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Abstract 

This paper presents an implementation of the 
hardware partition of a co-designed Java Virtual 
Machine. More specifically, it briefly introduces the 
concept of the co-designed Java Virtual Machine, 
outlines the partitioning scheme between the software 
and hardware, illustrates the architecture of the 
hardware partition, and explains the implementation of 
the hardware partition itself. Using an FPGA as the 
hardware target provides great flexibility for different 
configurations. Several tests of Java bytecodes are 
applied to evaluate the functionality and performance of 
various features of the hardware. The experimental 
results are presented and conclusions are given. 
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1. INTRODUCTION 
 

The Java language was initially designed to address 
the problems of building software for heterogeneous 
network devices [6]. Therefore, system independence is 
an essential feature for Java to be delivered across the 
network and run on various platforms [8]. The Java 
Virtual Machine (JVM) provides an intermediate 
platform and acts as an interpreter between the Java 
program and the physical computer. Java programs are 
designed to run on the virtual platform instead of being 
directly executed on the host processor. This achieves the 
goal of “write once, execute everywhere”. 

There are several approaches to implementing a JVM. 
Software implementations, such as an interpreter or just-
in-time (JIT) compiler, are the most common way to 
implement a JVM. They are relatively easy to implement 
and cost effective, but offers low performance [7]. 
Possible hardware implementations include techniques 
such as a native processor or a hybrid processor [2]. They 
offer better performance but the design complexity is 

increased and they lack flexibility for supporting 
different platforms. The co-designed JVM takes 
advantage of the implementation techniques from both 
software and hardware approaches to achieve a better 
compromise between performance and cost. The next 
section discusses the principle of co-design as applied the 
JVM in detail. 

 
2. CO-DESIGN JVM 

 
A goal of the co-designed JVM is to achieve better 

performance over a pure software solution. The hardware 
partition of the co-designed JVM is proposed to work in 
unison with the host processor of a desktop workstation 
[4]. The choice of a Field Programmable Gate Array 
(FPGA) provides a development environment for easily 
shifting the partitioning between hardware and software 
to arrive at an optimized solution, and the flexibility to fit 
the design into targets of different sizes.  

A co-design system is comprised of two parts, 
namely hardware and software. Generally it implements 
the low level support with hardware, and the high level 
system in software. Yet in this co-design, an overlapping 
partitioning strategy is applied, i.e. to have the subset of 
instructions implemented in hardware also supported in 
software [5]. Such a scheme reduces the data transactions 
between hardware and software and therefore increases 
the execution speed. It also provides great potential for 
parallel processing between the two computing units. 
 
2.1 Software Partition 

The software partition includes the high level 
components of the JVM. It is responsible for providing 
system support required by the hardware partition. It also 
implements all the Java bytecodes in this partition. 

Due to the complexity and restricted design space, 
there are some operations that are needed by the 
hardware partition that cannot be implemented in 
hardware. Therefore the software partition provides this 
function and others such as transferring data during 



 

context switches between the hardware and software 
partitions, performing class loading, and verification [3].  

The software partition also includes all the Java 
instructions that are implemented in the hardware 
partition [4]. Since this co-design JVM is targeting a 
desktop workstation environment, the additional space 
utilized to provide the support is not critical.  
 
2.2 Hardware Partition 
 

It is desirable to have the hardware partition include 
any instructions that can be implemented in hardware, 
provided there is enough space in the FPGA. It includes 
the conventional instructions such as constant operations, 
stack manipulations, and arithmetic operations. Other 
Java specific instructions, such as the quick instructions, 
are also supported in this partition. The quick instructions 
perform some operation knowing that the object or class 
being used is already verified and loaded. 

The instruction set for the hardware partition is 
divided into 3 levels to provide various configurations to 
fit FPGAs of different sizes. The Compact partition 
contains only the fundamental instructions for execution 
and requires minimal system knowledge for execution. 
The Host partition extends the Compact with support for 
accessing the host memory system. The Full partition 
extends the Host with support for quick instructions [5]. 
 

3. DEVELOPMENT ENVIRONMENT 
 

A desktop workstation with an FPGA connected 
through the PCI bus is chosen as the development 
environment. More specifically, we are using the APEX 
PCI-Board/A10C from Altera Corporation, which has the 
following configurations [1]: 

 
• Apex EP20K FPGA with 38,400 logic elements. 
• 32MB on-board SDRAM module. 
• Supports 64-bit PCI bus @ 66MHz. 
• PCI MegaCore function pci_mt64. 
 

The software development platform is Quartus II 3.0. It 
is used for HDL design entry, synthesis, and place and 
route. ModelSim 5.7 is used for simulation. 

 
4. HARDWARE IMPLEMENTATION 

 
The hardware partition can be divided into three parts: 

the Java Engine, the local memory, and the PCI interface. 
The Java Engine executes the designated Java bytecode 
instructions. The local memory hosts the Java bytecodes. 
The PCI interface communicates with the PCI bus to 
exchange data and control signals. Figure 1 is the abstract 
architecture of the overall design.  

 

 
Figure 1 The Hardware Partition 

 
4.1 Java Engine 

 
The Java Engine consists of 4 main units: Host 

Interface, Instruction Buffer, Execution Engine, and Data 
Cache Controller. The execution procedure is based upon 
a 3-stage pipeline architecture, i.e. fetch, decode, and 
execute. Figure 2 shows the interconnections among 
these units and the direction of the data flow. The 
instructions are pipelined through the Host Interface, the 
Instruction Buffer, and the Execution Engine sequentially, 
as shown by the thick gray lines. The single lines are the 
control signals for the handshake between the modules 
such as requesting an instruction or data. The handshake 
is necessary in several instances due to the variable 
amount of execution time for different instructions.  

 
Figure 2 Overview of Java Engine Architecture 

 
4.1.1 Host Interface. The Host Interface is the 

communication center within the Java Engine. It interacts 
with both the PCI bus and the on-chip memory to retrieve 
instructions and data, as well as perform the context 
switch with the software partition. The other 3 modules 
have different priorities in requesting the Host Interface 
to fetch instructions or data for them. 

The Execution Engine has several registers that hold 
the values of program reference pointers, such as the 
Program Counter (PC). Before any instructions are 
retrieved, the Host Interface retrieves these parameters 



 

for the Execution Engine. These values are updated 
during execution and sent back to the software partition 
when execution is finished. 

The Host Interface retrieves the instructions from the 
memory and pipelines them to the Instruction Buffer. 
The Data Cache Controller requests data only when the 
current instruction needs them. Is this case, the Host 
Interface will suspend the instruction fetching for the 
Instruction Buffer, and retrieve the requested data. 
 
4.1.2 Instruction Buffer. The Instruction Buffer 
functions as both a cache and a decoder. The cache stores 
the instructions that are pre-retrieved from the local 
memory. To provide the flexibility of fitting the design 
into FPGA devices with different sizes, the size of the 
cache is variable. Yet it is desirable to have the cache 
size as large as possible, thus providing a higher 
probability that upon executing a branch instruction, the 
next instruction is already in the cache and therefore 
eliminating the delay of retrieving the instructions from 
the slower memory.  

Instruction decoding is necessary because of the 
unaligned property of Java instructions. The Java 
instructions have different lengths, and they are packed 
together in software to reduce the data block size. The 
Instruction Buffer performs the decoding on the 
instructions before sending them to the Execution Engine. 

 
4.1.3 Execution Engine. The Execution Engine executes 
the instructions that are pipelined from the Instruction 
Buffer. The JVM is a stack based computing model, 
therefore as the Java program is executed, it uses a stack 
to retain the data being manipulated. During the stack 
overflow and underflow, the stack cache communicates 
with the local memory that contains the complete stack 
data via the Host Interface. Such an on-demand loading 
and storing of the stack protects against data transfers 
due to context switching between partitions [3]. When 
the Java Engine completes the execution, it signals the 
software partition using an interrupt for transferring 
execution back to the software partition. 

The execution time varies for different instructions. 
The Execution Engine communicates with the Instruction 
Buffer to stall the feeding of instructions until the current 
execution process is completed. When a branch event 
occurs, a request as well as the new address for fetching 
instructions are sent to the Instruction Buffer. 

The Execution Engine sends a request to the Data 
Cache Controller when the execution needs to write/read 
data to/from the local variables. In write transactions, the 
Execution Engine continues with the next instruction as 
the Data Cache Controller performs the write. The 
requests for data from the constant pool are sent directly 
to the Host Interface. 
 

4.1.4 Data Cache Controller. The Data Cache 
Controller is responsible for loading and storing local 
variables from and to the local memory under requests. 
When the data is required for the first time, the Data 
Cache Controller interacts with the memory to retrieve 
the data and pass to the Execution Engine. At the same 
time the data is also stored in the data cache so that no 
more memory access is needed if the same data is 
requested again. The Data Cache Controller is also a 
write-on-demand architecture that writes data to the local 
memory immediately upon writing to the data cache. 
This prevents against the cache having to be flushed 
when the execution returns back to the software partition. 

The size of the data cache can also vary depending on 
the available space of the FPGA. The larger the data 
cache is, the less access to the memory is required thus 
the faster execution speed achieves. 

 
4.2 Local Memory 

 
The local memory is responsible for hosting the Java 

bytecode to be executed in hardware. When the hardware 
partition is needed for execution, the data block is 
transferred to the memory via the PCI bus. The data 
block contains the packed instructions, stack data, and 
local variables.  

In this design, the memory space within the FPGA 
device rather than the on-board SDRAM is exploited as 
the local memory. This is due to slow access to the on 
board SDRAM caused by the burst mode of the SDRAM 
controller core that Altera provides. Therefore using the 
on-chip memory can achieve a much faster accessing rate 
than the on-board memory. The FPGA device used in 
this research provides sufficient memory to contain the 
maximum Java program frame required by the test cases. 

 
4.3 PCI Interface 

 
The Altera pci_mt64 MegaCore function is used for 

the interface with the PCI bus. Therefore the design of 
the PCI interface focuses on interfacing with this core. 
This design is comprised of local master transaction and 
local target transaction control logic modules, as well as 
the interface with the memory on the FPGA.  

The local target control interacts with the pci_mt64 to 
force it to act as a target. During a target write, the data 
flows from the PCI bus to the local target. When the 
context switches to the hardware partition, a target write 
is performed to load the bytecode from system memory 
into the memory on the FPGA.  

The local master control initiates the pci_mt64 core to 
have the FPGA work under master mode. The data flows 
from the FPGA to the PCI bus during a master write. 
During the execution on the hardware, whenever an 
instruction requests data, such as the constant pool from 



 

the host system, a master read transaction is triggered to 
read the data from the host memory via the PCI bus.  

Since interacting with the PCI bus is time consuming, 
the communication between the hardware and software 
partitions are reduced to a minimum in order to increase 
the overall execution speed.  

 
5. EVALUATION 

 
The hardware design is tested with 5 different tests 

that implement different algorithms to evaluate the 
functionality and performance of various hardware 
features. These tests are: Loop counter, Fibonacci finder, 
Ackerman function, Bubble sort and Insertion sort. 

With these Java bytecodes, the ability of handling the 
overflow/underflow of the stack cache, the load/store of 
data from/to the data cache, and the access to the host 
system memory are all tested and verified. The tests are 
performed with the simulation tool, ModelSim, by 
applying the above testbench. The results are compared 
to a software simulator that was previously designed [5] 
and proves that the hardware design achieves a correct 
result and is capable of handling various Java bytecodes. 
 
5.1 Design Space and Speed 
 

This design architecture provides a flexible solution 
for FPGA devices of different sizes. By utilizing either 
one of the partitions discussed in section 2.4, or changing 
the size of the Instruction Cache or the Data Cache.  

For the purpose of balancing between the speed and 
the design space, the instruction cache is implemented 
with the logic elements within the FPGA to achieve 
faster access. The data cache is implemented with the 
memory bits on the FPGA device.  

The design space for different configurations is listed 
in Table 1. The first three configurations implement the 
different partition schemes with the same size of cache: 
both caches of 64 entries. The last one implements the 
full partition, but with a smaller size of cache setting: 
both the instruction and data cache are 16 entries.  
      

 # of Inst. LEs MHz 
Compact 133 26,898 25.18 

Host 149 29,595 25.06 
Full 162 34,471 23.78 
Full  

(Smaller Cache) 
 

162 
 

30,199 
 

24.24 
 

Table 1 Design Space for Different Configurations 
 
Table 1 shows that design space (logic elements) is 

dependent on both the hardware support level and the 
cache size. The greater level of hardware support, the 

higher performance the co-design gains when there is 
little data transfer between partitions [5]. When the 
requirement for communication increases, it is desirable 
to have a partition with fewer context switches.  

Through the timing analysis, the maximum clock rate 
achieved is 23.78MHz. The speed is not competitive to 
the main processor due to some critical routes in the 
Execution Engine. Some of the instructions are time 
consuming therefore reducing the overall clock rate. 
Even though, from the investigation performed before, a 
better performance of the hardware over the software 
partition can still be achieved under certain 
circumstances [5]. Potentially the performance can be 
further increased with utilization of potential parallel 
processing of partitions. 
 

6. CONCLUSIONS 
 
In this paper, the hardware partition of a co-designed 

JVM is implemented. The design is stack based with a 
pipelined architecture. The functionality of the hardware 
is tested and validated with several test benches. This 
design provides a compact solution for a desktop 
workstation environment by targeting the design to a 
FPGA device. The flexibility of the Instruction and Data 
caches allows for fitting the design into FPGAs of 
various sizes. Future work of this research will focus on 
improving the performance of the hardware partition and 
integrating the partitions together for parallel processing. 
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