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ABSTRACT
With the accelerated growth in spatial data volume, being gener-
ated from a wide variety of sources, the need for efficient storage,
retrieval, processing and analyzing of spatial data is ever more
important. Hence, spatial data processing system has become an
important field of research. In recent times a number of Big Spatial
Data systems have been proposed by researchers around the world.
These systems can be roughly categorized into Apache Hadoop-
based and in-memory systems based on Apache Spark. The avail-
able features supported by these systems vary widely. However,
there has not been any comprehensive evaluation study of these
systems in terms of performance, scalability and functionality. To
address this need, we propose a benchmark to evaluate Big Spatial
Data systems.

Although, Spark is a very popular framework, its performance is
limited by the overhead associated with distributed resource man-
agement and coordination. The Big Spatial Data systems that are
based on Spark, are also constrained by these. We introduce Spa-
tialIgnite, a Big Spatial Data system that we have developed based
on Apache Ignite. We investigate the present status of the Big Spa-
tial Data systems by conducting a comprehensive feature analysis
and performance evaluation of a few representative systems with
our benchmark. Our study shows that SpatialIgnite performs better
than Hadoop and Spark based systems that we have evaluated.
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1 INTRODUCTION
The volume of spatial data generated and consumed is rising rapidly.
The popularity of location-based services and applications like
Google Maps, vehicle-navigation-systems, recommendation sys-
tems, and location-based social networks are contributing to this
data growth. In addition, spatial data is being generated from
sources as diverse as medical devices, satellites, space telescopes,
climate simulation, and oceanography to name a few. This is em-
blematic of the wide applicability of spatial data in many avenues
of human endeavor. Therefore, efficient storage, retrieval, and pro-
cessing of spatial data is crucial to deal with the growing need for
spatial applications and services.

Technological advances, along with the decreasing costs of stor-
age, computation power, and network bandwidth, have made par-
allel and distributed processing of large volumes of data attractive.
In response to the challenges of Big Spatial Data management, a
number of Big Spatial Data systems have emerged in recent years.
Many of these Big Spatial Data systems are based on distributed
processing of spatial data stored in a distributed file system. These
systems vary widely in terms of available features, support for ge-
ometry data types and query categories, indexing, data partitioning
techniques, and spatial analysis functionalities. For an enterprise
or a research organization that is looking for a Big Spatial Data
system, these are the key considerations. Performance and scala-
bility are among the most important factors when assessing these
systems. A few previous works examined some of these aspects
while evaluating Big Spatial Data systems. For instance, Francisco
et al. [13] compared two systems with the Distance Join operation.
Recently, Stefan et al. [16] evaluated three systems with a spatial
join operation (involving two point datasets and an Equal predicate)
and a range query. However, to the best of our knowledge, none of
these projects conducted a comprehensive study of the performance
and scalability of Big Spatial Data systems. Therefore, a key goal
of this paper is to perform a thorough evaluation of these systems
with a comprehensive set of spatial join operations involving the
topological relations defined by The Open Geospatial Consortium
(OGC) [21] and a series of range queries. In addition, given the
importance of spatial analytics, we aim to evaluate a collection of
spatial analysis functions. Taking inspiration from our previous
work, Jackpine [24], a benchmark to evaluate spatial databases, we
have developed a benchmark to evaluate Big Spatial Data systems.
In addition to the relevant operations in the Jackpine micro bench-
mark, in this evaluation study, we have incorporated several new
operations. We believe that our benchmark will be helpful to the
community of spatial data systems researchers in furthering the
state of the art.
In this study, we intend to analyze and compare the features

and performance of several Big Spatial Data systems proposed or
developed in the last few years. Based on the current trends in
Big Data systems, our main focus is on two categories of systems:

https://doi.org/10.1145/3282834.3282841
https://doi.org/10.1145/3282834.3282841


Hadoop-based Big Spatial Data systems, which are based on Apache
Hadoop [15, 26] framework, and In-Memory Spatial Data systems
that primarily include systems based on Apache Spark [10, 36].
Hadoop performs its distributed processing of tasks using MapRe-
duce [5] programming paradigm. Hadoop does not have any native
support for spatial data processing. Systems like HadoopGIS [1]
and SpatialHadoop [8] developed spatial support for Hadoop. Since
Hadoop is disk-based and optimized for I/O efficiency, the perfor-
mance of these systems can deteriorate at scale.
Spark can take advantage of a large pool of memory available

in a cluster of machines to achieve better performance rather than
disk-based systems. In recent years, several Spark-based spatial
data processing systems have been proposed and developed, such
as SpatialSpark [33], GeoSpark [19], LocationSpark [20], Simba [6],
and STARK [29]. However, there is a huge room for improvement
in the performance of these systems, especially in the area of query
optimization and efficient Spatial SQL. For the purpose of our evalu-
ation study, we choose two representative systems from theHadoop-
based and Spark-based systems, GeoSpark and SpatialHadoop, since
they are the most mature and active projects in each category.

Although Spark is a highly popular framework, it does not offer
the best performance due to the overhead associated with schedul-
ing, distributed coordination, and data movement. Researchers [12]
have demonstrated that handwritten programs implemented with
high performance tools, computational models and scalable algo-
rithms can be orders of magnitude faster than a similar applica-
tion written with Spark. Consequently, Big Spatial Data systems
based on Spark inherit its limitations. To address this issue, re-
cently an APGAS-based distributed in-memory spatio-temporal
data system [22] called DISTIL was proposed. However, it only
supports point data type and spatio-temporal range queries. There
are other non-Spark distributed in-memory big data processing
systems, such as Apache Ignite [11], which can also offer better
performance than Spark. Apache Ignite supports some important
features of big data systems, as well as traditional relational data-
base systems. However, its spatial support is limited to geometry
data types (point, line, and polygon) and a limited form of querying
on geometry. We propose SpatialIgnite that extends Apache Ignite.
SpatialIgnite supports spatial join with all OGC [21] compliant topo-
logical relations, in addition to range queries and various spatial
analysis functions. In this study, we evaluate the performance of
SpatialIgnite against two other Big Spatial Data systems: GeoSpark
and SpatialHadoop. We demonstrate that SpatialIgnite performs
better than both Hadoop-based and Spark-based approaches on
real-world spatial datasets.

The main contributions of this paper are as follows:
•We introduce a Big Spatial Data systems benchmark. We also

extensively analyze the features and functionalities of each men-
tioned category of big spatial data systems.

• We present SpatialIgnite, a distributed in-memory Big Spatial
Data system based on Apache Ignite. Using our benchmark we
conduct a comprehensive performance study of SpatialIgnite, along
with SpatialHadoop and GeoSpark.

• As SpatialHadoop and GeoSpark do not support many of the
spatial join predicates in their current implementation, we have
implemented these features with these systems as part of the eval-
uation.

The rest of the paper is organized as follows. In Section 2, we
review the previous work related to benchmarking Big Spatial Data
systems. We present a comparative analysis of existing Big Spatial
Data systems in Sections 3, and 4. We describe the benchmark
workload in Section 5. We present the performance evaluation in
Section 6. Finally, we conclude the paper in Section 7.

2 RELATEDWORK
A benchmark plays an important role in evaluating the functionality
and performance of a particular system against a reference system.
The Transaction Processing Performance Council (TPC) [32] is an
organization that has developed several database related bench-
marks. Among them, TPC-C (an On-line Transaction Processing
benchmark), and TPC-H (a decision support benchmark) are the
most widely used. However, TPC does not have any spatial bench-
mark. Perhaps the earliest known benchmark for spatial databases
is SEQUOIA 2000 [30], which focused on raster data based on Earth
sciences. Subsequently, OGC played an important role in standardiz-
ing spatial topological relations and spatial functions. Jackpine [24]
is a popular spatial database benchmark that incorporates a com-
prehensive workload based on OGC standards as part of its micro
benchmark. It also includes a number of real-world applications in
its macro benchmark suite. Jackpine was primarily developed to
evaluate relational databases with support for spatial functionali-
ties.
Due to the rapid rise in spatial data volume, a number of Big

Spatial Data systems have emerged in recent times. It has been
demonstrated in [27] that spatial data processing has significantly
different characteristics than regular data processing. Therefore,
understanding the performance characteristics of these systems is
of great interest to many stakeholders and researchers. However,
there have been only a few projects (discussed below) that evaluated
isolated spatial operations.
Francisco et al. [13] performed a comparative analysis of disk-

based spatial data system SpatialHadoop [8] and Spark-based in-
memory spatial data system LocationSpark [20]. Their main focus
was only Distance Join queries. Their analysis shows that Location-
Spark performs better than SpatialHadoop in terms of execution
time, but SpatialHadoop is a more mature system.
Stefan et al. [16] also analyzed the features and performance

of Hadoop and Spark-based Big Spatial data processing systems.
They evaluated the performance of their system STARK [29] with
SpatialSpark [33], GeoSpark [19] and SpatialHadoop [8] for range
queries and a spatial join operation (involving two point datasets
and Equal predicate).

Rakesh et al. [23] discussed the architectural comparison of two
spatial big data systems SpatialHadoop [8] and GeoSpark [19],
where they show that GeoSpark is faster in processing spatial data
than SpatialHadoop.

As indexing is one of the most important aspects of spatial data
processing, George et al. [25] have done a performance study on
Quadtree-based index structure xBR+-tree and R-tree based index
structure R*-tree and R+-tree in the context of most common spatial
queries, such as point location, window, distance range, nearest-
neighbor, and distance-based join. They evaluate the performance
based on I/O efficiency and execution time on point dataset and



the result shows that the performance of xBR+-tree is better than
R*-tree and R+-tree in most cases.

None of the above-mentioned projects conducted a comprehen-
sive performance study of Big Spatial Data systems based on the
OGC standards. Hence, there is a great need for such a benchmark
that can help the research community for assessing how to take
their research to the next level. Our benchmark is intended to fill
this void and is inspired by Jackpine. To our knowledge, this is the
first comprehensive study of Big Spatial Data systems.

In Sections 3 and 4, we provide a detailed background and feature
analysis of Hadoop-based Big Spatial Data systems and distributed
in-memory Big Spatial Data systems.

3 HADOOP-BASED BIG SPATIAL DATA
SYSTEMS

As Hadoop [15, 26] became a popular framework to process big data
in both research community and industry, a number of extensions
to Hadoop were proposed. Distributed Big Spatial Data systems
like SpatialHadoop [28] and Hadoop-GIS [1] were developed by
extending Hadoop and MapReduce framework. A detailed feature
matrix of these systems is presented in Table 1.

Hadoop-GIS [1] is a spatial extension of Hadoop to process large-
scale spatial data using MapReduce framework. First, it declusters
the data and stores it into HDFS. Then it adds a global index to each
tile, which is stored in HDFS and shared across the cluster nodes.
Its query engine RESQUE can index the data locally on the fly if
required, which is stored in memory for faster query processing.
Initially, it supported Hilbert Tree and R*-tree for global and local
data indexing. Later, SATO [17] was introduced, which is a spatial
data partitioning framework integrated with Hadoop-GIS. SATO
supports several partitioning and indexing strategies, such as fixed-
grid, binary-split, Hilbert-curve, strip, optimized strip, and STR.
It can choose an optimal strategy during spatial data processing.
Finally, it integrates Hive [3] and extends the HiveQL to support
declarative spatial query language. The main issue with Hadoop-
GIS is that it is added as a layer on top of Hadoop without changing
its system core. As a result, its performance is not improved signifi-
cantly. In addition, Hadoop-GIS extends Hive for declarative spatial
query support, which adds an extra layer of overhead over Hadoop
to process spatial queries.
SpatialHadoop [8] is a framework, which incorporates spatial

data processing support in different layers of Hadoop, namely, Stor-
age, MapReduce, Operations, and Language layers. In the storage
layer, SpatialHadoop added a two-level index structure called global
and local index. The global index is created for each data partition
across the cluster and the local index organizes the data inside each
node. Thus, during a query operation, SpatialHadoop can utilize the
information regarding which partition is mapped to which node
and which block of that node is relevant. This can make the query
processing faster. In addition, steps are taken during partitioning to
reduce the partition and query skew. It introduces two components
in theMapReduce layer, namely, SpatialFIleSplitter and SpatialRecor-
dReader. SpatialFIleSplitter utilizes the global index to split the input
into files and SpatialRecordReader extracts the records from each
split by utilizing local index and passing them to the map function.
Spatial operations such as range queries, kNN queries, and spatial

Table 1: Hadoop-based Big Spatial Data Systems
Features SpatialHadoop Hadoop-GIS

geometry type point, line, polygon point, line, polygon
input-format WKT WKT

query language Pigeon HiveQL
with spatial support

partitioning
& indexing grid, R-tree(STR), R+-tree

SATO
(fixed-grid, binary-split,
hilbert-curve, strip,
optimized strip,

STR)

spatial operation
range query, kNN,

spatial-join,
distance-join

range, kNN,
spatial-join

query planing &
optimization

partition and
query skew

partition and
query skew

spatial analytics convexhull, skyline no
temporal feature no no

join query over geometric objects implemented as MapReduce pro-
grams in the Operation layer. An OGC-compliant [21] high-level
language Pigeon [7] is added to the language layer. Pigeon is an ex-
tension of Pig [4, 9], which includes support for geometry data type,
spatial predicates, and various spatial operators to run a spatial
query on SpatialHadoop. However, it is not efficient to perform join
operations with Pigeon, because it uses the cross product operation
for joining, which is very costly. Otherwise, since SpatialHadoop
modified the system core of Hadoop, it overcomes some of the limi-
tations of Hadoop-GIS and improves the spatial query performance
significantly.

4 DISTRIBUTED IN-MEMORY BIG SPATIAL
DATA SYSTEMS

In this section, we describe two categories of distributed in-memory
big spatial data systems: Spark-based distributed in-memory sys-
tems and other distributed in-memory systems.

4.1 Spark-based Big Spatial Data Systems
Currently, Apache Spark [10, 37] is widely used distributed in-
memory system for big data processing. It can reduce the execution
time significantly compared to MapReduce jobs on Hadoop [15, 26].
However, Spark does not have any support for processing spatial
data. It processes spatial data by treating it as a non-spatial data
due to the lack of spatial indexing, spatial data skew handling and
spatial query optimization [20]. To alleviate these limitations, sev-
eral Spark-based spatial data analysis systems have been proposed
in the last few years. A detailed feature matrix of these systems is
presented in the Table 2.

GeoSpark [19] is an in-memory cluster computing framework for
processing large-scale spatial data. It adds an extension to Apache
Spark to support spatial data types and operations. It introduces four
different types of Spatial RDDs (SRDDs) based on Spark RDDs [35],
namely, PointRDD, RectangleRDD, PolygonRDD and LineStringRDD.
It efficiently partitions the SRDD data elements across cluster nodes
using Quad-Tree, R-Tree, Voronoi diagram and Fixed-Grid. It uses



Table 2: Spark-based Big Spatial Data Systems
Features SpatialSpark GeoSpark Simba LocationSpark STARK

geometry type point, line, polygon point, line, polygon point point, line, polygon geometry

input-format WKT CSV, TSV, WKT, WKB,
GeoJSON, Shapefile CSV, JSON, Parquet WKT WKT, Time

query language no SQL(2017) SQL no Piglet

partitioning
Fixed-Grid,
Binary-Split,
& Sort-Tile

R-tree,
voronoi diagram,

Quadtree
STR Partitioner Grid &

region Quadtree
Fixed Grid,

Cost-based Binary Split

indexing R-tree R-tree, Quad-tree R-tree R-tree, Quadtree,
IR-tree)

R-tree
(live & persistent)

spatial
operations

range query,
broadcast join

& partitioned join

range query,
kNN query,
spatial-join,
distance-join

range query,
kNN query,
distance-join,
kNN-join

range search,
range join,
kNN Search,
kNN-join

kNN query,
spatial-join

optimization no no partition
& query-skew

partition & query-skew,
communication cost (sFilter) partition skew

memory
management no no no yes no

spatial
analytics no no no

clustering, skyline,
spatio-textual

topic summarization
clustering

temporal
feature no no no no yes

Quad-Tree and R-Tree indexing techniques to index data on each
node. It executes spatial queries such as range query, kNN query,
and join query on big spatial datasets by extending the SRDD layer.
The system core of GeoSpark mainly consists of three layers. The
Spark Layer performs basic Spark operations like data loading into
a disk, Spatial RDD Layer provides geometrical and spatial object
support to Spark RDD, and finally, Spatial Query Processing Layer
performs the spatial query on Spatial RDD. The main limitation of
GeoSpark is that it is developed as a library on top of Spark, not as a
part of Spark-core, which is not efficient in order to execute spatial
queries. Although initially it did not support SQL queries, recently
GeoSpark SQL [34] has been introduced. In addition, GeoSpark
does not have any support for handling data and query skew.

SpatialSpark [33] implements several spatial operations on Spark
to analyze large-scale spatial data. It supports two spatial join op-
erations, where broadcast join is used to join a big data set with a
smaller dataset and partition join is used to join two big dataset.
It can perform spatial range query with/without index. These op-
erations can be performed over geometric objects using spatial
predicates: intersect, within, overlap, contains, within_distance or
nearest_distance. Data can be partitioned using Fixed-Grid, Binary-
Split, and Sort-Tile partitioning techniques and indexing using R-tree.
However, like GeoSpark, it also implemented the spatial support
on top of Spark without modifying Spark core. To our knowledge,
there is no plan by the SpatialSpark developers to handle data skew
and query optimization.

LocationSpark [20] is an efficient spatial data processing system
developed based on Apache Spark. It stores spatial data as a key-
value pair, where the key can be any geometry data type such as
point, a line-segment, a poly-line, a rectangle, or a polygon and
the value type can be specified by the user as a text. It supports a

wide range of spatial queries including spatial range-search, range-
join, kNN-search, and kNN-join query. It also supports few spatial
analysis functions, such as spatial data clustering, spatial skyline
computation, and spatio-textual topic summarization. The query
scheduler of LocationSpark contains an efficient cost model and
a query execution plan to mitigate and deal with two types of
skew: (1) data partitioning skew and (2) query skew. Its global index
(grid and region Quadtree) partitions the data among various nodes
and a local index (an R-tree, a variant of the Quadtree, or an IR-
tree) used to index data on each node. Also, LocationSpark added a
spatial bloom filter to reduce the communication cost of the global
spatial index, which can answer whether a spatial point is contained
inside a spatial range. Finally, to efficiently manage main memory,
it dynamically caches frequently accessed data into memory, and
stores less frequently used data into the disk, reducing the number
of I/O operations significantly. It can be used as a library on top of
Apache Spark. However, it does not have any spatial query language
support like SQL.

Simba [6] is a distributed in-memory analytics engine for spatial
data processing, which is developed by extending SparkSQL [2] and
DataFrame API. The extension of DataFrame API opens the possi-
bility for Simba to interact with other important Spark tools such
as MLlib, GraphX etc. It partitions the data using STR partitioner
by considering partition size, data locality and load balancing. Like
LocationSpark, it also adopts a two level indexing (R-tree) scheme,
where the global index helps to prune the irrelevant partitions for
a query and local index accelerates the query processing in each
partition. Currently, it supports spatial operations over point and
rectangle objects, including range query, kNN query, spatial dis-
tance, and kNN join. Moreover, its spatial-aware and cost-based
optimization to select a good query plan helps to achieve both low



latency and high throughput. But it only support points, and hence,
it is not possible to perform spatial join over geometric objects,
such as, polygon or line with Simba. The experimental results show
that Simba outperforms SpatialSpark and GeoSpark on point based
operations.
STARK [29] is a spatio-temporal data processing framework

which is tightly integrated with Spark in order to support spatial
data types and operators. Currently, STARK supports two types of
spatial partitioning. The fixed grid partitioner applies a grid over
the data space, where each grid cell corresponds to one partition.
The cost-based binary split partitioner generates partition based on
the number of contained elements. STARK allows two modes for in-
dexing, where live index is built upon execution for each partition,
queried according to the current predicate (contains/intersects),
and then thrown away. And the persistent indexing allows to cre-
ate the index and write the indexed RDD to disk or HDFS. This
stored index can be loaded again to save the cost of generating
it. But it can run a query on both indexed as well as unindexed
data. STARK also extended the Pig Latin, called Piglet, to support
declarative query language for spatial data processing. In Piglet,
STARK introduced geometry data type and added spatial operators
for spatial predicates, join and indexing. Based on the information
available, among the Spark-based spatial data systems, only STARK
supports temporal feature, but no evaluation of that feature has
been reported.

Table 3: Features of SpatialIgnite
Features SpatialIgnite

geometry type point, line, polygon
input format WKT

query language Distributed SQL
partitioning Rendezvous Hashing
indexing R-tree

query planning
& optimization yes

spatial operation
spatial-join (supports all

OGC-compliant join predicates),
range query

spatial analytics all (see Table 5)
temporal feature no

4.2 Other Distributed In-memory Big Spatial
Data Systems

Apache Ignite [11] is an open source distributed in-memory big
data processing platform, which supports many features of big data
systems as well as some features of relational DBMS. Caching and
parallel query processing on in-memory data are two important
features that contribute to its good performance. First, it keeps
data in a cache in the main memory data grid distributed across a
cluster of nodes and it is horizontally scalable. Second, it performs
parallel processing of queries on data in the cache. In addition, it can
execute distributed join based on partitioned parallelism. However,
Ignite’s support for spatial features is rather limited. Currently, it
has support for geometry data types (point, line, and polygon) and
a limited form of querying on geometry objects.

We introduce SpatialIgnite, which is an extension of Apache
Ignite. We implemented the spatial join and spatial analysis support
of SpatialIgnite using the JTS library [18]. In this study, we evaluate
the performance of SpatialIgnite with two other existing big spatial
data systems. The main features of SpatialIgnite is illustrated in
Table 3.

Table 4: Existing Support of Spatial Join Predicates
Join

Predicates SpatialHadoop GeoSpark SpatialIgnite

Equals N N Y
Intersects Y Y Y
Touches N N Y
Overlaps Y N Y
Contains N Y Y
Crosses N N Y

Table 5: Existing Support of Spatial Analysis Functions
Spatial
Analysis SpatialHadoop GeoSpark SpatialIgnite

Distance N N Y
Within N N Y

Dimension N N Y
Envelope Y N Y
Length N N Y
Area N N Y
Buffer N N Y

ConvexHull Y N Y

5 OUR BENCHMARK
As mentioned earlier, our goal is to conduct a comprehensive eval-
uation of Big Spatial Data systems. Our benchmark is inspired by
Jackpine [24] micro benchmark, and it includes various spatial join
operations with OGC-compliant topological predicates and spatial
analysis functions. However, not all of the features are supported
by most of the Big Spatial Data system. The existing spatial join
predicates and analysis functions supported by SpatialHadoop, and
GeoSpark are shown in Tables 4 and 5, where ’Y’ means a feature is
supported and ’N’ means it is not supported. Also, these two tables
give the features supported by our SpatialIgnite system.

5.1 Workload
Our benchmark workload is comprised of spatial join operations,
range queries and spatial analysis functions. The complete list of
the operations in our benchmark are shown in Table 6. We adopted
these operations from Jackpine and made some changes (marked
with ’*’), which are listed in the table. Specifically, in Jackpine
benchmark, some pair-wise join operations involving line dataset
did not use the whole line dataset (e.g. LineCrossesLine). They were
changed to use the entire line dataset. Also, some pair-wise join
operations involving polygons contained a self-join in Jackpine,
such as the join operation ’PolygonOverlapsPolygon’ involved the
arealm dataset. These were changed into a join operation with two
different datasets, for example, ’ArealmOverlapsAreaWater’. Also,
we added range queries in our benchmark, which were not part of
Jackpine.



Table 6: Our benchmark: workload
Predicates
/Functions Operation Description

Topological Relations (all pair joins)
Equals Polygon Equals Polygon Find the polygons that are spatially equal to other polygons in arealm dataset.
Equals Point Equals Point Find the points that are spatially equal to other points in pointlm dataset.
Intersects Point Intersects Polygon Find the points in point dataset that intersect polygons in arealm dataset.
Intersects Point Intersects Line Find the points in point dataset that intersect lines in edges dataset.
Intersects Line Intersects Polygon Find the lines in edges dataset that intersect polygons in arealm dataset.
Touches* Polygon Touches Polygon Find the polygons in arealm dataset that touches polygons in areawater dataset.
Touches* Line Touches Polygon Find the lines in edges dataset that touches polygons in arealm dataset.
Overlaps* Polygon Overlaps Polygon Find the polygons in arealm dataset that overlaps with polygons in areawater dataset.
Contains* Polygon Contains Polygon Find the polygons in arealm dataset that contains the polygons in areawater dataset.
Within* Polygon Within Polygon Find the polygons in areawater dataset that are inside the polygons in arealm dataset.
Within Point Within Polygon Find the points in pointlm dataset that are inside the polygons in arealm dataset.
Within Line Within Polygon Find the lines in edges dataset that are inside the polygons in arealm dataset.
Crosses Line Crosses Polygon Find the lines in edges dataset that crosses polygons in arealm dataset.
Crosses* Line Crosses Line Find the lines that crosses other lines in edges dataset.
Spatial Analysis
ConvexHull Convex Hull of Points Construct the convex hulls of all points in pointlm dataset.
Envelope Envelope of Lines Find the envelopes of all lines in edges dataset.
Length Longest Line Find the longest line in edges dataset.
Area Largest Area Find the largest polygon in areawater dataset.
Length Total Line Length Determine the total length of all lines in edges dataset.
Area Total Area Determine the total area of all polygons in areawater dataset.
Dimension Dimension of Polygons Find the dimension of all polygons in arealm dataset.
Buffer Buffer of Polygons Construct the buffer regions around one mile radius of all polygons in arealm dataset.
Distance Distance Search Find all polygons in arealm dataset that are within 1000 distance units from a given point.
Within Bounding Box Search Find all lines in edges dataset that are inside the bounding box of a given specification.
Range Query
Range Query (Point) Find all the points in pointlm dataset for a given query window.
Range Query (Polygon) Find all the polygons in arealm dataset for a given query window.
Range Query (Polygon) Find all the polygons in areawater dataset for a given query window.
Range Query (Line) Find all the lines in edge dataset for a given query window.

Table 7: Our benchmark: datasets
Dataset Geometry Cardinality Description

pointlm Point 49837 represents location points
(a airport, a movie theater)

arealm Polygon 5951 represents boundary areas
(a city, a national park)

areawater Polygon 39334 represents water areas
(a lake, a river)

edges Line 4173498 represents lines
(roads, rivers)

5.2 Datasets
Our benchmark utilizes real-world spatial datasets which were
obtained from Tiger [31] (2011 release). These datasets consist
of points, lines, and polygons of California, USA. We have used
four datasets from Tiger, including arealm (polygon), areawater
(polygon), pointlm (point) and edges (line). The details of these
datasets are given in Table 7.

6 PERFORMANCE EVALUATION
For the evaluation of Big Spatial Data systems, we consider three
systems, one from each category of the big spatial data systems.
First, we choose a Hadoop-based system SpatialHadoop [8, 28] as
it is a mature system and its performance is better than any other
systems developed on Hadoop. Second, we include Spark-based
in-memory system GeoSpark [19], as it is one of the most active
projects (latest version v1.1.3 published on 26th April 2018) [14].
Also, it is mentioned as a Spark-based third-party infrastructure
project. Finally, we select SpatialIgnite, which we have proposed.

6.1 Benchmark Implementation
SpatialHadoop [8, 28] implemented the SJMR (Spatial Join with
MapReduce) algorithm in the core of SpatialHadoop using spatial
predicate intersect/overlap to perform the spatial join operation. It
does not implement all the OGC-compliant [21] join predicates in-
side the core of SpatialHadoop (see Table 4). But they implemented
the join predicates as part of a Pigeon [7], which is added into the
language layer of Hadoop. However, Pigeon performs join opera-
tion through a cross product, which is very costly operation. From
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Figure 1: Spatial Join involving Points, Lines and Polygons (on an 8-node cluster)
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Figure 2: Spatial Analysis queries involving Points, Lines and Polygons (on an 8-node cluster)

our experience, even to perform a join operation like PointInter-
sectArea on a small dataset, pointlm and arealm take almost 4 hours,
whereas it takes only 25 seconds (approx) if we run the same query
from SpatialHadoop command line (see Figure 1). We implemented
all the spatial join predicates based-on SJMR algorithm. All spatial
join queries run using our implemented spatial join predicates in
this study.
Similarly, GeoSpark [14, 19] also implemented the spatial join

queries using contains/intersects predicates and it can run join
queries with or without using index (see Table 4). We implemented
other spatial join predicates onGeoSpark and changed theGeoSpark
core accordingly to run the spatial join queries.
Finally, we implemented the spatial join and analysis function

supports on Apache Ignite using JTS library [18] called SpatialIg-
nite.

6.2 Experimental Setup
The experiments were conducted on a cluster of 8 machines, each
having an Intel(R) Xeon(R) CPU E5472 @ 3.00GHz × 2 with 4 × 2
cores, 16GB RAM, and 500GB HDD running on Ubuntu 14.04 64-bit
operating system with Oracle JDK 1.8.0_81. Along with Hadoop-
2.3.0, Spark-2.1.1 and Apache-Ignite-Fabric-1.2.0 used in this evalu-
ation.

6.3 Result Analysis and Discussion
We evaluated three categories of operations, as outlined in Table 6,
for performance evaluation. They include pair-wise spatial join,
spatial analysis, and range queries. The execution time of a query in
each case is reported based on the average elapsed time calculated
over several runs.



• Spatial Join: We ran 14 types of pairwise spatial join queries
involving point, line, and polygon on SpatialHadoop, GeoSpark,
and SpatialIgnite. In case of GeoSpark, we were not able to run
some queries (marked as ’NA’ in Figure 1), because its execution
engine is designed in a way such that the query window is always
a Polygon. Thus, one dataset is always a polygon during the join
operation. If we look at Figure 1, in each case, GeoSpark and Spa-
tialIgnite outperform SpatialHadoop in terms of execution time.
Also, SpatialIgnite does better than GeoSpark in all cases, except
for the query ’LineWithinArea’, where GeoSpark performs better.
Overall, the performance of SpatialIgnite is better than the other
systems.

• Spatial Analysis Queries: SpatialIgnite supports all of the
spatial analysis functions in Table 6. However, SpatialHadoop only
supports ConvexHull of points. GeoSpark does not have any sup-
port for the spatial analysis functions. Figure 2 shows the average
execution time of 10 spatial analysis operations involving point, line
and polygon dataset. The time to construct the convex hull of all
points is almost the same in both SpatialHadoop and SpatialIgnite.
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Figure 3: Range queries involving Points, Lines and Poly-
gons (on an 8-node cluster)

• Range Query:We ran the range queries (in Table 6) involving
point, line and polygon datasets for a given query window. The
performance of SpatialHadoop and GeoSpark is almost the same for
range queries involving point (pointlm) and polygon (areawater)
datasets. However, SpatialHadoop performs better than GeoSpark
for range queries in the polygon (arealm) dataset. In each case,
SpatialIgnite performs better than the other two, except for line
dataset, where the performance of range queries is almost similar
with each system. Overall, the performance of SpatialHadoop and
GeoSpark is not significantly different in each case.

• Scalability with increase in number of nodes: We also in-
vestigated the scalability of the evaluated systems by increasing
the number of nodes. We used join queries involving the largest
dataset (line), because for other queries SpatialIgnite took less than
1 second in most cases when running on an 8-node cluster. If we
look at Figure 4, SpatialHadoop performs well with a 4-node. As it
is a disk-based system, the I/O overhead increases with the increase
in number of nodes. Also, polygon dataset (arealm and areawater)
is not large enough to make an impact on the performance with
the increased number of nodes in disk-based systems. SpatialIgnite
attains the best speedup of 1.92x for ’LineIntersectsArea’ join query
and its minimum speedup for all cases is 1.84x (LineWithinArea).
With 8 nodes, ’LineWithinArea’ is the only join operation in which
the execution time of GeoSpark is better than that of SpatialIgnite.

3
7

7
.0

0
2

4
9

7
.4

8
9

1
4

0
.6

3
4

1
3

3
.5

3
6

1
4

9
.6

8
5

7
7

.7
6

3
7

6
.9

1
5

4
8

5
.1

7
9

1
3

8
.3

6
1

1
2

3
.9

3
7

1
3

2
.0

5
7

7
0

.3
2

4

3
7

7
.5

8
9

4
9

2
.9

0
5

5
8

.3
3

8

3
7

.1
7

2 1
0

1
.3

2
3

5
4

.9
1

7

3
7

6
.4

7
5

4
8

4
.6

0
6

1
4

0
.8

2
5

1
2

5
.6

1
3

1
2

7
.3

2
3

6
8

.5
5

3

0

100

200

300

400

500

600

4 - N o d e 8 - N o d e 4 - N o d e 8 - N o d e 4 - N o d e 8 - N o d e

S p a t i a l H a d o o p G e o S p a r k S p a t i a l I g n i t e

Ti
m

e 
(s

)

LineIntersectsArea LineTouchesArea LineWithinArea LineCrossesArea

Figure 4: Performance Comparison - Scalability (4-nodes vs
8 nodes)

7 CONCLUSION AND FUTUREWORK
A comprehensive evaluation of Big Spatial Data systems is of great
importance to various stakeholders. We have proposed a bench-
mark and conducted a comprehensive study of Big Spatial Data
systems. We investigated all the features and performance issues
with these systems, which will help the community in future re-
search of spatial data systems. From our study, we observe that
efficient query planning and optimization, memory management,
and appropriate selection of data partitioning and indexing tech-
nique can improve the performance of Big Spatial Data systems
significantly. Furthermore, there is a lack of support for efficient
spatial query language like SQL in most of these data systems.

We have also proposed a distributed in-memory spatial data sys-
tem, called SpatialIgnite, which is an extension of Apache Ignite.
Overall, SpatialIgnite performs better than GeoSpark and Spatial-
Hadoop. We have found that GeoSpark returns wrong results in a
few queries.
In future, we would like to incorporate support for kNN and

distance-join queries within SpatialIgnite. We would also like to
evaluate the performance of recent Spark-based systems, such as
Simba and LocationSpark. We would also like to evaluate the perfor-
mance of commercial geospatial systems like GeoMesa and GeoTrel-
lis.
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