
Representing Conditional Independence Using Decision Trees

Jiang Su and Harry Zhang
Faculty of Computer Science

University of New Brunswick, NB, Canada, E3B 5A3
hzhang@unb.ca

Abstract

While the representation of decision trees is fully ex-
pressive theoretically, it has been observed that tradi-
tional decision trees has the replication problem. This
problem makes decision trees to be large and learnable
only when sufficient training data are available. In this
paper, we present a new representation model, condi-
tional independence trees (CITrees), to tackle the repli-
cation problem from probability perspective. We pro-
pose a novel algorithm for learning CITrees. Our exper-
iments show that CITrees outperform naive Bayes (Lan-
gley, Iba, & Thomas 1992), C4.5 (Quinlan 1993), TAN
(Friedman, Geiger, & Goldszmidt 1997), and AODE
(Webb, Boughton, & Wang 2005) significantly in clas-
sification accuracy.

Introduction
In decision tree learning algorithms, a decision tree is in-
duced from a set of labeled training examples represented
by a set of attribute values and a class label. We denote a
set of attributes by a bold-face upper-case letter, for exam-
ple, A = (A1, A2, · · · , An), and an assignment of values
to each attribute in an attribute set by a corresponding bold-
face lower-case letter, for example, a. We use C to denote
the class variable and c to denote its value. Thus, a training
example E = (a, c), where a = (a1, a2, · · · , an), and ai is
the value of attribute Ai.

While decision trees perform quite well in classification,
the representation structure of traditional decision trees suf-
fers from the replication problem (Oliver 1993; Pagallo &
Haussler 1990). Namely, we are forced to represent disjunc-
tive concepts in different branches, which leads to duplica-
tion of subtrees. This problem causes decision trees to be
large and learnable only when sufficient training data are
available. Let us see the following example.

Example 1: Assume that the target function is a Boolean
concept C = (A1∧A2)∨ (A3∧A4). The decision tree for
C is shown in Figure 1. You can see the duplicate subtrees
of (A3 ∧ A4).

Another related problem is the fragmentation problem: As
the splitting process proceeds, the data associated with each
descendant node becomes small. Eventually, when the depth

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A1

A2

A3

A4 A4

A2

A3

A4 A4

A3

A4 A4

1

0

1 0

0

1

1 0

0

1 0

Figure 1: A decision tree without leaf nodes for (A1∧A2)∨
(A3 ∧ A4).

of a tree is large, there is very little data with each leaf node
(Oliver 1993; Pagallo & Haussler 1990) and so the predic-
tion could be inaccurate.

Thus, a more compact structure of decision trees is de-
sirable. Intuitively, decomposing a large decision tree into
small trees is a natural approach to solving the two prob-
lems. But under the paradigm of traditional decision trees, it
is difficult to combine the predictions from multiple trees.

Although decision trees are not generally treated as a
probabilistic model, they can be used to represent probabil-
ity distributions, called probabilistic trees (Buntine 1991). In
a probabilistic tree, a leafL represents the conditional proba-
bility P (xp(L)|c) 1, where Xp(L) are the attributes that oc-
cur on the path from the root to L, called the path attributes
ofL. Thus, a probabilistic tree represents a conditional prob-
ability distribution given the class. Assume that the attribute
set A can be partitioned into disjoint subsets of attributes
and the attributes in one subset are conditional independent
of all the attributes in other subsets. We can use a proba-
bilistic tree to represent the conditional distribution for each
subset and, roughly speaking, the full conditional distribu-

1In a traditional probabilistic tree (Buntine 1991), a leaf L rep-
resents P (c|xp(L)), instead of P (xp(L)|c) used in this paper.
Since P (c|xp(L)) is estimated by using the fraction of examples
of class C in the training data associated with L, P (c) is estimated
from the entire training data, and P (xp(L)) is irrelevant to C,
P (xp(L)|c) can be easily computed from P (c|xp(L)) and P (c).

tion P (A|C) is equal to the product of conditional proba-
bility distributions of all trees. Notice that P (A|C) and the
prior probability P (C) determine a unique classifier.

It is easy to decompose the decision tree for Example 1
into two probabilistic trees corresponding to two concepts
(A1 ∧ A2) and (A3 ∧ A4), respectively, shown in Figure 2.
Notice that all the probabilities are estimated from the truth
table, in which each possible assignment of truth values to
A1,A2,A3, andA4 occurs exactly once. Figure 2 represents
the conditional independence that P (A1, A2, A3, A4|C) =
P (A1, A2|C)P (A3, A4|C) (Strictly, that is not true.). It is
easy to verify that Figure 2 represents the target conceptC =
(A1 ∧A2) ∨ (A3 ∧ A4).

A1

A2

1 0

1

p(A1=1, A2=0|C=1)=1/7
p(A1=1, A2=0|C=0)=1/3

0

A2

1 0

A4

1 0

1
......

0

A4

1
......

0

A3

P(C=1)=7/16
P(C=0)=9/16

p(A1=0, A2=1|C=1)=1/7
p(A1=0, A2=1|C=0)=1/3

p(A1=0, A2=0|C=1)=1/7
p(A1=0, A2=0|C=0)=1/3

......

T1 T2

p(A1=1, A2=1|C=1)=1
p(A1=1, A2=1|C=0)=0

Figure 2: Two probabilistic trees representing (A1 ∧ A2) ∨
(A3 ∧ A4), in which the probabilities in T2 are similar to
that in T1.

Figure 2 shows us that a compact decision tree presen-
tation can be achieved by representing conditional indepen-
dence in probabilistic trees. This is the key idea of this paper.

Related Work
Although decision trees performs well in classification,
their replication problem and fragmentation problem are
also well known (Oliver 1993; Pagallo & Haussler 1990).
Those two problems have been attacked from two major
approaches: constructing compound attributes (Oliver 1993;
Pagallo & Haussler 1990), and extending the tree structure
of decision trees to the more complex graph structure, such
as decision graphs (Kohavi 1994). However, no clear solu-
tion has emerged under the traditional decision tree para-
digm.

It has also been observed that traditional decision tree al-
gorithms, such as C4.5 (Quinlan 1993), produce poor prob-
ability estimates(Provost, Fawcett, & Kohavi 1998). A sub-
stantial amount of work has been done recently on learning
decision trees with accurate probability estimates (Provost &
Domingos 2003). Although, theoretically, decision trees can
represent any probability distribution, those that yield accu-
rate probabilities tend to be large because of the replication
problem, and the probability estimates could still be poor be-
cause of the fragmentation problem. A more compact repre-
sentation could be an effective solution for this problem.

Although decision trees are well-known as a decision
boundary-based classifier, each leaf of a tree can represent a
conditional probability distribution. One way to extend de-
cision trees toward a probabilistic model is to deploy a local

probability model on leaves of a decision tree (Smyth, Gray,
& Fayyad 1996). Friedman and Goldszmidt (1996) propose
to use decision trees to represent the local distributions in
Bayesian networks, in which only the conditional probabil-
ity distribution of a single attribute is represented. Recently,
Zhang and Su (2004) propose to use a decision tree to repre-
sent conditional independence. They present a type of prob-
abilistic trees, in which, given the path attributes, all other
attributes on a leaf are independent. Their model, however,
is not a general model that can represent any conditional in-
dependence. Jaeger (2004) propose a model probabilistic
decision graphs that is based on ordered binary decision di-
agrams.

In this paper, we present a novel decision tree repre-
sentation model, conditional independence trees (CITrees).
Our basic idea is to iteratively explore and represent condi-
tional attribute independencies at each step in constructing
a decision tree, and thus decompose a traditional decision
(sub)tree into smaller (sub)trees.

Representing Conditional Independence under
Decision Tree Paradigm

The key feature of decision trees is the iterative and nested
decomposition. The instance space is iteratively partitioned
into subspaces in a decision tree. More precisely, each inter-
nal node N corresponds to a subspace defined by the val-
ues of the path attributes Xp(N). It is natural to explore
the conditional independencies among attributes in the sub-
space. Here the conditioning variables are Xp(N) and C.
Indeed, some attribute independencies do not exist in the en-
tire instance space, but do exist in some subspaces. This type
of conditional attribute independencies are called context-
specific independence (Boutilier et al. 1996), differentiating
it from the global conditional independence that is condi-
tioned only by C. The structure of decision trees from top
to bottom provides a natural structure for exploring and rep-
resenting various context-specific independence among at-
tributes in various granularities from coarse to fine.

As discussed in the first section, a leaf L in a probabilistic
tree represents the conditional probability P (xp(L)|c). Let
us denote all the attributes not in Xp(L) by Xl(L), called
non-path attributes. If there is a representation of the con-
ditional probability distribution over the non-path attributes
at each leaf L, denoted by P (xl(L)|xp(L), c), then each
leaf represents a full conditional probability over all the at-
tributes, conditioned by C, as shown in Equation 1. Thus,
a probabilistic tree represents a full conditional distribution
P (A|C).

P (a|c) = P (xl(L)|xp(L), c)P (xp(L)|c). (1)

Moreover, the subtree with root N represents a conditional
distribution P (Xl(N)|xp(N), c). In the recursive process
of learning a decision tree, if Xl(N) can be partitioned into
disjoint and conditional independent subsets Al1(N), · · ·,
Alk(N), we can construct k probabilistic (sub)trees, each of
which represents P (Ali |xp(N), c), i = 1, · · ·, k, and their
product represents P (Xl(N)|xp(N), c). Thus, a traditional

probabilistic (sub)tree can be represented by a set of smaller
trees.
Definition 1 Given two attributes Ai and Aj , and a set of
attributes Θij , Ai and Aj are said to be conditionally inde-
pendent given Θij , if

P (Ai, Aj |Θij , C) = P (Ai|Θij , C)P (Aj |Θij , C). (2)

Definition 2 Given two sets of attributes U and Θ, and Θ∩
U = Φ (the empty set), a subset UI is called a conditional
independence set given Θ, or simply CI set, if

1. for any attribute Aj /∈ UI , Aj is conditionally indepen-
dent from any attribute Ai ∈ UI given Θ;

2. UI is the minimum subset satisfying property 1.

Assuming that {UI1 , · · ·, UIk
} is a partition of CI sets of

U given Θ, we have

P (U |Θ, C) =

k∏

i=1

P (UIi
|Θ, C). (3)

Our idea is that, at each step of constructing a probabilistic
tree, we detect conditional attribute dependencies by discov-
ering CI sets. We then build a tree for each CI set by choos-
ing one attribute as the root, and repeat this process for each
of its branches until certain criteria have been met. We use a
rectangle to contain a set of trees, each of which corresponds
to a CI set. A conditional independent tree, or simply CIT-
ree, is defined formally as follows.

Definition 3 1. A probabilistic tree (without any rectangle)
is a CITree.

2. A rectangle containing a set of probabilistic trees is a CIT-
ree.

3. If T1, · · ·, Tk are CITrees, then a tree consisting of a root
and subtrees T1, · · ·, Tk is a CITree.

Example 2: Figure 3 shows a CITree, in which the rec-
tangle containing two subtrees T2 and T3 represents the fol-
lowing context-specific independence.

P (A2, A3|A1 = 1, c) = P (A2|A1 = 1, c)P (A3|A1 = 1, c).

A1

A2

0 1

0 1

A3

... ...

A3

... ...

A2

... ...

A3

... ...

T1

T2 T3

0 1
0 1

0 1 0 1

Figure 3: CITree for Example 2.

The conditional probability distribution represented by a
CITree T is defined formally as follows.

Definition 4 Assume that T is a (sub)CITree on attribute set
A = (A1, A2, · · · , An), the conditional distribution P (T)
represented by T is defined as follows.

1. If T is a probabilistic tree with root A (a CITree
without rectangle), its conditional probability P (T) =
P (A|Xp(A), C).

2. If T is represented by a rectangle containing independent
sub-CITrees T1, · · ·, Tk,

P (T) =
k∏

i=1

P (Ti). (4)

3. If T is a single (sub)CITree with root A = {a1, · · · , ak}
and subtrees Ts(ai) corresponding to A = ai, i =
1, · · · , k,

P (T) = P (Ts(ai)),when A = ai. (5)

A CITree provides, essentially, a more compact represen-
tation for the full conditional distribution, given C, than a
probabilistic tree. Combined with P (C), it also determines
a classifier.

Bayesian networks (Pearl 1988) are a well-known proba-
bilistic model. Generally speaking, a Bayesian network rep-
resents attribute independencies in the entire instance space,
that is, global independence. It is not natural to use Bayesian
networks to represent various context-specific independen-
cies in different granularities. For example, assume that
Ak+2 depends on Ak+1 only when Ai = ai, i = 1, · · · , k.
To represent this fact in a Bayesian network, Ak+2 should
have k + 1 parents. In a CITree, this dependency is repre-
sented by only one path.

Another drawback of Bayesian networks is that it is in-
tractable to learn the optimal structure of a Bayesian net-
work from data. Thus, in practice, imposing restrictions on
the structures of Bayesian networks, such as tree-augmented
naive Bayes (TAN) (Friedman, Geiger, & Goldszmidt 1997),
in which each attribute is allowed to have a parent only from
other attributes, has been accepted. In contrast, CITrees have
a tree structure, substantially simpler than a graph structure.
It could be expected that learning a good CITree is easier
than learning a good Bayesian network.

Notice the difference between CITrees and the work of
Boutilier et al. (1996). In their work, context-specific in-
dependence is explored within the framework of Bayesian
networks, not iteratively from various granularities as CIT-
rees do. Moreover, a decision tree is used only to represent
the local distribution of a single attribute.

Learning Conditional Independence Trees
To learn a CITree from data, the first issue is to explore con-
ditional attribute independencies. More concretely, it is how
to partition an attribute set into CI sets. We use conditional
mutual information, defined in Equation 6, to detect the de-
pendency between two attributes.

IP (X; Y |Z) =
∑

x,y,z

P (x, y, z)log
P (x, y|z)

P (x|z)P (y|z)
, (6)

where x, y, and z are the values of variablesX , Y , and Z
respectively.

In practice, we focus on strong attribute dependencies,
while ignoring weak attribute dependencies. We define a
threshold based on the Minimum Description Length (MDL)
principle to filter out weak dependencies, defined in Equa-
tion 7.

δ(Ai, Aj) =
log|D|

2|D|
× |Tij |, (7)

where |D| is the size of the local training data, and |Tij | =
|Ai| × |Aj |. Roughly speaking, |Tij | represents the size in-
crease for representing the dependency between Ai and Aj

in a CITree. In our implementation, Ai and Aj are put into
a CI set, if and only if I(Ai;Aj |C) > δ(Ai, Aj). δ(Ai, Aj)
is essentially a threshold. In Example 1, A1, A2, A3 and
A4 can be grouped into two CI sets {A1, A2} and {A3, A4}
using an appropriate threshold. Thus, Figure 2 is learnable.

After exploring the conditional attribute independencies
in the local training data, we get CI set(s). For each CI set
UI , a (sub)CITree is built. We first introduce a few defini-
tions that are used in choosing the root attribute in our algo-
rithm.
Definition 5 Given a CI set UI and an attribute Ai ∈ UI ,
the most influent attribute of Ai, denoted by Ainf

i , is defined
as follows.

A
inf
i = arg max

Aj∈UI ,j 6=i
I(Ai, Aj |C). (8)

Definition 6 In a CI set UI , an attributeAi is called a com-
posite attribute, if it satisfies the following equation.

I(C;Ai|A
inf
i) > I(C;Ai) + δ(Ai, A i

inf). (9)

Intuitively, a composite attribute is an attribute that is
more useful in discriminating the class variable combined
with other attribute.
Definition 7 The discriminating score of attribute Ai, de-
noted by ψ(Ai), is defined as follows:

ψ(Ai) = max{I(C;Ai), I(C;Ai|A
inf
i)}, (10)

where I(C,Ai) is the mutual information between C and
Ai, defined in Equation 11.

I(C;Ai) =
∑

C,Ai

P (C,Ai)log
P (C,Ai)

P (C)P (Ai)
. (11)

In Definition 7, we take the combination of two attributes
into account. In reality, it often happens that the combina-
tion of attributes is more useful in discriminating the class
variable C.
Definition 8 The most discriminating attribute for the class
variable C, denoted by Adis, is defined as follows.

Adis = arg max
Ai

ψ(Ai). (12)

Definition 9 Given an attributeAi, the influenced set ofAi,
denoted by Ψ(Ai), consists of all the attributes that are com-
posite attributes with Ai as the most influent attribute.

Definition 10 The influence score of attribute Ai, denoted
by ω(Ai), is defined as follows.

ω(Ai) =
∑

Aj∈Ψ(Ai)

(I(C;Aj |Ai)−I(C;Aj)−δ(Ai, Aj)). (13)

Definition 10 reflects the influence of attributeAi on other
attributes in forming composite attributes.

Now we are ready to talk about choosing the root attribute.
One straightforward way is to consider each attribute indi-
vidually and choose the attribute based on Equation 11. In
fact, C4.5 adopts this strategy. A more sophisticated strat-
egy is to consider the combination of attributes. Our strat-
egy is to consider the most discriminating attribute and its
most influent attribute. An interesting observation from our
experiments is that choosing which one first from the most
discriminating attribute and its most influent attribute is cru-
cial, if the most discriminating attribute is composite. Thus,
we define the influence score for an attribute to distinguish
them. The process for choosing the root attribute consists of
two steps: computing the most discriminating attribute Adis

based on the discriminating scores of attributes, and then
choose one from Adis and its most influent attribute Ainf

dis

based on their influence scores. Notice that we use a thresh-
old in Equation 9 and 13 to handle the overfitting issue.

Building a CItree is also a greedy and recursive process,
similar to building a decision tree. At each step, after dis-
covering CI sets, choose the “best” attribute for each CI set
as the root of the (sub)tree, split the local training data into
disjoint subsets corresponding to the values of the root at-
tribute, and then recur this process for each subset until all
attributes have been used.

Algorithm CITrees(S, U)

Input : a set S of labeled examples, and a set U of at-
tributes.

Output : a CITree.

1. If U is empty Return an empty tree.
2. Identify a partition {UI1 , · · · , UIk

} of CI sets of U.
3. For each CI set UIi

4. Create an empty tree Ti.
5. Choose the attribute Adis using Equation 12.

6. If Ai is composite and ω(Ainf
dis) > ω(Adis)

7. Then Aroot = Ainf
dis

8. elseAroot = Adis

9. Make Aroot the root of tree Ti.
10. For all values a of Aroot

11. Ta = CITrees(Sa, A − {Aroot}).
12. Add Ta as a child of Aroot.
13. If (k = 1) Return T1.
14. Else Return a rectangle containing T1, · · ·, Tk.

Experiments
We conducted experiments to compare our algorithm CIT-
rees with C4.5 (Quinlan 1993), naive Bayes (Langley, Iba,
& Thomas 1992), TAN (Friedman, Geiger, & Goldszmidt
1997), and AODE (averaged one-dependence estimators)
(Webb, Boughton, & Wang 2005). AODE is a newly devel-
oped model which demonstrates a remarkable performance.
We implemented CITrees within the Weka framework (Wit-
ten & Frank 2000), and used the implementations of naive
Bayes, C4.5(J48), TAN, and AODE in Weka. We chose the
33 UCI data sets from Weka. In our experiment, the accu-
racy of an algorithm on each data set has been obtained via
10 runs of 10-fold stratified cross validation. Numeric at-
tributes are discretized using ten-bin discretization imple-
mented in Weka. Missing values are also processed using
the mechanism in Weka. In our implementation, we used the
Laplace estimation to avoid the zero-frequency problem. We
conducted a two-tailed t-test with a 95% confidence level to
compare each pair of algorithms on each data set.

Table 1 shows the accuracies of the algorithms on each
data set, and the average accuracy and standard deviation on
all data sets are summarized at the bottom of the table. Table
2 shows the results of the two-tailed t-test, in which each en-
try w/t/l means that the algorithm in the corresponding row
wins inw data sets, ties in t data sets, and loses in l data sets,
compared to the algorithm in the corresponding column. The
detailed results displayed in Table 1 and Table 2 show that
the performance of CITrees is overall the best among the al-
gorithms compared in this paper. Now, we summarize the
highlights briefly as follows:

1. CITrees perform better than C4.5 (7 wins and 1 loss),
TAN (7 wins and 1 loss), and AODE (9 wins and 3 losses).

2. CITrees significantly outperform naive Bayes (12 wins
and 0 loss).

3. CITrees achieve the highest average accuracy among all
algorithms.
Figure 4 shows an example of a CITree learned from the

“Vowel” data set. In this example, the CITree algorithm gen-
erated a CITree with the “SpeakerNumbers” attribute as the
root, and all other attributes are conditionally independent
given the value of “SpeakerNumbers”. This CITree has only
151 nodes, significantly smaller than the tree of 600 nodes
generated by C4.5. More important, the accuracy of CITree
is 94.35%, significantly higher than C4.5’s 75.57%.

Table 2: Summary of the experimental results.

NB AODE TAN C4.5
CITree 12-21-0 9-21-3 7-25-1 7-25-1

NB 1-18-14 3-19-11 8-11-14
AODE 5-24-4 11-18-4
TAN 10-19-4

Conclusions
In this paper, we present a novel decision tree represen-
tation model CITrees. CITrees provide a compact repre-

Speaker
Number

0 15

.........
Featu
re 0

..............

Featu
re 10

Featu
re 0

Featu
re 10

Figure 4: The CITree induced from the “Vowel” data set.

sentation by iteratively exploring and representing context-
specific attribute independencies from various granulari-
ties. Roughly speaking, a traditional probabilistic (sub)tree
can be decomposed into smaller CITrees. CITrees can be
viewed as a general probabilistic representation model, just
as Bayesian networks. However, CITrees can efficiently rep-
resent context-free independence from various granularities,
whereas Bayesian networks can efficiently represent global
independence. We proposed an algorithm for learning CIT-
rees and conducted experiments to compare it with other
state-of-the-art algorithms.

Since the structure of CITrees is significantly simpler than
the structure of Bayesian networks, we believe that the CIT-
ree learning algorithm could be considerably simpler than
Bayesian network learning algorithms. There is thus con-
siderable potential room for improving the CITree learning
algorithm presented in this paper. Another interesting ques-
tion is: Can CITrees be used as a general inference model
just as Bayesian networks are? This paper only addresses
the classification problem.

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In Proceedings of the 12th Annual Conference on
Uncertainty in AI (UAI), 416–422.
Buntine, W. 1991. Theory refinement on Bayesian net-
works. In Proceedings of the Seventh Conference on Un-
certainty in Artificial Intelligence. Morgan Kaufmann. 52–
60.
Friedman, N., and Goldszmidt, M. 1996. Learning
Bayesian networks with local structure. In Twelfth Con-
ference on Uncertainty in Artificial Intelligence. 252–262.
Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian network classifiers. Machine Learning 29:131–
163.
Jaeger, M. 2004. Probabilistic decision graphs - combining
verification and AI techniques for probabilistic inference.

Table 1: Experimental results on accuracy.

Dataset NB C4.5 TAN AODE CITree
Anneal 94.32 ± 2.23 98.65 ± 0.97 98.34 ± 1.18 96.83 ± 1.66 99.29 ± 0.87
Audiology 71.4 ± 6.37 77.22 ± 7.69 72.68 ± 7.02 71.66 ± 6.42 79.18 ± 7.6
Autos 63.67 ± 11.36 80.44 ± 8.46 76.98 ± 9.21 75.09 ± 10.23 80.84 ± 8.4
Balance 91.44 ± 1.3 64.14 ± 4.16 86.22 ± 2.82 89.78 ± 1.88 91.44 ± 1.29
Breast-cancer 72.94 ± 7.71 75.26 ± 5.04 70.09 ± 7.68 72.73 ± 7.01 70.91 ± 7.54
Wisconsin-breast 97.3 ± 1.75 92.19 ± 3.16 95.05 ± 2.24 96.91 ± 1.84 97.2 ± 1.83
Horse-colic 79.65 ± 5.9 84.77 ± 5.89 80.55 ± 6.23 81.26 ± 5.83 80.71 ± 5.82
Credit-rating 84.75 ± 3.83 85.32 ± 4.42 84.22 ± 4.41 85.78 ± 3.75 84.81 ± 4.03
German-credit 75.93 ± 3.87 72.61 ± 3.49 75.86 ± 3.58 76.45 ± 3.88 74.58 ± 3.62
Pima-diabetes 75.68 ± 4.85 73.89 ± 4.7 75.09 ± 4.96 76.57 ± 4.53 75.52 ± 4.71
Glass 57.69 ± 10.07 58.14 ± 8.48 58.43 ± 8.86 61.73 ± 9.69 60.43 ± 8.94
Cleveland 83.58 ± 6.4 79.44 ± 6.43 82.78 ± 6.98 83.07 ± 7.05 82.38 ± 6.86
Heart-statlog 83.78 ± 5.41 79.78 ± 7.71 79.37 ± 6.87 83.63 ± 5.32 81.96 ± 5.73
Hepatitis 83.53 ± 10.47 81.5 ± 8.24 82.13 ± 9.17 83.55 ± 9.73 84.07 ± 9.09
Hypothyroid 92.79 ± 0.73 93.24 ± 0.44 93.23 ± 0.68 93.56 ± 0.61 93 ± 0.69
Ionosphere 90.86 ± 4.33 87.47 ± 5.17 92.23 ± 4.36 91.74 ± 4.28 91.97 ± 4.26
Iris 94.33 ± 6.79 96 ± 4.64 91.67 ± 7.18 94 ± 5.88 94.2 ± 6.47
Chess 87.79 ± 1.91 99.44 ± 0.37 92.05 ± 1.49 91.03 ± 1.66 99.03 ± 0.52
Labor 95.67 ± 8.28 84.97 ± 14.24 87.67 ± 13.77 94.73 ± 8.79 93.4 ± 10.57
Letter 70.09 ± 0.93 81.31 ± 0.78 83.11 ± 0.75 85.54 ± 0.68 87.22 ± 0.72
Lymphography 85.97 ± 8.88 78.21 ± 9.74 84.07 ± 8.93 85.46 ± 9.32 85.7 ± 8.02
Mushroom 95.52 ± 0.78 100 ± 0 99.99 ± 0.03 99.95 ± 0.07 100 ± 0
Primary-tumor 47.2 ± 6.02 41.01 ± 6.59 46.76 ± 5.92 47.87 ± 6.37 43.78 ± 6.59
Segment 89.03 ± 1.66 93.42 ± 1.67 94.54 ± 1.6 92.92 ± 1.4 94.52 ± 1.54
Sick 96.78 ± 0.91 98.16 ± 0.68 97.61 ± 0.73 97.52 ± 0.72 97.82 ± 0.83
Sonar 76.35 ± 9.94 71.09 ± 8.4 73.66 ± 10.04 79.91 ± 9.6 77.99 ± 9.96
Soybean 92.2 ± 3.23 92.63 ± 2.72 95.24 ± 2.28 93.31 ± 2.85 94.08 ± 2.78
Splice 95.42 ± 1.14 94.17 ± 1.28 95.39 ± 1.16 96.12 ± 1 94.56 ± 1.46
Vehicle 61.03 ± 3.48 70.74 ± 3.62 73.71 ± 3.48 71.65 ± 3.59 72.38 ± 3.76
Vote 90.21 ± 3.95 96.27 ± 2.79 94.57 ± 3.23 94.52 ± 3.19 95.52 ± 2.89
Vowel 66.09 ± 4.78 75.57 ± 4.58 93.1 ± 2.85 89.64 ± 3.06 94.35 ± 2.5
Waveform 79.97 ± 1.46 72.64 ± 1.81 80.72 ± 1.78 84.24 ± 1.6 81.43 ± 1.65
Zoo 93.98 ± 7.14 92.61 ± 7.33 93.69 ± 7.75 94.66 ± 6.38 95.75 ± 6
Mean 82.33 ± 4.78 82.49 ± 4.71 84.26 ± 4.82 85.25 ± 4.54 85.75 ± 4.47

Int. J. of Uncertainty, Fuzziness and Knowledge-based Sys-
tems 12:19–24.
Kohavi, R. 1994. Bottom-up induction of oblivious read-
once decision graphs. In Proceedings of the 5th European
Conference on Machine Learning. Springer. 154–169.
Langley, P.; Iba, W.; and Thomas, K. 1992. An analysis of
Bayesian classifiers. In Proceedings of the Tenth National
Conference of Artificial Intelligence. AAAI Press. 223–
228.
Oliver, J. J. 1993. Decision graphs an extension of decision
trees. In Proceedings of the Fourth International Workshop
on Artificial Intelligence and Statistics.
Pagallo, G., and Haussler, D. 1990. Boolean feature dis-
covery in empirical learning. Machine Learning 5(1):71–
100.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems:networks of plausible inference. Morgan Kauhmann.
Provost, F. J., and Domingos, P. 2003. Tree induction for
probability-based ranking. Machine Learning 52(3):199–
215.
Provost, F.; Fawcett, T.; and Kohavi, R. 1998. The case

against accuracy estimation for comparing induction algo-
rithms. In Proceedings of the Fifteenth International Con-
ference on Machine Learning. Morgan Kaufmann. 445–
453.
Quinlan, J. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann: San Mateo, CA.
Smyth, P.; Gray, A.; and Fayyad, U. 1996. Retrofitting
decision tree classifiers using kernel density estimation.
In Proceedings of the Twelfth International Conference on
Machine Learning. Morgan Kaufmann. 506–514.
Webb, G. I.; Boughton, J.; and Wang, Z. 2005. Not so naive
bayes: Aggregating one-dependence estimators. Journal of
Machine Learning 58(1):5–24.
Witten, I. H., and Frank, E. 2000. Data Mining –Practical
Machine Learning Tools and Techniques with Java Imple-
mentation. Morgan Kaufmann.
Zhang, H., and Su, J. 2004. Conditional independence
trees. In Proceedings of the 15th European Conference on
Machine Learning. Springer. 513–524.

