS satisfies the typicality measure
existence condition and we will call such a transformation system a class transformation
system or simply class. The set of elements of class C will be denoted by C. I

The next definition introduces an important concept of struct typicality with respect to a class
C.

Definition 35. Let C be a class and G be the generating process for C. For γ̄ ∈ C, we define

νC(γ̄) def=
EG(γ̄)

ĒG
.

For γ̄ 6∈ C, νC(γ̄) def= 0. Measure νC on Θ̄ will be called C-typicality measure, or simply the
typicality. I

Remark 3. For a transformation system TS = (T, l, κ̄) and a path p ∈ PT , we will use the phrase
“process G passes (entire) p” to refer to an intuitively clear random event, and the probability
of this event is specified uniquely by the process G. Then, the duration of path p is equal to the
expected time the generating process spends on path p under the condition that it passes p.

32

Definition 36. For a class C = TS and path p ∈ PC
def= PTS, the probability of p is defined as

µC(p) def= P (G passes any path p′ into which p can be embedded).

I

Example 6. Continuing Examples 1, 2, consider the following class (specified by its transformation
system)

C = ({aa → aba, ab → acb, ab → adb}, (l1, l2, l3), aa),

and let G = GC be the generating process for C.

aa

aba

adbaacba

p
1

p
2

p
3

Figure 10: Elements and paths of class C in Example 2.

Paths of class C reachable by the generating process are shown in Fig. 10 and have the following
probabilities:

µC(p1) = 1
µC(p2) = µC(p2 ◦ p1) = 1/l2

1/l2+1/l3

µC(p3) = µC(p3 ◦ p1) = 1/l3
1/l2+1/l3

.

The set of class elements is C = {aa, aba, acba, adba}. The expected times the generating process
spends in each class element are:

EG(aa) = l1
EG(aba) = 1

1/l2+1/l3

EG(acba) = EG(adba) = 0.

Therefore,

ĒG = l1 +
1

1/l2 + 1/l3
,

and
νC(aa) = l1/ĒG

νC(aba) = 1
ĒG(1/l2+1/l3)

νC(acba) = νC(adba) = 0.

♦

Remark 4. Note that the typicality of each “terminal” class element is always zero.

33

3.7 Extended string inductive structure and the class of strings

In this section we define a new inductive structure—extended string inductive structure (ESIS)—
and the class of strings. One should note the differences between the class of strings introduced next
and the string inductive structure (SIS) introduced in Example 1 (section 2.4) . First, elements
of the class of strings correspond to strings only while some structs in SIS correspond to finite
sets of strings. The desire to limit oneself to structs which represent single strings only can now
be realized using context-dependent itransformations. Second, a typicality measure is defined for
elements of the string class, and we will show how to compute the typicality of any class element. We
introduce two new primitives, σ and πx, to construct itransformation contexts and “termination”
transformations, which will ensure the existence of the typicality measure. For simplicity, we
consider strings over the alphabet Σ = {a, b}. It is also important to keep in mind that the
inductive structure introduced here is one of the simplest inductive structures for capturing a very
popular but apparently incompletely specified “string” representation.

The set of abstract sites for the new inductive structure is A = {a1, a2, a3} and the set of
concrete sites is S = {0, 1, 2, . . .}.

The set of primtypes is ΠESIS = {σ, πa, πb, πx} (Fig. 11), where

init(σ) = {a1} term(σ) = {a2}
init(πx) = {a1} term(πx) = {a2}
init(πa) = {a1} term(πa) = {a2, a3}
init(πb) = {a1} term(πb) = {a2, a3}.

πaσ πbπx

Figure 11: Primitive types of the ESIS.

The set of semantic identities of the ESIS is IESIS = {αij ≡ βij | i, j ∈ Σ} (see Fig. 12), where

αij = πi〈1, 2, 3〉 C σ〈2, 4〉 C πj 〈4, 5, 6〉
βij = πj 〈1, 5, 2〉 C σ〈2, 4〉 C πi〈4, 6, 3〉.

πa

σ

πb

1

2 3

2

44

5 6

πa

σ

πb

1

5 2
2

44

6 3

≡

Figure 12: Semantic identities of the ESIS.

34

Since in each identity the lengths of the left- and the right-hand sides are equal, the induction
axiom holds for the set of istructs Θ in (ΠESIS , IESIS).

As mentioned above, the resulting inductive structure (Π, I) will be called the extended string
inductive structure.

We now define a class C = (T, l, κ̄) in inductive structure (ΠESIS , IESIS) called the class

of strings. Recalling that for a transformation τ = (α, β) , ext(τ) def= ext(α) ∪ ext(β), we
define the transformation set to be T = {τ̄ a, τ̄ b, τ̄ x, τ̄ xx} (see Fig. 13), where τ i = ([αi], [βi]) for
i ∈ {a, b, x, xx} and

αa = σ〈1, 2〉
βa = σ〈1, 2〉 C πa〈2, 5, 6〉 C σ〈5, 3〉 C σ〈6, 4〉

αb = σ〈1, 2〉
βb = σ〈1, 2〉 C πb〈2, 5, 6〉 C σ〈5, 3〉 C σ〈6, 4〉

αx = σ〈1, 2〉
βx = σ〈1, 2〉 C πx〈2, 3〉

αxx = σ〈1, 2〉 C πx〈3, 4〉
βxx = σ〈1, 2〉 C πx〈3, 4〉 C πx〈2, 5〉.

The weights of the transformations are defined as follows

πa

σ

2

1

6
5

3

6

4

σ
2

5

πb

2

6
5

3

6

4

2

5 π
2

2

x

3

π
2

2

x

5

π
3

x

4

τa τb τx τxx

external
sites:

{1,2,3,4} {1,2,3,4} {1,2,3} {1,2,3,4,5}

σσ σ

1

σ
1

σ

1

σ

Figure 13: Transformations from the transformation set for the class of strings.

l(τ̄ a) = l(τ̄ b) = l(τ̄ x) = 1, l(τ̄ xx) = 0,

and the progenitor is κ = [σ〈1, 2〉].
For each string u = a1 . . . an ∈ Σ∗, there is a corresponding class element γ̄u ∈ C (see Fig. 14),

35

where 15

γu = κ C τ a1 〈1, 2, 3, 4〉 C τ a2 〈0, 4, 5, 6〉 C τ a3 〈0, 6, 7, 8〉 C . . . C τ an 〈0, 2n, 2n + 1, 2n + 2〉. (∗)

Vice versa, if we take γ̄ ∈ C, such that every non-empty path p ∈ PC(κ̄, γ̄) consists of elementary
paths whose transformations are τ̄ a or τ̄ b, then there exists a composite γ ∈ γ of the form (∗).
By definition, string

str(γ̄) def= a1 . . . an

is the string corresponding to struct γ̄. We will call such struct γ̄ ∈ C a string-like struct.

πa

2

1

4'
3'

3

4'

σ
2

3'

πb

4

6'
5'

5

6'

6

4

5'

πb

6

8'
7'

7

8'

8

7'

πa

8

10'
9'

9

10'

10

9'

σσ

σ

σσ

σ σ

σ

Figure 14: Element of the class of strings corresponding to string abba.

Lemma 28. The following statements are true for the above transformation system C = (T, l, κ̄).

1. Transformation system C satisfies the typicality measure existence condition.
15For convenience and in view of Remark 1 (after Def. 16), we use here zero as the first value for some site

replacements.

36

λ

a
τx

τa τb

b
τx

τxx

τa

τa

aa

τx

τxx

τa

τa

τb

τb τb

τb

ab ba bb

Figure 15: Paths and elements of the class of strings. String-like structs are labeled by the corre-
sponding strings, and elementary paths are labeled by their transformations.

2. For γ̄ ∈ C,

νC(γ̄) =

{
2

3n+1(n+1) ln 3
, if γ̄ is a string-like struct corresponding to a string of length n

0 , otherwise.

Proof. Take γ̄ ∈ C.
If γ̄ is not a string-like struct, then either there exists an elementary path whose transformation

is τ̄ xx from EPC(γ̄), which the generating process choses with probability 1 (since l(τ̄ xx) = 0), or
EPC(γ̄) = ∅. In either case, since l(τ̄ xx) = 0, the expected time spent by the generating process
in γ̄ is 0.

If γ̄ is a string-like struct corresponding to a string of length n, then the probability that the
generating process passes a particular path p ∈ PC(κ̄, γ̄) is equal to

1
3
· 1
6
· . . . · 1

3n
=

1
3nn!

.

There are n! paths in PC(κ̄, γ̄) (see Fig. 15). Hence, the probability that process G reaches γ̄ is
1/3n. Since for all elementary paths s ∈ EPC(γ̄), l(s) = 1, and there are 3(n + 1) of them, the
expected time spent by the process in γ̄ is equal to 1/(3n · 3(n + 1)), i.e. EG(γ̄) = 1/(3n+1(n + 1)).

Since the string-like structs and strings are in one-to-one correspondence,

ĒG =
∑

u∈{a,b}∗
EG(γ̄u) =

∞∑

n=0

2n

3n+1(n + 1)
=

ln 3
2

.

Thus, C satisfies the typicality measure existence condition, and

νC(γ̄) =
EG(γ̄)

ĒG
=

2
3n+1(n + 1) ln 3

.

¥
We will denote the constructed class of strings C in ESIS as Cstr.

37

3.8 Natural numbers inductive structure and the class of natural numbers

For this inductive structure, the set of abstract sites is A = {a1, a2} and the set of concrete sites is
S = {0, 1, 2, . . .}. The set of primtypes for the natural numbers inductive structure is ΠN = {π1, πx},
where

init(π1) = init(πx) = {a1}
term(π1) = {a2}
term(πx) = ∅

The set of semantic identities is IN = Comm(ΠN), i.e. the set of commutativity identities (see
Def. 13).

The transformation set for the class of natural numbers is T = {τ̄ 1, τ̄ x}, where

τ 1 = ([π1〈1, 2〉], [π1〈1, 2〉 C π1〈2, 3〉])
τ x = ([π1〈1, 2〉], [π1〈1, 2〉 C πx〈2〉]).

The transformation weights are defined as follows

l(τ̄ 1) = l(τ̄ x) = 1,

and the progenitor is κ = [π1〈1, 2〉]. We will call CN = (T, l, κ̄) the transformation system for
natural numbers.

For each number n ∈ N, there is a corresponding struct γ̄n ∈ CN, where

γn = κ C τ 1〈2, 3〉 C . . . C τ 1〈n, n + 1〉. (∗)

Such structs will be called number-like.
The probability that generating process GN for transformation system CN will reach number-

like element γn equals to (1/2)n. Therefore,

νCN(γ̄n) = (1/2)n+1,

and the process termination condition is fulfilled, hence CN is a class.

1
τ1

τ1

2

3

τx

τx

τx τ1

}
}

path(1,2)

path(2,3)

}path(1,x)

Figure 16: Paths and elements of the class of natural numbers.

Class CN satisfies the following properties (see also Fig. 16):

38

1. For every pair of natural numbers (m, n), m < n, there exists unique path in PCN between
γ̄m and γ̄n, which we denote by path(m,n).

2. For every natural number n, there exists unique elementary path in EPCN beginning at γ̄n

whose transformation is τ̄ x. We denote this path by path(n, x).

3. For all natural numbers m,n, k,

path(m,n) ↪→ path(k + m, k + n)
path(n, x) ↪→ path(n + k, x)
path(n, x) ◦ path(m,n) ↪→ path(n + k, x) ◦ path(m + k, n + k).

3.9 Category of classes and class morphisms

In this and the next sections, we formalize the intuitive understanding of the relationship between
the classes of (possibly different) inductive structures by introducing the concept of morphism [25].
In mathematics, a morphism between two analogous/homogeneous “mathematical structures” is
a mapping which “carries” each operation in the domain into the corresponding operation in the
codomain. Since, in this paper, our immediate goal is inductive learning of classes, the “mathemat-
ical structures” of interest are classes, and, therefore, the “structural elements” are paths. Earlier,
we have defined three operations on paths: composition, embedding, and path duration.

We verify that the set of all classes (in all inductive structures) and morphisms between them
form a category. The concepts of monomorphism (in the category of sets these correspond to
injective mappings) and epimorphism (those corresponding to surjective mappings), as well as those
of a subclass and a quotient-class follow from the definition of morphism in a standard manner.
However, in view of its immediate utility, we will give, in the next (very short) section, explicit
definition of a monomorphism.

Definition 37. Let C1 = (T1, l1, κ̄1), C2 = (T2, l2, κ̄2) be classes from inductive structures
(Π1, I1), (Π2, I2) respectively. A morphism f from C1 to C2, denoted

f : C1 → C2,

is specified by a mapping f : PT1 → PT2 satisfying for all p1, p2, p ∈ PT1 the following conditions:

1. f(p1 ◦ p2) = f(p1) ◦ f(p2).

2. If p1 ↪→ p2, then f(p1) ↪→ f(p2).

3. l2(f(p)) = l1(p).

Two morphisms, f1 : C1 → C2 and f2 : C1 → C2, are equal, if the corresponding mappings f1

and f2 coincide on every path that the generating process G1 for C1 can pass 16. I

Example 7. We now define a morphism f : CN → Cstr. Due to property 3 (applied to CN), it is
sufficient to define the mapping f on paths path(1, 2), path(2, 3), path(1, x) and path(2, x). Indeed,
let the values of mapping f on these paths be fixed. We, first, prove that f(path(3, 4)) is uniquely
defined.

16See Remark 3 (section 3.6).

39

• Since path(1, 2) ↪→ path(2, 3) ↪→ path(3, 4),

f(path(1, 2)) ↪→ f(path(3, 4)) ↪→ f(path(3, 4)).

• Since path(1, 3) ↪→ path(2, 4), we have

f(path(2, 3)) ◦ f(path(1, 2)) = f(path(2, 3) ◦ path(1, 2)) = f(path(1, 3)) ↪→
f(path(2, 4)) = f(path(3, 4) ◦ path(2, 3)) = f(path(3, 4)) ◦ f(path(2, 3)).

The statement follows directly from the above two facts.
Similarly, we see that f(path(n, n + 1)) is uniquely defined for all n ∈ N.
Next, for all n ∈ N,

path(2, x) ◦ path(1, 2) ↪→ path(n + 1, x) ◦ path(n, n + 1),

therefore f(path(n + 1, x)) is uniquely defined.
To complete the proof, we note that since the values of f are uniquely defined on all elementary

paths, f itself is uniquely defined.
Obviously, the values f(path(1, 2)), f(path(2, 3)), f(path(1, x)) and f(path(2, x)) can be spec-

ified in infinitely many ways. Let us look at one of them:

f1(path(1, 2)) = [(κstr, τ a〈1, 2, 3, 4〉, κstr C τ a〈1, 2, 3, 4〉)]
f1(path(2, 3)) = [(κstr C τ a〈1, 2, 3, 4〉, τ a〈0, 4, 5, 6〉, κstr C τ a〈1, 2, 3, 4〉 C τ a〈0, 4, 5, 6〉)]
f1(path(1, x)) = [(κstr, τ x〈1, 2, 3〉, κstr C τ x〈1, 2, 3〉)]
f1(path(2, x)) = [(κstr C τ a〈1, 2, 3, 4〉, τ x〈0, 4, 5〉, κstr C τ a〈1, 2, 3, 4〉 C τ x〈0, 4, 5〉)].

In this case, the progenitor of CN is mapped onto the progenitor of Cstr corresponding to the
null string, and, in general, struct γ̄n is mapped onto γ̄an−1 (here structs are considered as paths
of length 0). Furthermore, every elementary path in CN is mapped into the elementary path in
Cstr corresponding to the insertion of letter a at the end of the string. Finally, the termination
elementary paths path(n, x) are mapped onto the termination elementary paths for Cstr .

For each thus specified mapping f , since the path durantion is, obviously, preserved, f defines
a morphism. ♦

Remark 5. We conjecture that, in general, any morphism can be uniquely and finitely specified by
its values on certain “basic” paths.

Next, we check the categorical properties of morphisms, i.e. the existence of compositions of
morphisms and of the identity morphism, and the associativity of the composition.

Definition 38. For two morphisms f : C1 → C2 and g : C2 → C3, the composition of f and g,
denoted g ◦ f , is a morphism h : C1 → C3, where h = g ◦ f. I

Lemma 29. The above definition of composition is correct, i.e. mapping h satisfies the conditions
in Def. 37.

40

Lemma 30. The composition of morphisms is associative, i.e. for any classes C1, C2, C3, C4 and
morphisms f : C1 → C2, g : C2 → C3, h : C3 → C4,

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Lemma 31. For a class C = (T, l, κ̄), the identity path mapping id : PT → PT defines the identity
class morphism idC : C → C, i.e. for any morphisms g : C1 → C and h : C → C2,

idC ◦g = g and h ◦ idC = h.

Thus, the set of all classes forms a category which is natural to call the category of classes.

Definition 39. Two classes C1, C2 will be called isomorphic, if there exist morphisms f : C1 →
C2, g : C2 → C1 such that f ◦ g = idC1 and g ◦ f = idC2 . I

3.10 Subclasses and struct representations

In this (short) section, we introduce important concepts of subclass and struct representation.

Definition 40. Morphism f : C1 → C2 will be called a monomorphism, if for any pair of distinct
paths p1, p2 that the generating process of class C1 can pass,

f(p1) 6= f(p2).

A monomorphism will be denoted by f : C1 ↪→ C2. For class C, a subclass is defined as a pair
(f ,C′), where f : C′ ↪→ C. I

Lemma 32. A morphism f : C1 → C2 is a monomorphism, if and only if, for any class C and for
any morphisms g,h : C → C1, g 6= h implies f ◦ g 6= f ◦ h.

Important remark. Suppose that an agent has knowledge of several classes, some of which are
related to each other via monomorphisms. When the agent encounters a “physical” object, he at-
tempts to construct a “representation” of the object by discovering its formative history based on the
agent’s knowledge of some classes, i.e. the classes activated by the object. The agent accomplishes
this by initiating the generating process for each of these classes. Each such process is conditioned
by the above relationship (via monomorphisms) between the classes and simultaneously “guided”
by the agent’s structural measurement devices. The function of the structural measurement device
is to match the structs from some of the active classes against the original “physical” object. For
each of the active classes, the current state, or struct, of the corresponding generating process can
be called the current representation of the “physical” object with respect to that class.

Definition 41. For a struct γ̄ ∈ C, the representation of γ̄ with respect to a subclass
(f ,C′) is defined as a pair (f−1(γ̄), C′). I

Note that the “explicit” representation of struct γ̄ with respect to class C is also not unique
and is associated with a particular path from the class progenitor to γ̄.

41

4 The learning problem

In this, our “destination”, section we briefly outline a tentative formulation of the learning problem.

We assume that (Π, I) is a fixed inductive structure and all classes that we consider are classes
in this inductive structure. Let C be a fixed class in (Π, I) which will be called the superclass
and from which the learning subclasses will be selected.

First, we hypothesize that there exists unique class P(C) called the power class of C, which
has the following properties:

• there exists a bijection between P(C) and the set all subclasses of C; for each subclass (f ,K)
of C, the corresponding element of P(C) will be denoted as ξ̄(f ,K) and should be thought
of as the “representation” of that subclass

• its progenitor κ̄P(C) corresponds to class C itself:

ξ̄(idC,C) = κ̄P(C)

• transformations of class P(C) should be thought of as the “building blocks” with which the
representation of any subclass of C (including its monomorphism) can be constructed.

Thus, one can think of the generating process GP(C) for this superclass as the one constructing
the representations of the subclasses of C. Note that since P(C) is uniquely defined by C, GP(C)

is also uniquely defined.

Definition 42. For a subclass (f ,K) of C, a finite subset R ⊂ f(K) will be called a training
set generated by (f ,K). Let us define the typicality of a training set R = {ᾱ1, . . . , ᾱn} as

ν(f ,K)(R) def=
n∏

i=1

νK(f−1(ᾱi)). (14)

I

Next, let us suppose that we know the transformation system for superclass C, which we will now
consider as an “external” class, and suppose that we are observing an external generating process
for the power class P(C), and, moreover, suppose that, during our observation, this process remains
in state ξ̄(f ,K). It is natural to assume that we do not know the struct ξ̄(f ,K) or, in other words,
we do not know the representation of subclass (f ,K). Then, suppose we observed a training set
R′ = {γ̄1, . . . , γ̄n} generated by (f ,K) . We consider elements of the training set R′ as independent
discrete random variables whose values belong to set f(K),17 and

Prob(γ̄i = γ̄) = νK(f−1(γ̄)), i ∈ [1, n], γ̄ ∈ f(K). (15)

For a finite subset R ⊂ C, let us denote by ER the random event “R′ = R”, and by E(f ,K) the
random event “R′ is generated by subclass (f ,K)”. Note that event E(f ,K) can also be described
as “GP(C) is in state ξ̄(f ,K)”. By Def. 35, the probability of event E(f ,K) is

Prob(E(f ,K)) = νP(C)(ξ̄(f ,K)). (16)

17See, for example, [26].

42

According to (14, 15), the probability of the conditional event “R′ = R under condition that
R′ is generated by subclass (f ,K)” is given by formula

Prob(ER | E(f ,K)) = ν(f ,K)(R).18 (17)

Now, the learning problem can be formulated as follows: given a finite subset R0 ⊂ C, find
subclass (f0,K0) for which the conditional probability

Prob(E(f0,K0) | ER0) (∗)

is maximal. In other words, the learning problem is to find subclass (f0,K0) whose generating
process is most likely to generate the observed set R0.

For conditional probability (∗), we have:

Prob(E(f0,K0) | ER0) =
Prob(ER0 | E(f0,K0)) · Prob(E(f0,K0))

Prob(ER0)
.

Since the training set R0 is fixed, the denominator is also fixed, and (∗) is maximal whenever the
numerator is maximal. From (17, 16), we obtain

Prob(ER0 | E(f0,K0)) · Prob(E(f0,K0)) = ν(f0,K0)(R
0) · νP(C)(ξ̄(f0,K0)),

so the learning problem is equivalent to the following one: given R0, find subclass (f0,K0) which
maximizes

ν(f0,K0)(R
0) · νP(C)(ξ̄(f0,K0)). (∗∗)

We will not give a precise definition of the above power class but simply note that it has to be
defined as an instance of the general categorical concept of power object specified for our category
of classes. Therefore, instead of evaluating the second factor in (∗∗) directly, for practical purposes,
we replace this factor by a “similar” one as explained next.

Let τ̄ be a transformation from the transformation set that defines class K. Choose any
itransformation τ = (α, β) ∈ τ̄ , and denote by p�̄ the elementary path which contains elementary
ipath (α, τ ,β). It is easy to check that p�̄ is correctly defined.

For a subclass (f ,K) of C, where K = ({τ̄ 1, . . . , τ̄m}, l, κ̄), let us call

νC(f ,K) def= νC(f(κ̄)) ·
m∏

i=1

µC(f(p�̄ i))

the typicality of subclass (f ,K), where µC is the path probability measure (see Def. 36). Then,
we can replace the second factor in (∗∗), which is the typicality of the representation ξ̄(f0,K0) of
subclass (f0,K0) in power class P(C), by the typicality of subclass (f0,K0).

Thus, the learning problem can now be formulated as follows: given R0, find subclass (f0,K0)
which maximizes

ν(f0,K0)(R
0) ·

[
νC(f(κ̄)) ·

m∏

i=1

µC(f(p�̄ i))

]
.19

18See Appendix for a proof of this equality.
19For the classical case see, for example, [27].

43

Preliminary analysis suggests that this optimization problem has a non-trivial solution which
corresponds to a subclass (f0,K0) lying “between” two extreme non-optimal solutions: one corre-
sponding to the superclass C, and the other one, to the smallest subclass containing R0.

Finally, it is important to note that, as a result of the learning process, a new object represen-
tation (see Def. 41), i.e. the pair (f−1(γ̄), K), of an object originally represented as (γ̄,C) may
“take over”: the typicality of f−1(γ̄) in K might be higher than the typicality of γ̄ in C.

5 Future work

First of all, we want to come back to the Introduction and discuss very briefly the questions of
explanatory value of the ETS model as well as of its experimental “verification”. One might say that
the description of the class by means of its transformation system encapsulates the explanatory
nature of the outlined model: it suggests what the representation (or “nature”) of the class is,
or how to “think” about a class of objects, including the interpretation of transformations as
class “features”. At the same time, the experimental verification of the model might also be
approached from the point of view of validity of this explanatory hypothesis about the nature of
class representation. It turns out that in cognitive psychology there has already accumulated some
experimental evidence supporting the model (starting from the work of M.I.Posner and co-workers
and J.J.Franks and J.D.Bransford [28]). We are currently working on the initial verification of this
hypothesis for some classes of organic molecules. It is understood, that to properly conduct the
experimental work the form of data representation must confirm to the proposed structural form
of representation, which, in turn, requires rethinking of the conventional forms of representation.

As far as the theory is concerned, below we list some of the important topics (most are very
substantial) for the future research.

• Investigate the axiomatics for the inductive structure.

• Develop a theory of inductive structures (potentially of great importance for mathematics
and sciences).

• Introduce a natural hierarchy of (non-isomorphic) inductive structures and show that the
analogues of the numeric representations are the simplest ones.

• Are there any other natural ways to introduce the transformations?

• Introduce a natural hierarchy of transformation systems.

• Is there a different/interesting approach, not relying on stochastic processes, to the generation
of class elements?

• Should one allow the classes with several progenitors and how to define such classes?

• Introduce the concept of morphism for inductive structures and investigate the alternative
definitions of the class morphism.

• Propose a formal definition of the power class.

• Propose an alternative formulation of the learning problem.

44

• Investigate various stages of the learning process (together with the relevant concepts).

• Develop a powerful machinery (and optimization theory) for efficient construction of the class
transformation system during the learning process.

Acknowledgment

We would like to thank John Abela for encouraging us to undertake this work sooner rather than
later.

Appendix

Here we define accurately the random variables considered in Section 4, and prove formula (17).
Let (Ω1,B1, Prob1) be a probability space, and let

sc : Ω1 → P(C)

be a random variable with the values in the power class P(C) which has the following meaning:
for ω1 ∈ Ω1,

sc(ω1) = ξ̄(f ,K)

denotes a random subclass (f ,K) of C generated by the generating process of P(C).
After the generating process of P(C) generates the subclass (f ,K), the generating process for

subclass (f ,K) generates a training set.
Let (Ω2,B2, Prob2) be a probability space, and assume that for every subclass (f ,K) of C there

exist independent random variables

tKi : Ω2 → K, i ∈ [1, n]

corresponding to the elements of a training set for class K.
Consider the product of the introduced probability spaces

(Ω,B, Prob) = (Ω1 × Ω2, B1 × B2, Prob1×Prob2)

and random variables
ti : Ω → C, 20 i ∈ [1, n]

defined as
ti(ω1, ω2)

def= f
(
tKi (ω2)

)
, where (f ,K) is such that ξ̄(f ,K) = sc(ω1).

Thus, {ti(ω1, ω2) | i ∈ [1, n]} is the image in C of a random training set for a random subclass
(f ,K). Suppose we observed a particular training set R = {γ̄1, . . . , γ̄n} ⊂ C. The conditional
probability in the left hand side of (17) can now be rewritten as

Prob(ER | E(f ,K)) = Prob
[
t1(ω1, ω2) = γ̄1 , . . . , tn(ω1, ω2) = γ̄n

∣∣ sc(ω1) = ξ̄(f ,K)

]
=

=
Prob

[
t1(ω1, ω2) = γ̄1 , . . . , tn(ω1, ω2) = γ̄n , sc(ω1) = ξ̄(f ,K)

]

Prob
(
sc(ω1) = ξ̄(f ,K)

) =
Prob(X)
Prob(Y)

,

20It is not hard to see that ti are indeed random variables, i.e. inverse image of any element in C is a measurable
subset of Ω2.

45

where

X =
{

(ω1, ω2) ∈ Ω
∣∣ t1(ω1, ω2) = γ̄1 , . . . , tn(ω1, ω2) = γ̄n, sc(ω1) = ξ̄(f ,K)

}

Y =
{

(ω1, ω2) ∈ Ω
∣∣ sc(ω1) = ξ̄(f ,K)

}
.

If
X1 =

{
ω1 ∈ Ω1

∣∣ sc(ω1) = ξ̄(f ,K)

}

X2 =
{

ω2 ∈ Ω2

∣∣ f
(
tK1 (ω2)

)
= γ̄1 , . . . , f

(
tKn (ω2)

)
= γ̄n

}
,

then X = X1 ×X2, Y = X1 × Ω2, and, according to [26, Remark 35.13],

Prob(X) = Prob1(X1) · Prob2(X2)
Prob(Y) = Prob1(X1).

Since tKi , i ∈ [1, n], are independent random variables,

Prob2(X2) = Prob2

[
f
(
tK1 (ω2)

)
= γ̄1 , . . . , f

(
tKn (ω2)

)
= γ̄n

]
=

Prob2

[
f
(
tK1 (ω2)

)
= γ̄1

] · . . . · Prob2

[
f
(
tKn (ω2)

)
= γ̄n

]
= ν(f ,K)(R).

Hence,

Prob(ER | E(f ,K)) =
Prob(X)
Prob(Y)

=
Prob1(X1) Prob2(X2)

Prob1(X1)
= ν(f ,K)(R),

and (17) is proved.

References

[1] G. Sarton, Ancient Science Through the Golden Age of Greece, Dover, New York, 1993.

[2] G. Ifrah, The Universal History of Numbers, J. Wiley, New York, 2000.

[3] E. Schrodinger, Nature and the Greeks and Science and Humanism, pp.143-145, 158, CUP,
Cambridge, UK, 1996.

[4] L. Goldfarb, On the foundations of intelligent processes I: An evolving model for pattern learn-
ing, Pattern Recognition 23 (6) (1990), 595-616.

[5] L. Goldfarb, What is distance and why do we need the metric model for pattern learning,
Pattern Recognition 25 (4) (1992), 431-438.

[6] L. Goldfarb, S. Nigam, The unified learning paradigm: A foundation for AI, in: V. Honavar,
L. Uhr (Ed.), Artificial Intelligence and Neural Networks: Steps toward Principled Integration,
1994, pp. 533-559.

[7] L. Goldfarb, J. Abela, V. C. Bhavsar, V. N. Kamat, Can a vector space based learning model
discover inductive class generalization in a symbolic environment? Pattern Recognition Letters
16 (7) (1995) 719-726.

[8] L. Goldfarb, Inductive class representation and its central role in pattern recognition, Proc.
Conf. Intelligent Systems: A Semiotic Perspective, Vol. 1, NIST, Gaithersburg, Maryland,
USA, 1996, pp. 53-58.

46

[9] L. Goldfarb, What is inductive learning?: Construction of inductive class representation, Proc.
Workshop ”What Is Inductive Learning” in Conjunction with 11th Biennial Canadian AI Conf.,
1996, pp. 9-21.

[10] L. Goldfarb, S. Deshpande, What is a symbolic measurement process?, Proc. IEEE Conf.
Systems, Man, and Cybernetics, Vol. 5, Orlando, Florida, USA, 1997, pp. 4139-4145.

[11] L. Goldfarb, J. Hook, Why classical models for pattern recognition are not pattern recognition
models, Proc. Intern. Conf. On Advances in Pattern Recognition, Plymouth, UK, 1998, pp.
405-414.

[12] E. G. H. Landau, Foundations of Analysis, Chelsea, New York, 1951.

[13] C. Lee, Notes for Math 502, 1998 [http://www.ms.uky.edu/ lee/ma502/notes2/node7.html].

[14] M.A. Aiserman, Remarks on two problems connected with pattern recognition, in: S. Watan-
abe (Ed.), Methodologies of Pattern Recognition, , p.1, Academic Press, 1969.

[15] J. Losee, A Historical Introduction to the Philosophy of Science, 3rd ed., OUP, Oxford, 1993.

[16] A. Bird, Philosophy of Science, McGill-Queen’s University Press, Montreal, 1998.

[17] J. H. Holland, K. J. Holyoak, R. E. Nisbett, P. R. Thagard, Induction, MIT Press, Cambridge,
Mass., 1986.

[18] M. Piattelli -Palmarini (Ed.), Language and Learning: The Debate between Jean Piaget and
Noam Chomsky, pp. 100-103, 255-272, HUP, Cambridge, USA, 1980.

[19] N. Chomsky, Knowledge of Language: Its Nature, Origin, and Use, p. 12, Praeger, New York,
1986.

[20] D. Wolpert, Preface, in: D. Wolpert (Ed.), The Mathematics of Generalization, p.8, Addison-
Wesley, Reading, MA, USA, 1995.

[21] A.R. Lacey, A Dictionary of Philosophy, 3rd ed., p. 308, Routledge, London, UK, 1996.

[22] R. Dunbar, The Trouble with Science, p. 17, Faber and Faber, London, UK, 1996.

[23] N. Chomsky, Syntactic Structures, Mouton, London, The Haugue, The Netherlands, 1965.

[24] A.G. Kurosh, Lectures on General Algebra, Section 1.5, Chelsea, New York, 1963.

[25] S. MacLane, G. Birkhoff, Algebra, 3rd ed., Chelsea, New York, 1993.

[26] K.R. Parthasarathy, Introduction to Probability and Measure, Sections 3, 22, Macmillan India
Press, Madras, 1977.

[27] T.M. Mitchell, Machine Learning, Sections 6.3, 6.9, McGraw-Hill, Boston, 1997.

[28] J.J. Franks, J.D. Bransford, Abstraction of visual patterns, J. of Experimental Psychology 90
(1) (1971) 65-74.

47

