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Abstract—Due to the rapidly rising data volume, there is
a need to analyze this data efficiently and produce results
quickly. However, data scientists today need to use different
systems, since presently relational databases are primarily used
for SQL querying and data science frameworks for complex
data analysis. This may incur significant movement of data
across multiple systems, which is expensive. Furthermore, with
relational databases, the data must be completely loaded into the
database before performing any analysis.

We believe that data scientists would prefer to use a single
system to perform both data analysis tasks and SQL querying,
without requiring data movement between different systems.
Ideally, this system would offer adequate performance, scalability,
built-in data analysis functionalities, and usability. We present
DaskDB, a scalable data science system with support for unified
data analytics and in situ SQL query processing on heterogeneous
data sources. DaskDB supports invoking Python APIs as User-
Defined Functions (UDF). So, it can be easily integrated with most
existing Python data science applications. Moreover, we introduce
a distributed index join algorithm and a novel distributed learned
index to improve join performance. Our experimental evaluation
involve the TPC-H benchmark and a custom UDF benchmark,
which we developed, for data analytics. And, we demonstrate that
DaskDB significantly outperforms PySpark and Hive/Hivemall.

I. INTRODUCTION

Due to the increasing level of digitalization in our modern
society, large volumes of data are constantly being generated.
To make sense of the deluge of data, it must be cleaned,
transformed and analyzed. Data science offers tools and tech-
niques to manipulate data in order to extract actionable insights
from data. These include support for data wrangling, statistical
analysis and machine learning model building. Traditionally,
practitioners and researchers make a distinction between query
processing and data analysis tasks. Whereas relational database
systems (henceforth, databases or DBMSs) are used for SQL-
style query processing, a separate category of frameworks are
used for data analyses that include statistical and machine
learning tasks. Currently, Python has emerged as the most
popular language-based framework, for its rich ecosystem of
data analysis libraries, such as Pandas, Numpy, scikit-learn.
These tools make it possible to perform in situ analysis of
data that is stored outside of any database, particularly as
raw files (csv, txt, json, xml) or other formats such as Excel
(xls). However, a significant amount of data is still stored in
databases. To do analysis on this data, it must be moved from a
database into the address space of the data analysis application
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that is written in Python (for example). Similarly, to do SQL
query processing on data that is stored in a raw file, it must
be loaded into a database using a loading mechanism, which
is known as ETL (extract, transform, load). This movement of
data and loading of data are both time consuming operations.

To address the movement of data across databases and
data analysis frameworks, recently researchers have proposed
several approaches. Among them, a few are in-database solu-
tions, that incorporate data analysis functionalities within an
existing database. These include PostgreSQL/Madlib [1] and
AIDA [2]. In these systems, the application developers write
SQL code and invoke data analysis functionalities through
user-defined functions (UDF). There are several issues with
these approaches. First, the vast body of existing data science
applications that are written in a popular language (Python
or R), need to be converted into SQL. Second, the data
analysis features supported by databases are usually through
UDF functions, which are not as rich as that of the language-
based API ecosystem, such as in Python or R. Third, data
stored in raw files needs to be loaded into a database through
ETL. Although, some support for executing SQL queries on
raw files exist, such as PostgreSQL’s support for foreign data
wrapper, this can easily break if the file is not well-formatted.
In recent years several projects [3], [4], [5] investigated how
to support in situ SQL querying on raw data files. However,
they primarily focused on supporting database-like query
processing, operating on a single machine. These systems lack
sophisticated data wrangling and data science features that is
available in Python or R. Fourth, most relational databases
are not horizontally scalable. Even with parallel databases,
the parallel execution of UDFs is either not supported or
not efficient. “Big Data” systems such as Spark [6] and
Hive/Hivemall [7] address some of these issues, however,
they also have some drawbacks. A key challenge with these
approaches is that they often involve more complex APIs and
a steeper learning curve. Also, it is not practical to rewrite
the large body of existing data science code with these APIs
written in Python (or R, for that matter).

To address the issues with the existing approaches, we
introduce a scalable data science system, DaskDB, which
seamlessly supports in situ SQL query execution and data
analysis using Python. DaskDB extends the scalable data
analytics framework Dask [8] that can scale to more than
one machine. Dask’s high-level collections APIs mimic many
of the popular Python data analytics library APIs based on
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Pandas and NumPy. So, existing applications written using
Pandas collections need not be modified. On the other hand,
Dask does not support SQL query processing. In contrast,
DaskDB can execute SQL queries in situ without requiring the
expensive ETL step and movement of data from raw files into a
database system. Furthermore, with DaskDB, SQL queries can
have UDFs that directly invoke Python data science APIs. This
provides a powerful mechanism of mixing SQL with Python
and enables data scientists to take advantage of the rich data
science libraries with the convenience of SQL. Thus, DaskDB
unifies query processing and analytics in a scalable manner.

A key issue with distributed query processing and data
analytics is the movement of data across nodes, which can
significantly impact the performance. We propose a distributed
learned index, to improve the performance of join that is an
important data operation. In DaskDB, a relation (or dataframe)
is split into multiple partitions, where each partition consists
of numerous tuples of that relation. These partitions are
distributed across different nodes. While processing a join,
it is possible that not all partitions of a relation contribute
to the final result when two relations are joined. The dis-
tributed learned index is designed to efficiently consider only
those partitions that contain the required data in constant
time, by identifying the data pattern in each partition. This
minimizes the unnecessary data movement across nodes. Our
distributed partition-wise index join uses the learned index
to answer join queries, if one of the join column is sorted.
DaskDB also incorporates intermediate data persistence and
distributed in-memory data caching that significantly reduces
serialization/de-serialization overhead and data movement.

We conduct extensive experimental evaluation to compare
the performance of DaskDB against two horizontally scalable
systems: PySpark and Hive/Hivemall. Our experiments involve
workloads from a few queries from TPC-H [9] benchmark,
with different data sizes (scale factors). We also created a
custom UDF benchmark to evaluate DaskDB and PySpark.
Our results show that DaskDB outperforms others in both of
these benchmarks. For instance, DaskDB’s performance was
5× better than that of PySpark with TPC-H benchmark at
scale factor 20 for Q5. For UDF evaluation, while computing
K-Means clustering on dataset of SF 20, PySpark took too
long to measure, whereas DaskDB took only 41 seconds. We
also developed a microbenchmark and evaluate the effects of
the proposed features on the overall performance of DaskDB.

The key contributions of this paper are:

• We propose DaskDB that integrates in situ query process-
ing and data analytics in a scalable manner.

• DaskDB supports SQL queries with UDFs that can di-
rectly invoke Python data science APIs.

• We introduce a novel distributed learned index and a
distributed index join algorithm that utilizes this.

• We present a few optimizations, including distributed in-
memory data caching and intermediate data persistence.

• We present extensive experimental results involving TPC-
H benchmark and a custom UDF benchmark.

II. RELATED WORK

In this section, first we discuss about systems to perform
data analytics and query processing. Next, we look at works
related to learned index, followed by in situ query processing.

A. Data Analytics and Query Processing

First, we discuss about dedicated systems that perform data
analytics. Next, we look at in-database analytics systems and
then integration of data analysis and query processing.

1) Dedicated Data Analytics Frameworks: Some popular
commercial data analytic systems include Tableau and MAT-
LAB. Many open-source data analytic applications tradition-
ally use R. More recently, Python has become very popular
because of the Anaconda distribution [10]. It contains many
data science and analytics packages, such as pandas, SciPy,
matplotlib, and scikit-learn. They are heavily used by data
scientists for data analysis.

2) In-Database Analytics: An increasing number of the
major DBMSs now include data science and machine learning
tools. For instance, PostgreSQL supports SQL-based algo-
rithms for machine learning, data mining, and statistics with
the Apache MADlib library [1]. However, interacting with a
DBMS to implement analytics can be challenging [11]. The
end user requires the knowledge of database specific language,
such as SQL and stored procedure languages, which is DBMS
specific (e.g., PL/pgSQL, T-SQL or PL/SQL). Although SQL
is a mature technology, it is not rich enough for extensive data
analysis. DBMSs typically support analytics functionalities
through User Defined Functions (UDF). Since, a UDF may
execute any external code written in R, Python, C++, Java or
T-SQL, a DBMS usually treats a UDF as a black box because
no optimization can be performed on it. It is also difficult
to debug and to incrementally develop [2]. The in-database
analytics approaches still have the constraint of ETL, which
is a time-consuming process and not practical in many cases.

3) Integrating Analytics and Query Processing: There have
been several attempts at creating more efficient solutions and
they combine two or more of either dedicated data analytic
systems, DBMS or big data frameworks. These systems can
be classified into 2 categories that we describe next.

Hybrid Solutions. These solutions integrate two or more
system types together into one and are primarily DBMS-
centric approaches. AIDA [2] integrates a Python client di-
rectly to use the DBMS memory space, eliminating the bot-
tleneck of transferring data. In [12], the authors proposed an
embeddable analytical database DuckDB. The key drawback
of these hybrid systems is ETL, since the data needs to
be loaded into a database. Moreover, existing data science
applications written in Python or R, need to be modified to
work in such systems, since their interface is SQL-based.

“Big Data” Analytics Frameworks. The most popular
big data frameworks are Hadoop [13] and Spark [6]. Spark
supports machine learning with MLlib [14] and SQL like
queries. Hive is based on Hadoop that supports SQL-like
queries and supports analytics with the machine learning
library Hivemall [7]. Some drawbacks of big data frameworks



include more complicated development and steeper learning
curve than most other analytics systems and the difficulty
in integration with DBMS applications. To run any existing
Python or R application within a big data system, it requires
rewriting with new APIs, which is not the most viable option.

B. Learned Index
Data structures such as B+trees are the mainstay of indexing

techniques. These approaches require the storage of all keys
for a dataset. Recent studies have shown that learned models
can be used to model the cumulative distribution function
(CDF) of the keys in a sorted array. This can be used to predict
their locations for the purpose of indexing and this idea was
termed as learned index [15]. Subsequently, several learned
indexes were proposed, such as [16], [17], [18]. However,
these approaches were meant only for stand-alone systems.
These ideas have not been incorporated as part of any database
system yet, to the best of our knowledge. Also, no learned
index has yet been developed for any distributed data system.

C. In Situ Query Processing
A vast amount of data is stored in raw file-formats that are

not inside traditional databases. Data scientists, who frequently
lack expertise in data modeling, database admin and ETL
tools, often need to run interactive analysis on this data. To
reduce the “time to query” and avoid the overhead associated
with relational databases, a number of research projects inves-
tigated in situ query processing on raw data.

NoDB [3] was one of the earliest systems to support in
situ query processing on raw data files. It utilizes a positional
map data structure to ameliorate the cost of tokenizing and
processing raw data. PostgresRaw [19] is based on the idea
of NoDB and it supports SQL querying over CSV files in
PostgreSQL. The SCANRAW [4] system exploits parallelism
during in situ raw data processing. All these systems were
focused on database-style SQL query processing on raw data
and on a single machine. Our system, DaskDB supports in situ
querying on heterogeneous data sources, and it also supports
doing data science. Moreover, it is a distributed data system
that can scale over a cluster of machines.

III. DASK BACKGROUND

DaskDB was developed by extending Dask [8], an open-
source library for distributed computing in Python. The main
advantage of Dask is that it provides Python APIs and data
structures that are similar to NumPy, pandas, and scikit-learn.
Hence, programs written using Python data science APIs can
easily be switched to Dask by changing the import statement.

Dask supports various collections (Arrays, Dataframes, etc.)
and task execution primitives such as Futures and Delayed.
The collections interfaces support scalable version of the APIs
popularized by NumPy and pandas libraries.

The dask.distributed [20] library is responsible for dis-
tributed computation based on Task Graph in a cluster. The
framework consists of a server, several clients and workers,
and it comes with an efficient task scheduler. Dask is a quite
scalable framework, as shown by previous research [21].
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Fig. 1: DaskDB System Architecture

IV. OUR APPROACH: DASKDB

In this section, we present DaskDB. It addresses some of
the issues discussed in the related work section. DaskDB was
designed with the vision of a scalable data science system that
supports data analytics and in situ query processing within
a single system, without requiring any developer effort to
convert the vast body of application code that was written
in Python using its data science APIs. DaskDB, in addition to
supporting all Dask features, also enables in situ SQL querying
on raw data in a data science friendly environment. Next, we
describe DaskDB system architecture and its components.

A. System Architecture

The system architecture of DaskDB incorporates five
main components: the SQLParser, QueryPlanner, DaskPlanner,
DaskDB Execution Engine, and HDFS. They are shown in
Figure 1. First, the SQLParser gathers metadata information
pertaining to the SQL query, such as the names of the tables,
columns and functions. This information is then passed along
to the QueryPlanner. Next, in the QueryPlanner component,
physical plan is generated from the information sent by SQL-
Parser about the SQL query. The physical plan is an ordered
set of steps that specify a particular execution plan for a query
and how data would be accessed. The QueryPlanner then sends
the physical plan to the DaskPlanner. In the DaskPlanner,
a plan is generated, which includes operations that closely
resemble Dask APIs, called the Daskplan. The Daskplan is
produced from the physical plan, and it is then converted into
Python code and sent to DaskDB Execution Engine. DaskDB
Execution Engine then executes the code and gathers the data
from the HDFS, and thus executes the SQL query. Further
details are provided in the next sections.

1) SQLParser: The SQLParser is the first component of
DaskDB that is involved in query processing. The input for the
SQLParser is the original SQL query. It first checks for syntax
errors and creates a parse tree with all the metadata informa-
tion about the query. We then process the parse tree to gather
the metadata information needed by the QueryPlanner. This
metadata information includes table names, column names and
UDFs. We then check if the table(s) exist, (for example, if
there is a .csv file with that name) in the default directory.



Algorithm 1: DaskPlanner: Conversion of Physical
Plan to Daskplan

Input: A physical plan (P) containing ordered groups of
dependent operators (G). Each G consists of an
ordered list of tuples (k, o, d), where k is an unique
ID corresponding to each operation, o is the
operation type and d contains the operation metadata
information.

Output: The final result is a Daskplan DP, which consists
of an ordered list of operators.

1 DP ← list()
2 for sorted(G ∈ P ) do
3 for sorted(k, o, d ∈ G) do
4 dp ← dict() //create Daskplan operator
5 dp[o] ← convertToDaskPlanOperator(o)
6 dp[d] ← getMetadataInfo(d)
7 dp[key] ← k //adds key (used to get data

dependencies)
8 DP.add(dp) //adds dp to Daskplan
9 //Each operation (other than table scan) needs intermediate

results (table) from previous operations.
10 for sorted(dp ∈ DP ) do
11 while dp has children (c) do
12 dp[ti] ← get table information from ci
13 return DP

If the table exists, we dynamically generate a schema. The
schema contains information about tables and column names
and data types used in the SQL query. The schema, UDFs
(if any) and the original SQL query are then passed to the
QueryPlanner.

DaskDB can treat any file (with a supported file format) as
a data table and hence DaskDB supports in situ heterogeneous
data source querying [22]. In contrast, a DBMS would require
an ETL process to load data into its native storage.

2) QueryPlanner: The QueryPlanner creates logical and
preliminary physical plans. The schema and UDFs produced
by SQLParser, along with the SQL query, are passed into the
QueryPlanner. The QueryPlanner uses these to first create a
logical plan and then an optimized preliminary physical plan.
This plan is then sent to the DaskPlanner.

3) DaskPlanner: The DaskPlanner is used to transform the
preliminary physical query plan from the QueryPlanner into
Python code that is ready for execution. The first step in this
process is for the DaskPlanner to go through the physical plan
obtained from QueryPlanner and convert it into a Daskplan.
This maps the operators from the physical plan into operators
that more closely resemble the Dask API. This Daskplan also
associates relevant information with each operator from the
physical plan. This information includes columns and tables
involved and specific metadata information for a particular op-
erator. We also keep track of each operator’s data dependency.
This is needed to pass intermediate results from one operation
to the next. Algorithm 1 shows how DaskDB converts the
physical plan into the Daskplan.

In the next step, the DaskPlanner converts the Daskplan into
the Python code, which utilizes the Dask API. All of the detail
about each table, their particular column names and indexes
are maintained in a dynamic dictionary throughout the query
execution. This is because multiple tables and columns may be

Algorithm 2: Conversion of Daskplan to Executable
Python Code

Input: Daskplan DP
Output: Executable Code corresponding to DP

1 Procedure getExecutableCode(DP):
2 for all dp ∈ DP do
3 operationType ← dp[o]
4 metadata ← dp[d]
5 if operationType == ”read csv” then
6 table ← metadata.getTable1()
7 EMIT(”table = read csv($table)”) //$ will

replace the variable with its value
8 else if operationType == ”Filter” then
9 table ← metadata.getTable1()

10 value ← metadata.getvalue()
11 compType ← metadata.getCompType() // ≥, ≤,

6=, etc.
12 EMIT(”table = $table.filter($value,

$compType)”)
13 else if operationType == ”Join” then
14 table1 ← metadata.getTable1()
15 table2 ← metadata.getTable2()
16 col1 ← metadata.getJoinCol1()
17 col2 ← metadata.getJoinCol2()
18 EMIT(”Temp = $table1.join($table2, $col1,

$col2)”)
19 else if ... then
20 //the other cases are not shown due to space

constraints

created, removed or manipulated during a query execution. For
example, columns often become unnecessary after a particular
filter or join operation is executed. These columns are dropped
for optimization to avoid unneeded data movement. For these
reasons, the names of the tables, columns, and indexes are
dynamically maintained while transforming the Daskplan into
Python code. Algorithm 2 shows how Daskplan is converted
into executable Python code.

4) DaskDB Execution Engine: There are three main com-
ponents of the DaskDB execution engine: the client, scheduler
and workers. The client transforms the Dask Python code into
a set of tasks. The scheduler creates a DAG (directed acyclic
graph) from the set of tasks, automatically partitions the data
into chunks, while taking into account data dependencies. The
scheduler sends a task at a time to each of the workers ac-
cording to several scheduling policies. The scheduling policies
for task and workers depend on various factors including data
locality. A worker stores a data chunk until it is not needed
anymore and is instructed by the scheduler to release it.

5) HDFS: The Hadoop Distributed File System (HDFS) is
a storage system used by Hadoop applications. HDFS provides
high-performance and access to data across highly scalable
Hadoop clusters. DaskDB uses HDFS to store and share the
data files among its nodes.

B. Illustration of SQL query execution
An in situ query is executed within DaskDB by calling

query function with the SQL string as argument. The query
in Figure 2 is a simplified version of a typical TPC-H query.

The Daskplan, shown in Figure 3, is generated from the
physical plan in the DaskPlanner component. The Daskplan



from daskdb_core import query

sql = """SELECT l_orderkey, sum(l_extendedprice *
(1-l_discount)) as revenue

FROM orders, lineitem
WHERE l_orderkey = o_orderkey and

o_orderdate >= '1995-01-01'
GROUP BY l_orderkey
ORDER BY revenue LIMIT 5 ; """

query(sql)

Fig. 2: Code showing SQL query execution in DaskDB

ColumnMapping l_orderkey, l_extendedprice,l_discount

  groupby: (l_orderkey) 
aggregate: sum(revenue)

order by revenue

read_csv orders

 filter o_orderdate>='1995-01-01'

DaskDBJoin

read_csv lineitem

o_orderkey=l_orderkey 

NewColumn revenue = (l_extendedprice * (1-l_discount)) 

limit 5 l_orderkey revenue

Fig. 3: Generated Daskplan for the code in Figure 2

operators more closely resemble the Dask API. For example,
these include the read_csv and filter methods shown
in the tree. This Daskplan is then converted into executable
Python code, which is omitted due to space constraint.

C. Support for SQL query with UDFs

DaskDB supports UDFs in SQL as part of in situ querying.
A UDF enables a user to create a function using Python code
and embed it into the SQL query. Since DaskDB converts the
SQL query and UDF back into Python code, the UDFs can
reference and utilize features from any of the existing data
science packages from Anaconda Python. Spark introduced
UDF’s in SQL queries since version 0.7, which operated one-
row-at-a-time, and thus suffered from high serialization and
invocation overhead. To address these issue, Spark came up
with Pandas UDF since version 2.3, which provides low-
overhead, high-performance UDFs entirely in Python. But
these are restrictive to use as it also sometimes require to use
Spark’s own data types, which would be inconvenient for users
who are not experienced in Spark. In contrast, in DaskDB
UDFs for SQL queries can easily be written. Any native
Python function (either imported from an existing package or
custom-made), which accepts Pandas dataframes as parameters
can be applied as UDFs to the SQL queries in DaskDB. The
return type of the UDFs is not fixed like Spark’s Pandas UDF,
and hence allows the user to design UDFs with ease. Like a
general Python function, UDFs with code involving machine
learning, data visualization and numerous other functionalities
can easily be developed and applied on queries in DaskDB.

D. Illustration of SQL query with UDF

In this section, we illustrate two examples of DaskDB using
UDFs in SQL queries: K-Means Clustering and Conjugate
Gradient Optimization. The UDFs are invoked in the same

from daskdb_core import query, register_udf
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

def myKMeans(df):
kmeans = KMeans(n_clusters=4).fit(df)
col1 = list(df.columns)[0]
col2 = list(df.columns)[1]
plt.scatter(df[col1], df[col2],

c= kmeans.labels_.astype(float), s=50)
plt.xlabel(col1)
plt.ylabel(col2)
plt.show()

register_udf(myKMeans,[2])
sql_kmeans = """select myKMeans(l_discount, l_tax)
from lineitem where l_orderkey < 50 limit 50; """
query(sql_kmeans)

Fig. 4: UDF code showing K-Means Clustering

way as it would be in a typical DBMS system. Similar to
Spark, the UDFs need to be registered to DaskDB system using
the register_udf API. It takes as parameters a Python
function and a list of numbers. Suppose a Python function
func is used as a DaskDB UDF, which takes 3 pandas
dataframes as parameters, where the panda dataframes consists
of 2, 5 and 1 columns respectively, then func is registered
to DaskDB as register_udf(func, [2,5,1]).
K-Means Clustering. As shown in Figure 4, the UDF
myKMeans takes as input a single pandas dataframe
having 2 columns; hence the UDF is registered as
register_udf(myKMeans,[2]). This UDF divides the
data points into 4 clusters using the KMeans API (from
scikit-learn package) and plots them graphically using the
matplotlib package. The UDF in this query is invoked as
myKMeans(l_discount, l_tax), which means after
application of the selection condition (l orderkey < 50) and
the limit (limit 50) to the lineitem relation, both the columns
l discount and l tax together form a pandas dataframe and is
passed to myKMeans.
Conjugate Gradient Optimization. Given a mathematical
expression 2u2 + 3uv + 7v2 + 8u + 9v + 10, an UDF
myConjugateGradOpt is designed to minimize the expres-
sion using the Conjugate Gradient Optimization Technique.
The initial values of u and v are passed to the UDF as two
pandas dataframes. To solve this, the optimize module of
SciPy package is used in the UDF. The code is shown in Fig. 5.

E. Distributed Learned Index

We propose a novel distributed learned index that can be
used to improve the performance of a join, which involves
combining two relations (dataframes). In DaskDB, a relation
is constructed as a Dask dataframe by loading data from raw
data file(s). It may consist of many partitions, where each
partition stores a number of tuples of the relation. Within each
partition, the tuples can be sorted based on a natural order (i.e.,
by the primary key of a relation). Our distributed learned index
can be conceptualized as a distributed clustered index, and its
purpose is to quickly locate the partition id of a search key.

A learned index typically has a learned model that is trained
and then utilized to determine the position of a search key in a
sorted in-memory array. The learned model is usually based on



from daskdb_core import query, register_udf
from scipy import optimize
import numpy as np

def myConjugateGradOpt(df):
def f(x, *args):

u, v = x
a, b, c, d, e, f = args
return a*u**2 + b*u*v + c*v**2 +\

d*u + e*v + f

def gradf(x, *args):
u, v = x
a, b, c, d, e, f = args
gu = 2*a*u + b*v + d #u-component of gradient
gv = b*u + 2*c*v + e #v-component of gradient
return np.asarray((gu, gv))

args = (2, 3, 7, 8, 9, 10) # parameter values
x0 = df
val = optimize.fmin_cg(f, x0, fprime=gradf,\

args=args)
return val

register_udf(myConjugateGradOpt, [2])
sql_cgo ="""select myConjugateGradOpt(l_discount,
l_tax) from lineitem where l_orderkey<10 limit 1;"""
res = query(sql_cgo)

Fig. 5: UDF code showing Conjugate Gradient Optimization

a machine learning approach [15] and hence the predicted key
position may involve some uncertainties. So, a local search
may be necessary to rectify this. Our proposed distributed
learned index takes a search key as input and determines the
id of the data partition where the key is located. Our learned
model can be considered as an interpolation based approach,
such as [18] and is based on Heaviside step function [23]. It
can accurately identify the partition id for a search key, which
can avoid a local search. Next we describe our learned model.

A step function can be represented by a combination of
multiple Heaviside unit step functions, which is the basis of
our learned model. A Heaviside unit step function is defined:

H(x) =

{
0 x < 0

1 x ≥ 0
(1)

The Heaviside unit step function is a binary function, which
only identifies whether a value is negative or non-negative.
To serve our purpose, we needed a function which if given a
value x, could identify a predefined boundary (a,b), such that
x ∈ [a, b]. Thus, we define a parameterized Partition Function,
F using Heaviside functions as
Fa,b,c(y) = H((b− y) ∗ (y − a)) ∗ c | a, b ∈ R, c ∈ Z+ (2)

which returns c whenever a ≤ y ≤ b , or returns 0 otherwise.
While constructing the distributed learned index, it is as-

sumed that one of the relations is sorted by the join attribute.
Hence, if a partition table is built on this column, which can
maintain the first and last values of the keys for each partition,
then given any key, the partition containing the key can be
identified by a Partition Function.

Let there be a relation A with n partitions, sorted on a
column. If a partition table is built for this relation on the
sorted column, then it will also consist of n entries i.e. there
will be an entry for each partition. Each entry stores the begin
and end values of the sorted column for each partition. For
each partition pi, let the partition begins with a value bi and
ends with ei. Then we can construct a Learned Model Function

Algorithm 3: Construct Learned Model
Input: Relations A sorted on colA.
Output: Learned Model Function LA on A

1 Procedure getLearnedModel(A):
2 S ← GeneratePartitionTable(A)
3 LA ← NULL
4 foreach entry E in S do
5 a ← E.Begin
6 b ← E.End
7 c ← E.Partition
8 Fa,b,c(y) ← H((b− y) ∗ (y − a)) ∗ c
9 LA ← LA + Fa,b,c

10 return LA

LA on relation A as :

LA(y) =

n∑
i=1

Fbi,ei,pi
(y) (3)

We illustrate this using a simplified example with the
customer table from TPC-H, where c custkey is the primary
key. If there are 500 tuples in this relation and each table
partition can store 100 tuples, then there will be total 5
partitions. The distribution of the keys is shown in Table I,
and also plotted in Figure 7.

Begin End Partition
1 200 1

250 380 2
400 560 3
580 700 4
701 800 5

TABLE I: Parti-
tion table for cus-
tomer relation

f(key) =



1 1 ≤ key ≤ 200

2 250 ≤ key ≤ 380

3 400 ≤ key ≤ 560

4 580 ≤ key ≤ 700

5 701 ≤ key ≤ 800

(4)

It can be seen that the plot is a step function f in Equation 4.
which can equivalently be represented by summing several
Partition Functions, which constitutes the Learned Model
Function Lcustomer on the customer table as

Lcustomer(key) = F1,200,1(key) + F250,380,2(key)

+ F400,560,3(key) + F580,700,4(key) + F701,800,5(key)

where, a, b and c of the Partition Function F represent
the begin and end keys and the corresponding partition ids.
Algorithm 3 shows this process in details. The idea may seem
similar to a zone map [24], which maintains min/max value
ranges over the entries of a table column situated within each
partition of the table (i.e. zone). However, in a zone map, all
the zones are traversed iteratively until the zone containing the
required key is found. In our case, the Learned Model Function
directly provides the partition id, since it is the summation of
several Partition Functions. This is because given a key value,
only one of the Partition Functions of the learned model will
return the partition id, whereas the other ones return 0. So,
given a key, we can find the corresponding partition id to
which that key belongs.

F. Joining of Relations

Join is considered as one of the most expensive data
operations. Given two relations (dataframes) A and B, each
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Algorithm 4: DaskDB join
Input: Relations A and B where joining columns are colA

and colB .
Output: Joined relation M = A ./ B

1 Procedure join(A, B):
2 if A.npartition==1 OR B.npartition==1 then
3 M ← SinglePartitionJoin(A, B)
4 else if colA is sorted then
5 M ← PartitionwiseIndexJoin(A, B)
6 else if colB is sorted then
7 M ← PartitionwiseIndexJoin(B, A)
8 else
9 M ← MultiPartitionJoin(A, B)

10 return M

consisting of many partitions, our join algorithm (Algorithm
4) applies the following criteria:
• If any one of the relations is of single partition, we use a

Distributed Single-Partition Join (line 3 in Algorithm 4),
where the single partition of one relation is joined with
all partitions of the other relation.

• If one of the joining columns is sorted, then we join them
using a Distributed Partition-wise Index Join (lines 4 to
7) with our novel Distributed Learned Index.

• Otherwise we employ a Distributed Multi-Partition Join,
where all partition of one relation is joined with all
partitions of the other relation (line 9).

The details of each join algorithm (illustrated in Fig. 6) are
described next.

1) Distributed Single-Partition Join: This is used if any one
of the joining relations is of single partition. If A has a single
partition, the distributed query scheduler can distribute A to
those worker nodes where partitions of B are present. Then
A is merged in parallel with all the individual partitions of B.
Finally, the result of all this individual merge operations are
combined by the scheduler to get the final result.

2) Distributed Partition-wise Index Join: This algorithm
(Algorithm 5) is used when one of the joining columns is
sorted. In this case we use our distributed learned index
for partition identification and join. Let A and B be two
relations, which need to be joined on colA and colB of A
and B respectively. Without loss of generality, we assume
colA is sorted and a learned model LA(k) is constructed on
this column. Since DaskDB internally uses Dask APIs, each
relation corresponds to a Dask dataframe consisting of one or

Algorithm 5: Partition-wise Index Join
Input: Relations A and B where joining columns are colA

and colB . A is sorted on colA.
Output: Joined relation M = A ./ B

1 Procedure PartitionwiseIndexJoin(A, B):
2 // LA is the learned model built on colA
3 if LA is NULL then
4 LA ← getLearnedModel(A)
5 foreach Partition Bi of B do in parallel
6 datai ← Bi[colB] //fetch colB of the partition
7 pi ← LA(datai) //get partition id of A for each

element of datai

8 Bi[
′Partition′] ← pi //add pi as a column to the

partition
9 B.repartition(′Partition′) //repartition B so that all

records with the same ′Partition′ are together
10 B.delete(′Partition′) //delete the ′Partition′ column

from B
11 foreach Partition Bi of B do in parallel
12 Mi ← merge(Ai, Bi) //partitionwise merge
13 M ← Combine all Mi

14 return M

more partitions. For each partition Bi of B the following steps
are performed in parallel (lines 5 - 8):

• For each entry k of colB of Bi, LA(k) is determined,
which is the partition id of A to which k belongs.

• Append this list of partition ids to Bi as a new
′Partition′ column.

Then, B is repartitioned (line 9) based on the ′Partition′

column such that all the tuples within the same ′Partition′

value are together in the same partition of B. After this, the
′Partition′ column is dropped from B (line 10). The number
of partitions of both A and B are now equal. This allows us to
uniquely identify the partition pairs of (Ai, Bi) which needs
to be merged. Finally all the intermediate merged results are
accumulated together to form the final result (lines 11 - 13).
This algorithm is also illustrated in Fig. 6b.

3) Distributed Multi-Partition Join: This algorithm is used
when none of the two previously mentioned algorithms can
be applied. The idea is similar to a block nested loop join,
as each data partition can be considered as a block. The
key difference is that instead of iterating through all the
blocks of one relation in a loop and merging it with all the
blocks of another relation, the entire operation is performed
in parallel. Similar to Distributed Single-Partition Join, the



query scheduler is responsible for distributing the necessary
partitions among the worker nodes, where the intermediate
merge results get computed and are finally accumulated to get
the result. Fig 6c illustrates this process, where all n partitions
of A are merged in parallel with all k partitions of B.

G. Distributed In-Memory Data Caching

In DaskDB, raw data files are stored in the HDFS. Dur-
ing the execution of a query/analytics task, dataframes are
constructed by reading from these files. However, this incurs
significant overhead due to serialization/de-serialization (S/D).
It was shown that S/D may account for 30% of the execution
time in Spark [25]. Also, shuffling of intermediate data across
nodes may incur many S/D operations and data movement.

To address these issues, DaskDB performs distributed in-
memory data caching. Raw data files are read only once at
the time of system initialization, and split into partitions and
are persisted in the distributed memory. Each time a task is
executed, instead of reading files from HDFS, the in-memory
cached data are used. Our benchmark evaluation (Section V)
shows that we get 3× to 4× speed-up when data are cached.

H. Intermediate Data Persistence

DaskDB, built over the Dask framework, performs lazy
computation by default. In this case, the entire computation
begins in the cluster only when compute API of Dask
is encountered at the end. Hence a task cannot begin its
computation if it has data dependency on some other task.
In this case the task has to wait until the previous task
finishes and provides the result to it. To overcome this, Dask
supports the computation of intermediate tasks as soon as
they are created. This intermediate results are also persisted
in the distributed memory during the execution, so that they
can be immediately provided to the future tasks, if required.
DaskDB utilizes this feature to speed up query executions.
Computations for operations, such as merge and groupby, are
initiated and persisted as soon as they are encountered. The
intermediate results are later provided to future operations. For
example, when joining three relations A, B and C, A and B
are joined together and the result is persisted as soon as the
join operation is encountered. Later, this result is joined with
C to get the final result. In this case, the second join did not
need to wait for the result of the first join, if it was ready. If
we do not apply data persistence, then the second join has to
wait for the first join (and all other operations prior to it) to
finish and provide the intermediate result to it. Our benchmark
results show that this approach of data persistence can improve
query execution time, which entails a speed-up of 2× to 3×.

I. Distributed Task Scheduling

DaskDB is designed to support distributed in situ query
execution by utilizing multiple nodes in a cluster, where
each node may include many processing cores. To imple-
ment distributed query scheduling, DaskDB uses Dask’s task
scheduler. We explain this in the context of the example query
shown in Fig. 2. DaskDB’s query planner generates executable

Python code for this, and the scheduler performs the required
computation as per the Task Graph shown in Fig. 8.

Both relations orders and lineitem are stored in HDFS as csv
files and are loaded from there. Rectangle 1 in Fig. 8 indicates
that the orders relation is loaded. Then a filter condition is
applied to column o orderdate, as per the generated Daskplan
shown in Fig. 3, and the column is finally dropped from the
remaining tuples. A distributed learned index is constructed
based on o orderkey. This step does not appear in the Task
Graph because this a preprocessing step performed in advance.

The rectangle 2 in Fig. 8 depicts that the relation lineitem is
also similarly read and the partitions are brought into memory.
Rectangle 3 involves the partition identification and reparti-
tioning for lineitem, as described in Section IV-F2. Rectangle
4 shows the partition-wise joining of the two relations. This
task is executed in parallel for each partition. A new column
revenue is created in the rectangle 5 by multiplying the column
l extendedprice with (1 - l discount). Rectangles 6 and 7
respectively denote the groupby on l orderkey and aggregate
sum operation on the revenue column. Rectangle 8 denotes
the orderby and limit operations. In this case as per the query
only the top 5 rows having maximum revenue are selected.

V. EVALUATION

In this section, we present the experimental setup, TPC-H
benchmark results and a custom UDF benchmark results. We
also present microbenchmark results.

A. Experimental Setup

DaskDB was implemented in Python by extending Dask.
The SQLParser of DaskDB utilizes the tool sql-metadata [26].
The QueryPlanner of DaskDB extends Raco [27]. We ran
experiments on a cluster of 8 nodes, each running Ubuntu
16.04 OS. Each node has 16 GB memory and 2 Intel(R)
Xeon(R) CPUs (with 4 cores per CPU), running at 3.00 GHz.

We evaluated DaskDB against two systems that support
both SQL query execution and data analytics: PySpark and
Hive/Hivemall (henceforth referred to as Hivemall). HDFS
was used to store the datasets for each system. The software
versions of Python, PySpark and Hive were 3.7.6, 3.0.1
and 2.1.0 respectively. PySpark and Hivemall were allocated
maximum resources available (i.e. cores and memory).

We conducted experiments with three different benchmarks
and the experimental settings are summarized in Table III.
Each query/task was executed four times, with one cold run
and three warm runs, and the average time taken for the three
warm runs were taken into account.

B. TPC-H Benchmark Evaluation Results

We evaluated the systems with several queries from TPC-
H decision support benchmark [9]. We used 4 scale factors
(SF): 1, 5, 10 and 20, where SF 1 indicates roughly 1 GB.

We executed 5 queries from TPC-H benchmark and the
results are plotted in Figure 10. As can be seen, DaskDB
outperforms PySpark and Hivemall on all queries for all the
scale factors. Hivemall performs worse than both DaskDB and



Tasks Query
LR select myLinearFit(l discount, l tax) from lineitem where l orderkey < 10

limit 50
K-Means select myKMeans(l discount, l tax) from lineitem, orders where l orderkey

= o orderkey limit 50
Quantiles select myQuantile(l discount) from lineitem, orders where l orderkey =

o orderkey limit 50
CGO select myCGO(l discount, l tax) from lineitem where l orderkey < 10 limit

1

TABLE II: UDF benchmark (queries with custom UDF)
Fig. 8: Scheduler Task Graph gener-
ated for query in Figure 2

Systems
evaluated

Queries/
Tasks

Scale
factors

TPC-H
benchmark

DaskDB,
PySpark
and Hivemall

Q1, Q3, Q5,
Q6 and Q10

1, 5, 10
and 20

UDF
benchmark

DaskDB
and
PySpark

LR, K-Means,
Quantiles and
CGO (Table II)

1, 5, 10
and 20

Micro
benchmark

DaskDB
and
PySpark

Custom
query
(Fig 12,13)

[1, 5,] 10
and 20

TABLE III: Experimental setting
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Fig. 9: Microbenchmark results (DaskDB, unless PySpark is mentioned)
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Fig. 10: Execution times - TPC-H benchmark queries
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(b) UDF on scale factor 5
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(c) UDF on scale factor 10
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Fig. 11: Execution times - SQL queries with UDFs

PySpark in all cases. However, in general higher the SF, larger
the performance gap between them. For instance, with Q10,
DaskDB is 3× faster than PySpark at SF 1 and 5× faster than
PySpark at SF 20. DaskDB achieves a speedup of 8.5× with
Q3 at SF 20. The superior performance of DaskDB can be
credited to its efficient join implementation using distributed
learned index, data caching, and data persistence.

The results also show that Hivemall execution was time
consuming in all the scale factors and for SF 20, it took
over 1000 seconds on average to execute in four out of the
five queries. This is the reason why we decided to stop the
evaluation at SF 20 i.e. with 20GB dataset.

C. UDF Benchmark Evaluation Results

We developed a custom UDF benchmark, shown in Table II.
This consists of four machine learning tasks, executed as
SQL queries with UDFs: LR (Linear Regression), K-Means

(K-Means Clustering), Quantiles (Quantiles Estimation) and
CGO (Conjugate Gradient Optimization). They were devel-
oped using the available machine learning packages in Python.
Here, DaskDB was evaluated against PySpark, whereas Hive-
mall results are skipped due to poor performance.

The results are plotted in Figure 11. Similar to the TPC-
H benchmark results, DaskDB outperforms PySpark here as
well for all the machine learning tasks for all scale factors.
Among all the tasks, K-Means performs worst in PySpark.
With respect to K-Means, DaskDB performs 28.5× faster than
PySpark at SF 1 and 64× faster at SF 10. For SF 20, PySpark
took too long to perform K-Means and hence could not be
measured, whereas DaskDB took only 41s approximately. For
Quantiles, DaskDB was 4× and 16.6× faster than PySpark for
SF 1 and SF 20 respectively. These results also show that larger
the SF, the better DaskDB performs compared to PySpark.

Here too, we stopped evaluating beyond SF 20, because



select n_name, sum(o_totalprice) as total_orders
from customer, orders, nation, region
where c_custkey=o_custkey and c_nationkey=n_nationkey
and n_regionkey = r_regionkey and r_name = 'AMERICA'
and o_orderdate >= date '1995-01-01'
and o_orderdate < date '1995-01-01'+interval '1' year
group by n_name order by total_orders desc limit 1;

Fig. 12: Microbenchmark query for learned index and dis-
tributed in-memory data caching
select p_name, (p_retailprice * ps_availqty)

as total_price
from part, partsupp, supplier, nation
where p_partkey=ps_partkey and s_suppkey=ps_suppkey
and n_nationkey = s_nationkey and n_name='CANADA'
order by total_price desc limit 1;

Fig. 13: Microbenchmark query for data persistence

PySpark runtimes were much higher than DaskDB.

D. Microbenchmark Results

To show the effects of individual features, including, dis-
tributed learned index, in-memory data caching and inter-
mediate data persistence on the performance of DaskDB,
each of them were benchmarked separately. We developed
a microbenchmark, which includes the query in Fig. 12 for
learned index and distributed in-memory data caching and the
query in Fig. 13 for intermediate data persistence. They were
executed on TPC-H datasets with different scale factors (SF).

The effect of using distributed learned index for joining
relations is shown in Fig. 9a. Here, the same query was
executed in 3 scenarios: (i) DaskDB with distributed learned
index, (ii) DaskDB with the default distributed multi-partition
join, and (iii) PySpark. Higher TPC-H SFs were chosen in
this case because higher the SF, the more advantageous it
is to use a distributed learned index. As can be seen from
Fig. 9a, DaskDB with distributed learned index attains a
significant speed-up, for instance, a speed-up of 1.5× and 5.5×
respectively, compared to DaskDB with distributed multi-
partition join and PySpark on SF 10.

The advantage of distributed in-memory data caching is
illustrated in Fig. 9b. In this case, the dataframes of the
participating relations were cached in the distributed memory
among the worker nodes in the first run (cold run) and were
subsequently used in the following three runs (warm runs).
The execution time was compared with the scenario where
dataframes were not cached at all. To maintain consistency,
distributed learned index was used in both cases, along with
intermediate data persistence. We observe a speed-up of 3×
to 4× with all the SFs when data caching was performed.

Intermediate data persistence also has a positive impact on
query execution as shown in Fig. 9c. For this benchmarking,
query of Fig. 13 was executed on TPC-H datasets of SF 1,
5, 10 and 20. We measured the query execution times in 3
scenarios: (i) both distributed in-memory data caching and
persistence, (ii) without data persistence but with distributed
in-memory data caching, and (iii) without both distributed in-
memory data caching and persistence. Our results show that
DaskDB performs best with scenario (i), when both distributed
in-memory data caching and intermediate data persistence are

supported. This offers a speed-up of 2× to 3× over scenario
(ii) and a speed-up of 4× to 6× over scenario (iii).

VI. CONCLUSION

We presented DaskDB, a scalable data science system. It
brings in situ SQL querying to a data science platform in a
way that supports high usability, performance, scalability and
built-in capabilities. Moreover, DaskDB also has the ability
to incorporate any UDF into the input SQL query, where the
UDF could invoke any Python library call. Furthermore, we
introduce a novel distributed learned index that accelerates dis-
tributed join/merge operation. We evaluated DaskDB against
two state-of-the-art systems, PySpark and Hive/Hivemall, us-
ing TPC-H benchmark and a custom UDF benchmark. We
show that DaskDB significantly outperforms these systems.
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