

An Implementation of the Hardware Partition in
A Software/Hardware Co-Designed Java Virtual Machine

Hejun Ma, Ken Kent*, David Luke

Department of Electrical and Computer Engineering, Faculty of Computer Science*
University of New Brunswick

Fredericton, New Brunswick, Canada
z9xad@unb.ca, ken@unb.ca, luke@unb.ca

Abstract

This paper presents an implementation of the
hardware partition of a co-designed Java Virtual
Machine. More specifically, it briefly introduces the
concept of the co-designed Java Virtual Machine,
outlines the partitioning scheme between the software
and hardware, illustrates the architecture of the
hardware partition, and explains the implementation of
the hardware partition itself. Using an FPGA as the
hardware target provides great flexibility for different
configurations. Several tests of Java bytecodes are
applied to evaluate the functionality and performance of
various features of the hardware. The experimental
results are presented and conclusions are given.

Keywords: Java Virtual Machine; Co-Design; Hardware
Implementation; Field Programmable Gate Array.

1. INTRODUCTION

The Java language was initially designed to address
the problems of building software for heterogeneous
network devices [6]. Therefore, system independence is
an essential feature for Java to be delivered across the
network and run on various platforms [8]. The Java
Virtual Machine (JVM) provides an intermediate
platform and acts as an interpreter between the Java
program and the physical computer. Java programs are
designed to run on the virtual platform instead of being
directly executed on the host processor. This achieves the
goal of “write once, execute everywhere”.

There are several approaches to implementing a JVM.
Software implementations, such as an interpreter or just-
in-time (JIT) compiler, are the most common way to
implement a JVM. They are relatively easy to implement
and cost effective, but offers low performance [7].
Possible hardware implementations include techniques
such as a native processor or a hybrid processor [2]. They
offer better performance but the design complexity is

increased and they lack flexibility for supporting
different platforms. The co-designed JVM takes
advantage of the implementation techniques from both
software and hardware approaches to achieve a better
compromise between performance and cost. The next
section discusses the principle of co-design as applied the
JVM in detail.

2. CO-DESIGN JVM

A goal of the co-designed JVM is to achieve better

performance over a pure software solution. The hardware
partition of the co-designed JVM is proposed to work in
unison with the host processor of a desktop workstation
[4]. The choice of a Field Programmable Gate Array
(FPGA) provides a development environment for easily
shifting the partitioning between hardware and software
to arrive at an optimized solution, and the flexibility to fit
the design into targets of different sizes.

A co-design system is comprised of two parts,
namely hardware and software. Generally it implements
the low level support with hardware, and the high level
system in software. Yet in this co-design, an overlapping
partitioning strategy is applied, i.e. to have the subset of
instructions implemented in hardware also supported in
software [5]. Such a scheme reduces the data transactions
between hardware and software and therefore increases
the execution speed. It also provides great potential for
parallel processing between the two computing units.

2.1 Software Partition

The software partition includes the high level
components of the JVM. It is responsible for providing
system support required by the hardware partition. It also
implements all the Java bytecodes in this partition.

Due to the complexity and restricted design space,
there are some operations that are needed by the
hardware partition that cannot be implemented in
hardware. Therefore the software partition provides this
function and others such as transferring data during

context switches between the hardware and software
partitions, performing class loading, and verification [3].

The software partition also includes all the Java
instructions that are implemented in the hardware
partition [4]. Since this co-design JVM is targeting a
desktop workstation environment, the additional space
utilized to provide the support is not critical.

2.2 Hardware Partition

It is desirable to have the hardware partition include
any instructions that can be implemented in hardware,
provided there is enough space in the FPGA. It includes
the conventional instructions such as constant operations,
stack manipulations, and arithmetic operations. Other
Java specific instructions, such as the quick instructions,
are also supported in this partition. The quick instructions
perform some operation knowing that the object or class
being used is already verified and loaded.

The instruction set for the hardware partition is
divided into 3 levels to provide various configurations to
fit FPGAs of different sizes. The Compact partition
contains only the fundamental instructions for execution
and requires minimal system knowledge for execution.
The Host partition extends the Compact with support for
accessing the host memory system. The Full partition
extends the Host with support for quick instructions [5].

3. DEVELOPMENT ENVIRONMENT

A desktop workstation with an FPGA connected
through the PCI bus is chosen as the development
environment. More specifically, we are using the APEX
PCI-Board/A10C from Altera Corporation, which has the
following configurations [1]:

• Apex EP20K FPGA with 38,400 logic elements.
• 32MB on-board SDRAM module.
• Supports 64-bit PCI bus @ 66MHz.
• PCI MegaCore function pci_mt64.

The software development platform is Quartus II 3.0. It
is used for HDL design entry, synthesis, and place and
route. ModelSim 5.7 is used for simulation.

4. HARDWARE IMPLEMENTATION

The hardware partition can be divided into three parts:

the Java Engine, the local memory, and the PCI interface.
The Java Engine executes the designated Java bytecode
instructions. The local memory hosts the Java bytecodes.
The PCI interface communicates with the PCI bus to
exchange data and control signals. Figure 1 is the abstract
architecture of the overall design.

Figure 1 The Hardware Partition

4.1 Java Engine

The Java Engine consists of 4 main units: Host

Interface, Instruction Buffer, Execution Engine, and Data
Cache Controller. The execution procedure is based upon
a 3-stage pipeline architecture, i.e. fetch, decode, and
execute. Figure 2 shows the interconnections among
these units and the direction of the data flow. The
instructions are pipelined through the Host Interface, the
Instruction Buffer, and the Execution Engine sequentially,
as shown by the thick gray lines. The single lines are the
control signals for the handshake between the modules
such as requesting an instruction or data. The handshake
is necessary in several instances due to the variable
amount of execution time for different instructions.

Figure 2 Overview of Java Engine Architecture

4.1.1 Host Interface. The Host Interface is the

communication center within the Java Engine. It interacts
with both the PCI bus and the on-chip memory to retrieve
instructions and data, as well as perform the context
switch with the software partition. The other 3 modules
have different priorities in requesting the Host Interface
to fetch instructions or data for them.

The Execution Engine has several registers that hold
the values of program reference pointers, such as the
Program Counter (PC). Before any instructions are
retrieved, the Host Interface retrieves these parameters

for the Execution Engine. These values are updated
during execution and sent back to the software partition
when execution is finished.

The Host Interface retrieves the instructions from the
memory and pipelines them to the Instruction Buffer.
The Data Cache Controller requests data only when the
current instruction needs them. Is this case, the Host
Interface will suspend the instruction fetching for the
Instruction Buffer, and retrieve the requested data.

4.1.2 Instruction Buffer. The Instruction Buffer
functions as both a cache and a decoder. The cache stores
the instructions that are pre-retrieved from the local
memory. To provide the flexibility of fitting the design
into FPGA devices with different sizes, the size of the
cache is variable. Yet it is desirable to have the cache
size as large as possible, thus providing a higher
probability that upon executing a branch instruction, the
next instruction is already in the cache and therefore
eliminating the delay of retrieving the instructions from
the slower memory.

Instruction decoding is necessary because of the
unaligned property of Java instructions. The Java
instructions have different lengths, and they are packed
together in software to reduce the data block size. The
Instruction Buffer performs the decoding on the
instructions before sending them to the Execution Engine.

4.1.3 Execution Engine. The Execution Engine executes
the instructions that are pipelined from the Instruction
Buffer. The JVM is a stack based computing model,
therefore as the Java program is executed, it uses a stack
to retain the data being manipulated. During the stack
overflow and underflow, the stack cache communicates
with the local memory that contains the complete stack
data via the Host Interface. Such an on-demand loading
and storing of the stack protects against data transfers
due to context switching between partitions [3]. When
the Java Engine completes the execution, it signals the
software partition using an interrupt for transferring
execution back to the software partition.

The execution time varies for different instructions.
The Execution Engine communicates with the Instruction
Buffer to stall the feeding of instructions until the current
execution process is completed. When a branch event
occurs, a request as well as the new address for fetching
instructions are sent to the Instruction Buffer.

The Execution Engine sends a request to the Data
Cache Controller when the execution needs to write/read
data to/from the local variables. In write transactions, the
Execution Engine continues with the next instruction as
the Data Cache Controller performs the write. The
requests for data from the constant pool are sent directly
to the Host Interface.

4.1.4 Data Cache Controller. The Data Cache
Controller is responsible for loading and storing local
variables from and to the local memory under requests.
When the data is required for the first time, the Data
Cache Controller interacts with the memory to retrieve
the data and pass to the Execution Engine. At the same
time the data is also stored in the data cache so that no
more memory access is needed if the same data is
requested again. The Data Cache Controller is also a
write-on-demand architecture that writes data to the local
memory immediately upon writing to the data cache.
This prevents against the cache having to be flushed
when the execution returns back to the software partition.

The size of the data cache can also vary depending on
the available space of the FPGA. The larger the data
cache is, the less access to the memory is required thus
the faster execution speed achieves.

4.2 Local Memory

The local memory is responsible for hosting the Java

bytecode to be executed in hardware. When the hardware
partition is needed for execution, the data block is
transferred to the memory via the PCI bus. The data
block contains the packed instructions, stack data, and
local variables.

In this design, the memory space within the FPGA
device rather than the on-board SDRAM is exploited as
the local memory. This is due to slow access to the on
board SDRAM caused by the burst mode of the SDRAM
controller core that Altera provides. Therefore using the
on-chip memory can achieve a much faster accessing rate
than the on-board memory. The FPGA device used in
this research provides sufficient memory to contain the
maximum Java program frame required by the test cases.

4.3 PCI Interface

The Altera pci_mt64 MegaCore function is used for

the interface with the PCI bus. Therefore the design of
the PCI interface focuses on interfacing with this core.
This design is comprised of local master transaction and
local target transaction control logic modules, as well as
the interface with the memory on the FPGA.

The local target control interacts with the pci_mt64 to
force it to act as a target. During a target write, the data
flows from the PCI bus to the local target. When the
context switches to the hardware partition, a target write
is performed to load the bytecode from system memory
into the memory on the FPGA.

The local master control initiates the pci_mt64 core to
have the FPGA work under master mode. The data flows
from the FPGA to the PCI bus during a master write.
During the execution on the hardware, whenever an
instruction requests data, such as the constant pool from

the host system, a master read transaction is triggered to
read the data from the host memory via the PCI bus.

Since interacting with the PCI bus is time consuming,
the communication between the hardware and software
partitions are reduced to a minimum in order to increase
the overall execution speed.

5. EVALUATION

The hardware design is tested with 5 different tests

that implement different algorithms to evaluate the
functionality and performance of various hardware
features. These tests are: Loop counter, Fibonacci finder,
Ackerman function, Bubble sort and Insertion sort.

With these Java bytecodes, the ability of handling the
overflow/underflow of the stack cache, the load/store of
data from/to the data cache, and the access to the host
system memory are all tested and verified. The tests are
performed with the simulation tool, ModelSim, by
applying the above testbench. The results are compared
to a software simulator that was previously designed [5]
and proves that the hardware design achieves a correct
result and is capable of handling various Java bytecodes.

5.1 Design Space and Speed

This design architecture provides a flexible solution
for FPGA devices of different sizes. By utilizing either
one of the partitions discussed in section 2.4, or changing
the size of the Instruction Cache or the Data Cache.

For the purpose of balancing between the speed and
the design space, the instruction cache is implemented
with the logic elements within the FPGA to achieve
faster access. The data cache is implemented with the
memory bits on the FPGA device.

The design space for different configurations is listed
in Table 1. The first three configurations implement the
different partition schemes with the same size of cache:
both caches of 64 entries. The last one implements the
full partition, but with a smaller size of cache setting:
both the instruction and data cache are 16 entries.

 # of Inst. LEs MHz
Compact 133 26,898 25.18

Host 149 29,595 25.06
Full 162 34,471 23.78
Full

(Smaller Cache)

162

30,199

24.24

Table 1 Design Space for Different Configurations

Table 1 shows that design space (logic elements) is

dependent on both the hardware support level and the
cache size. The greater level of hardware support, the

higher performance the co-design gains when there is
little data transfer between partitions [5]. When the
requirement for communication increases, it is desirable
to have a partition with fewer context switches.

Through the timing analysis, the maximum clock rate
achieved is 23.78MHz. The speed is not competitive to
the main processor due to some critical routes in the
Execution Engine. Some of the instructions are time
consuming therefore reducing the overall clock rate.
Even though, from the investigation performed before, a
better performance of the hardware over the software
partition can still be achieved under certain
circumstances [5]. Potentially the performance can be
further increased with utilization of potential parallel
processing of partitions.

6. CONCLUSIONS

In this paper, the hardware partition of a co-designed

JVM is implemented. The design is stack based with a
pipelined architecture. The functionality of the hardware
is tested and validated with several test benches. This
design provides a compact solution for a desktop
workstation environment by targeting the design to a
FPGA device. The flexibility of the Instruction and Data
caches allows for fitting the design into FPGAs of
various sizes. Future work of this research will focus on
improving the performance of the hardware partition and
integrating the partitions together for parallel processing.

References

[1] Altera Corporation, http://www.altera.com/products/

devkits/altera/kit-apex_dev_kit.html. Jan. 2004.
[2] EL-Kharashi, M. W., The JAFARDD Processor.

Ph.D. Dissertation, University of Victoria, 2002.
[3] Kent, K. B. and Serra, M., "Hardware Architecture

for Java in a Hardware/Software Co-Design of the
Virtual Machine," Euromicro Symposium on Digital
System Design 2002, pp. 20-27, Sept. 2002.

[4] Kent, K. B. and Serra, M., “Context Switching in a
Hardware/Software Co-Design of a Java Virtual
Machine," 2002 Design Automation & Test Europe
Conference Designer's Forum Proceedings, pp. 81-
86, Mar. 2002.

[5] Kent, K. B., The Co-Design of Virtual Machines
Using Reconfigurable Hardware. Ph.D. Dissertation.
University of Victoria, 2003.

[6] Lindholm, T. and Yellin, F., The Java Virtual
Machine Specification. Addison Wesley, Sept. 1996.

[7] Suganuma, T., et als. “Overview of the IBM Java
Just-in-Time Compiler,” IBM systems Journal, vol
39, no 1, pp. 175 - 193, 2000.

[8] Venners, B., “Java Beyond the Browser,” Java
World, Dec. 1996.

