
Research Challenges inQuery Processing
and Data Analytics on the Edge

Blesson Varghese
Queen’s University Belfast, UK

b.varghese@qub.ac.uk

Suprio Ray
University of New Brunswick, Fredericton, Canada

sray@unb.ca

Bhavesh N. Gohil
Sardar Vallabhbhai National Institute of Technology, India

bng@coed.svnit.ac.in

Sergio Vega
Virtalus, USA

sergio@virtalus.com

ABSTRACT
The accelerated growth of data has made efficient query processing
and data analytics more important than ever. While the Cloud has
provided an excellent underpinning solution to store, manage and
process data, it is becoming increasingly difficult, as the Cloud
necessitates sending all data that is generated by billions of user
devices and sensors to distant data centres far away from the data
source. This is expected tomake query processing and data analytics
challenging. This paper examines the challenges in developing
pragmatic solutions for processing queries and performing analytics
using the emerging Edge computing paradigm. In this paradigm,
compute infrastructure is offered at the edge of the network, which
is closer to the data source. A simulation study to highlight the
advantages of Edge computing over the Cloud is presented.
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1 INTRODUCTION
The modern information era is characterized by big data - large
volumes of data, with increasing variety and velocity, are generated
by sensors, user-devices and gadgets. Commercial jets for exam-
ple generate 10 terabytes of data for every 30 minutes of flight1.
Consider environmental sensors that are embedded in an industrial
facility within a city. Even with 1,000 such sensors generating data
at the rate of 1 record every second, 3.6 million data points are
generated every hour and 86.4 billion data points every day. If they
were to be processed on the Cloud, then this data will need to be
sent through to a remote data store hosted in the Cloud.

Now if a multitude of industrial facilities in a large city or in-
dustrial zone uses similar sensors, then it would seem practically
impossible to send all the data to the Cloud and process it there.
1https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/
computing-overview.pdf
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Querying and analyzing this data is an integral part of data man-
agement for deriving useful information. The process of retrieving
information from a data store based on a set of criteria specified by
an end-user is what we refer to in this article as ‘query processing’.

Typically, the software pipeline of query processing and ana-
lytics that makes use of a traditional distributed database system
comprises the following five activities:
i. Data ingestion - the absorption of data from multiple disparate
sources for further processing.

ii. Data storage and access - the organization of data in external
persistent storage for efficient retrieval.

iii. Data consistency and transaction - synchronization of multiple
copies of data when concurrent read/write operations occur
(transactional workload).

iv. Retrieval and query execution - generation of efficient plans
for executing a query for retrieving all data required.

v. Complex data analytics - execution of statistical and machine
learning tasks for extracting knowledge.

These activities pose research and software development challenges
for efficiently leveraging distributed data stores that are hosted on
the Cloud, which are still being addressed by the community.

It is costly in terms of money and bandwidth to transfer large
volumes of data originating from user devices, such as smartphones,
or from sensors to geographically distant Cloud data centers for
processing and storage. This results in high network traffic and
software applications relying on the databases in the Cloud to be less
responsive at times. Recently, Google Cloud outages due to network
congestion in eastern US was reported2. Although using Cloud
data centers are sometimes disadvantageous, it may be challenging
to find large volumes of storage that is available in the Cloud,
elsewhere in a cost-effective manner. Nonetheless, there is a lot
of recent conversation on whether processing and storage can be
brought nearer to the source.

Future Clouds are anticipated to be organized such that stor-
age and compute capabilities would be moved towards the edge
of the network, which we refer to as Edge resources [14, 23, 24].
These resources may include dedicated micro data centers or al-
ternatively, existing resources, such as routers and gateways that
are augmented with storage and compute capabilities as shown in
Figure 1. It is worth noting that these resources can be meagre in
storage, memory and CPU processing capacities when compared
to the typical resources available on the Cloud [26]. However, the

2https://status.cloud.google.com/incident/cloud-networking/19009
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desired characteristics of Edge resources are expected to resemble
those of the Cloud that would facilitate high-availability of com-
pute and storage, incorporate fault-tolerance at both compute and
storage levels, and allow for elastic provisioning of resources to
meet workload demands.

Figure 1: The Edge computingmodel inwhich theCloud and
devices and sensors layers interactwithEdge resources, such
as dedicated micro data centres or Internet nodes, includ-
ing switches, base stations and routers. The Edge has lim-
ited processing and storage capabilities when compared to
the Cloud. Software solutions for query processing and data
analytics at the Edge will rely on data ingestion, which may
take two forms. Firstly, 1a, in which data from the Cloud
is partitioned and located at the Edge which is used by end
user devices or sensors. Secondly, 1b, in which data is pre-
processed at the Edge before sending data to the Cloud store.

It is therefore expected that the challenges involved in achieving
the above characteristics on the Cloud will be inherited by the
Edge [14, 25]. They may even be aggravated when using the Edge,
because they are limited. This paper highlights the challenges in
developing practical software solutions for query processing and
analytics on the Edge. We also present an experimental study with
the EdgeCloudSim [22] simulator to illustrate that the Edge can be
used to address the issue of high network latency associated with
moving high volumes of data to remote Cloud data centers.

2 CHALLENGES
The approach taken is to discuss the challenges arising from each
of the five activities involved in query processing and analytics,
namely ingestion, storage and access, consistency and transaction,
information retrieval and processing, and complex analytics, as
shown in Figure 2. The purpose is to highlight the challenges that
the research community will encounter when developing software
systems for query processing and analytics on the Edge, rather than
providing concrete solutions for tackling these challenges.

2.1 Data Ingestion
The Edge may be utilized by an application in either or both of the
following two ways. Firstly, bringing data already on the Cloud to-
wards the Edge to reduce communication latencies for user devices.
For example, consider the virtual map used in the PokeMon Go on-
line game. If a user were playing the game in Belfast, then the data
related to the map of Belfast may be brought to Edge resources in
Belfast, thereby reducing the need for each individual user sending
requests and accessing a Cloud data centre in the USA.

Edge resources are inherently heterogeneous (different storage
capacities for example) and in comparison to the Cloud are resource
constrained (they have limited compute and storage available on
them). Therefore, pursuing activities in the software pipeline for
query processing and analytics will be challenging.

Partitioning data on the Cloud that will be ingested by the Edge
is a key task. Distributed data-stores, such as HBase [2] and Cassan-
dra [1], attempt to partition data evenly among the participating
nodes in the Cloud. Such even distribution of data is not suitable
for Edge-based data processing, since wide-area network commu-
nication may incur significant latency.

A key challenge will be matching the volume of the partitioned
data against resources available on the Edge. If sufficient storage
space is unavailable on any single Edge resource, then it will need
to be further partitioned across different Edge resources. If there
is sufficient storage space, then another consideration would be
whether all users that will make use of the data can be serviced
by a single Edge resource. If that were not possible, then the data
will need to be simply replicated across the Edge. However, the
trade-offs in partitioning data across the Edge versus replicating
data on the Edge remains an open research question.

Secondly, it would be necessary to try to keep data generated by
devices and sensors at the Edge closer to the data source, instead
of sending all the data to a centralized Cloud facility. High velocity
data generated from myriads of mobile devices and sensors are
a hallmark of big data and novel approaches may be needed to
manage such data [19]. For example, many temperature sensors
embedded in an environment may generate temperature readings
at a high rate. Given the potential data volume generated by these
sensors, it may not be possible to store all temperature readings
subsequently in a persistent store. Instead, these data points may be
filtered to retain temperature readings that are outliers or periodic
measurements. This process can be performed at the Edge, rather
than at the central Cloud facility to avoid the movement of high
volume and high velocity data over the network [17].

In the above context, two challenges will need to be surmounted.
The first is to determine the trade-off between the degree of data
abstraction and the availability of storage at the Edge. If a lot of
data is filtered out at the Edge, then the learning models of some of
the machine learning/data analytics applications or services may
not have sufficient data for training. On the other hand, it would
not be possible to find storage for large quantities of data at the
Edge [21]. The second is to determine the flow control on the Edge
for streaming data. It is currently unknown whether the rate of data
ingestion needs to be regulated on each individual Edge resource
or across all resources for a given application.
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Figure 2: Challenges in developing software systems for query processing and performing data analytics on the Edge

2.2 Data Storage and Access methods
Similar to the Cloud, the Edge is anticipated to provide virtualized
resources for supporting multiple users. Virtualization frameworks
used in the Cloud and Edge are different. Existing database Cloud
services are built on Virtual Machines (VMs) and require migration,
replication or cloning [15, 16] of databases to ensure high availabil-
ity and elastic scalability for applications that rely on them.

Lightweight virtualization, such as container, is preferable at
the Edge because individual Edge resources are storage and mem-
ory limited when compared to a Cloud server. However, there is
no consensus on which container technology might be the most
appropriate for using on the Edge.

Containers can be classified into two categories: system contain-
ers and application containers. System containers, like LXC/LXD [4]
are designed to run a full Linux operating system (OS), similar to
running the OS on bare-metal or in a VM. In contrast, application
containers, such as Docker [3], focus on ephemeral, stateless and
minimum resource consuming containers that typically would not
get upgraded or re-configured, but instead replaced entirely. Both
approaches have pros and cons when employed at the Edge.

Docker is designed to run a single application. More than one
Docker container should be used when running applications com-
prising a number of micro-services. In this case, different containers
should be located on the same physical resource if possible and
would require a more complex orchestrator. This is not the case
when using LXC/LXD, since they can run several services inside
the same container. Also, the data store in Docker containers is
located outside and is not a part of the container itself [7]. This
becomes a difficult challenge in a dynamic environment like the
Edge when a container needs to be migrated from one resource
to another, because the container and its data store are physically
separate. The migration of containers across heterogeneous Edge
resources poses a further challenge for partitioned data at the Edge
(highlighted in Figure 3). In a static environment, the data needs

to be simply partitioned once. However, in a dynamic Edge envi-
ronment in which the workloads are changing, the challenge of
repartitioning data for efficient load balancing by matching the
requirements of the new Edge resource onto which the container
migrated will need to be addressed. Hence, a problem that needs to
be addressed is how persistent data can be made available.

Figure 3: Edge-based software for query processing and data
analytics will need to support partitioning, cloning and mi-
gration of data across Edge resources. Data residing on Edge
resourcesmay need to be: (i) Partitioned as shown in 2a. The
partitioned data may be migrated to other Edge nodes, or
(ii) Cloned as shown in 2b. The cloned data may reside on
another Edge node. The connections with end user devices
and sensors are reconfigured. Partitioned data and cloned
data need to be consistent and it will be challenging to query
multiple data partitions for retrieving data.

LXC/LXD, on the other hand, uses persistent storage inside the
container and supports several storage backends like Ceph or ZFS. If
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the IaaS model is extended to Edge resources, then it may be easier
for users to run their applications on a full OS stack. Although
LXC/LXD, provides a closer experience to a traditional VM or bare-
metal server, Docker is lighter than LXC/LXD in terms of hardware
requirements. The Docker layering system enables applications
to be deployed faster, reducing bandwidth usage and the storage
footprint per container image.

Achieving persistent storage without using significant resources
is an open problem. The challenge arising from using different
virtualization frameworks at the Cloud and Edge results in the need
for novel techniques that enable seamless migration of a virtualized
Cloud database service to a container-based Edge service.

2.3 Data Consistency and Transaction
The potentially unlimited storage available on the Cloud allows
for hosting large datasets. However, the Edge may only store a
subset (related to a specific set of users or to a specific geo-location
that provides a local view) of the global data set available in the
Cloud. In addition, if the local dataset is large for a single Edge
resource, then it may be partitioned across multiple Edge resources.
Furthermore, to provide fault tolerance and high availability the
local dataset may even be replicated across the Edge. One challenge
that will need to be addressed is to ensure that data is consistent
between multiple replicas on the Edge. If the Edge data is a subset
of a dataset in the Cloud, then consistency will need to be achieved
even between the Cloud and the Edge (as shown in Figure 3).

A transaction is a collection of operations, such as reads and
writes, on a dataset that need to be performed in an all-or-nothing
manner. If even a single operation fails, then none of the opera-
tions in the transaction succeeds, which is referred to as rollback.
If the transaction is successful, then it is committed. Each commit-
ted transaction must leave the datastore in a consistent state [6].
A transaction may access multiple data partitions stored across
different Edge resources. This requires the support for distributed
transactions that employ commit protocols to ensure that all Edge
resources involved in the transaction either commit or none do. A
widely used distributed commit protocol is the two-phase commit
(2PC) [13], which requires sending messages among the Edge re-
sources to reach a consensus before committing. Existing protocols
employed on Cloud resources suffer from high latency due to the
overheads from sending requests over the network and from using
virtualized storage [8]. It is still challenging to reduce the overheads.
We anticipate that a number of these challenges will be inherited
by the Edge. For instance, using current container technology at
the Edge, storage is decoupled from the container. This will result
in overhead when the container attempts to commit to storage that
is located outside the container’s Edge resource. This problem will
be aggravated from container replication and migration at the Edge
to support elasticity. In this context, the 2PC protocol will not be
well-suited for a highly dynamic environment involving frequent
container migration. The 2PC commit protocol fails to make any
progress, if the transaction coordinator encounters failure [10]. Due
to the unreliable nature of Edge network and nodes, such failures
may be common. Therefore, an adaptive multi-coordinator version
of 2PC protocol is necessary. A problem related to consensus proto-
cols, such as 2PC, is that fast event ordering to ensure accuracy in a

distributed system. New solutions are needed to opportunistically
exploit Edge infrastructure to order events [12].

2.4 Information Retrieval and Query
Processing

Data residing on the Edge can be queried for extracting information.
There are challenges in query processing when data is replicated
and partitioned across multiple Edge resources [11]. We assume
structured data stored either in relational databases or data stores
supporting schemas. Typically, query processing on partitioned
data requires a centralized coordinator that generates an execution
plan for each partition. On the Cloud the coordinator can be well
placed to manage the query execution of each partition if it were on
the Cloud. However, on the Edge it may be harder to find dedicated
resources that can host the coordinator for long time periods. It is
anticipated that there will be significant competition for acquiring
resources on the Edge. The challenge here is to find dedicated Edge
resources to host the coordinator as well as allow it to be hosted as
a service for prolonged periods of time. A further challenge that
arises from placing a centralized query coordinator on the Edge is
ensuring that it is fail-safe. In addition, it would be important to
address how to deal with the failure of one (or more Edge) resource
during the execution of a part of the query plan.

An additional consideration when processing queries at the Edge
is the overall performance of the query. One of the factors that
affects query performance is data movement between the Edge
resources. For instance, if one step in a query plan requires ‘ma-
terialization’ (for example, intermediate results) and this data is
required to be moved to the coordinator from an Edge resource,
then this will incur significant data transfer overheads. Another
factor that affects query performance is resource heterogeneity
that leads to the ‘straggler effect’ [20]. In the context of Edge, this
implies that one Edge resource may slow down the entire query
processing pipeline. Given that load conditions on the Edge vary
over time, the data will need to be repartitioned and distributed
to the Edge resources. Otherwise, the straggler effect may become
acute. The challenges here are to develop efficient query plans that
minimize data movement between Edge resources and to incor-
porate adaptive query processing techniques for adjusting query
plans dynamically by taking the Edge resource load into account.

The Edge computing paradigm assumes the connection of bil-
lions of end devices to the Internet. These devices may be mobile
and therefore may sporadically appear and disappear within a net-
work. In addition, the devices will operate in a dynamic network
topology. Traditional naming schemes used by the coordinator
will not be sufficient. However, we note that there are no efficient
naming schemes and no standards are available for these [21].

2.5 Complex Data Analytics
It may not be possible to use relational query processing techniques
considered above for analyzing large volumes of data that is mostly
unstructured or based on loosely defined schemas. Typical use-
cases that analyze such data make use of statistical operations and
machine learning algorithms. More recently, big data processing
frameworks, such as Apache Hadoop [5] and Spark [27] that rely on
the MapReduce computing model [9] and distributed file systems
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have been utilized for this analysis on the Cloud. The MapReduce
model comprises map and reduce phases. In the map phase, data is
decomposed for processing in parallel, whereas in the reduce phase,
intermediate results obtained from the map phase are aggregated.
It is already challenging to determine the optimal configuration
(for example, the number of compute resources that need to be
allocated for the Map and Reduce phases) for a workload in a
traditional computing system. This becomes more challenging in
the face of changing workloads, elastic provisioning of resources
and the competition for limited resources on the Edge.

Since datamovement between different phases of theMapReduce
model may tend to be expensive on the Edge an additional challenge
arises. The challenge is processing data in a locality-aware manner
such that a Map operation, for example, is assigned to the same
compute resource, which hosts the data partition required by that
operation in the distributed file system.

Normally data partitioning approaches, such as range or hash
partitioning assign workload, such that each computing resource is
allocated roughly an equal volume of data. These approaches can be
applied to the Edge, but Edge resources have heterogeneous storage
and processing capabilities. Therefore, the challenge that arises is
processing data in a performance-heterogeneity aware manner [20].
This can be addressed by recognizing more capable Edge resources
and allocating them more work than weaker resources. This in turn
may reduce the ‘straggler effect’.

Machine learning-based analytic systems have gained popularity
on the Cloud, such as recommendation systems for online shopping
or financial tools for fraud detection. In these systems, user-specific
data is aggregated in the Cloud. One of the major concerns is data
privacy and therefore there is suggestion to perform data analytics
at the edge. However, to make this possible ‘composable’ services
are required, to support complex data analytic systems at the edge
by building on basic machine learning services [28]. However, the
key challenges that need to be addressed in this arena include, ser-
vice composition - constructing a workflow of multiple services
using concise domain specific languages, and deployment - mech-
anisms to deploy services in multiple edge locations or along the
Cloud-Edge continuum as required.

An important category of data analytics applications involve
processing large volumes of latency-critical streaming data. These
applications include IoT sensor monitoring, video surveillance, aug-
mented reality, and object recognition in driver-less cars. Support-
ing the real-time requirements of such applications using tradi-
tional Cloud-based data stores is impractical due to the end-to-end
latency entailed by the wide-area network traversal. Although,
Edge computing is promising for such purposes, the challenging
operating conditions and dynamic nature of Edge devices call for
novel approaches to data management. Since, there is a clear trade-
off between supporting latency-criticality and accuracy [18], it
would be necessary to autonomously monitor run-time conditions
to maintain the desired quality of service.

3 AN EXPERIMENTAL STUDY
In this section, a simulation-based experimental evaluation is pre-
sented to demonstrate the potential benefit in addressing some of
the challenges associated with query processing and data analytics

Parameters Query
processing

Machine
learning

Augmented
reality

Data upload 10MB to 50MB 15MB 1.50MB
Task length
(MIPS) 100K 1M 2K

WLAN bandwidth 1 Gbps
WAN bandwidth 1 Gbps
Hosts in Cloud layer 14
Hosts in Edge layer 14
Mobile devices 100 to 500
Table 1: Simulation parameters for Cloud and Edge layers
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Figure 4: Network delay and service time of a sample query
processing application at the Cloud and Edge

on the Cloud. Although the Edge entails its own set of challenges
that are outlined earlier in this paper, this study highlights that the
Edge addresses a key issue of the Cloud - network delay (latency),
and hence the service time, arising from the movement of large
volumes of data.

The experiments are carried out on an Edge simulator named
EdgeCloudSim [22]. This simulator has a modular architecture
and supports network modeling specific to WLAN and WAN, de-
vice mobility modeling, and a realistic and tunable load generator.
EdgeCloudSim simulates multi-tier scenarios, where multiple Edge
servers run in coordination with upper layer Cloud solutions. Three
different architecture can be simulated in EdgeCloudSim: (i) single-
tier, (ii) two-tier, and (iii) two-tier with an Edge orchestrator (EO).
The single-tier architecture allows the mobile devices to utilize the
Edge server located in the same building. In the two tier architec-
ture, the mobile devices can offload tasks to the global Cloud by
using the WAN connection provided by the connected access point.
The two-tier with EO architecture has a considerable advantage,
because for the tasks which are executed on the first tier, only the
two-tier with EO architecture can offload the tasks to any Edge
server located in different buildings. It is assumed that the Edge
servers and the EO are connected to the same network.

Three sample applications were simulated with EdgeCloudSim
to compare the network delay (latency) and service time when
using the Edge and the Cloud. These applications are: query pro-
cessing, machine learning, and augmented reality, of which the
augmented reality application provided by the EdgeCloudSim distri-
bution. These applications are defined by the simulation parameters
as shown in Table 1. Figure 4a shows the average network delay
of a query processing application on the Edge and Cloud, while
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Figure 5: Network delay and service time of a sample ma-
chine learning application at the Cloud and Edge
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Figure 6: Network delay and service time of a sample aug-
mented reality application at the Cloud and Edge

the data upload size is varied from 10MB to 50MB. It is observed
that the network delay with the Edge is significantly lower than
the Cloud. Also, as shown in Figure 4b, the service time with Edge
is considerably lower than that with the Cloud. In Figure 5a and
Figure 6a, the average network delay of the machine learning and
the augmented reality applications are presented, respectively. In
both cases, the number of mobile devices that are connected are
varied from 100 to 500. Similar to the previous results, the network
delay is significantly lower when using the Edge compared to the
Cloud. Moreover, the service times of the machine learning and the
augmented reality applications (shown in Figure 5b and Figure 6b
respectively) are lower when using the Edge than the Cloud. These
preliminary results provide indications that the Edge can be a com-
pelling computing model for data analytics application and query
processing. In these experiments, the connections from mobile de-
vices to the Cloud were configured to be reliable. However, in real
life scenarios this may not be the case, especially when there is the
need to transmit a large volume of data.

4 CONCLUSION
Query processing and data analytics are integral tasks for software
systems that make sense of big data. Bringing these tasks to the
edge of the network can reduce the volume of data that is sent to
a Cloud data center. Using a simulation study we highlight that
the Edge can be attractive for query processing and performing
analytics, due to significantly lower network delay than the Cloud.
At the same time, the challenges in executing software systems
on the Edge can be aggravated by an inherently heterogeneous,
resource constrained and dynamic Edge when compared to the

Cloud. Additionally, there are novel challenges introduced by the
Edge that need to be addressed to support highly efficient query
processing and data analytics.
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