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Abstract—The explosive growth of spatiotemporal and spatial
data is fueling the emergence and growth of many spatiotemporal
applications. Many of these applications are characterized by
complex spatiotemporal queries. An important category of such
queries is the trajectory-based spatiotemporal topological join
queries, which combine a trajectory dataset and a spatial ob-
jects dataset based on spatiotemporal predicates. Although these
queries have many important use cases, they have not received
much attention from the research community.

We systematically evaluate several applicable in-memory spa-
tiotemporal topological join algorithms, using existing trajectory
index (TB-tree) and spatial index (STR). We show that even the
best among these algorithms is long running and not scalable.
To address the performance problems of these algorithms we in-
troduce PISTON, a parallel in-memory indexing system targeted
for spatiotemporal topological join. With extensive evaluations,
we demonstrate that even the single-threaded performance of
PISTON is significantly better than the applicable approaches
that use existing trajectory and spatial indexes. Moreover, the
parallel performance of PISTON is orders of magnitude better
than these approaches.

I. INTRODUCTION

The proliferation of sensors, RFID tags, GPS-equipped
mobile devices and smart metering is driving the rapid rise in
volume of spatiotemporal data. This is fueling many emerging
applications such as location-based games and social networks,
location aware search and personalized advertising and weather
services. So the efficient management, storage and retrieval of
time-stamped location data have become ever more important.

The trajectory-based queries are important classes of spa-
tiotemporal queries [20]. Trajectory-based topological queries
deal with the whole or part of the trajectory of a moving object.
Given a set of trajectories R and another set of spatial ob-
jects (polylines or polygons) S, a trajectory-based topological
join query combines these two data sets on spatiotemporal
predicates P, such as enters, crosses or leaves. An example
of such a query is to select all trajectories that cross a set
of polygons during a given time interval in the past. These
queries are important in many Location-Based Services (LBS)
applications. A food and beverage products company, such as
Pepsi or Coca-Cola that delivers drinks from manufacturing
plants to stores, may like to create polygons around the
plants and stores. In LBS these polygons are often known as
geofences. The company may want to know the details about
the trajectories of their delivery trucks that enter and leave the
geofences during rush hours. Such information could then be
used to optimize truck routes and in turn save on fuel costs and
reduce stop times. Similar use-cases can be found with various
other industries including utility services and transportation.

Some of these fleets can have tens of thousands of vehicles [7].
New use-cases are also emerging. For instance, RFID tags with
GPS support can be used to track perishable goods, such as
seafood, and the determination and optimization of routes can
reduce wastage. Similarly, GPS-equipped mobile phones can
be used track the trajectories of people in urban areas and offer
personalized services.

It has been shown [22] that spatial join queries are compute
intensive, leading to long query latencies. Although the study
of spatial joins have received a lot of attention [17], [18], [22],
not much work has has yet been done with the spatiotem-
poral topological join queries. To evaluate the performance
of spatiotemporal topological join queries, given a dataset of
moving object trajectories and polygon objects, we describe
different applicable in-memory join algorithms. In this process
we systematically add in-memory versions of a trajectory
index, TB-tree (Trajectory-Bundle tree) [20], and a spatial
index, STR [13], on the datasets. We evaluate these algorithms
with a moderately large sized trajectory dataset having 100
million location records (corresponding roughly to one month’s
data for 1000 mobile objects) and a polygon dataset that
has 5651 polygons. Even the best among these algorithms,
called Indexed Nested Loop Join with 2 Index or INLJ2I,
takes over 8 hours when the query time interval is 1000.
Our study of these algorithms suggests that not unlike the
spatial counterparts, spatiotemporal topological join queries
are also compute intensive and long running. Obviously, the
query latencies may not be acceptable for real-time use-cases,
even with a moderately large data set. Our goal is to support
ad hoc historical spatiotemporal topological join queries with
real-time response times. We also support joining trajectories
with evolving polygons, i.e., polygons that change their size
and positions over time.

To improve the performance of spatiotemporal topological
join queries we introduce an optimization to INLJ2I. Inspired
by the Filter step in spatial join, we introduce a step that uses
a trajectory MBR (minimum bounding rectangle) filter before
performing the indexed nested loop join. We call this algorithm
Indexed Nested Loop Join (2 Index) with Trajectory Filtering
or INLJ2I-TF. INLJ2I-TF performs significantly better than
INLJ2I, but it still takes a few hundred to a few thousand
seconds to execute the query depending on the query time
interval. Both INLJ2I and INLJ2I-TF use in-memory versions
of existing indexes, TB-tree and STR. A key issue with the
existing approaches to indexing trajectory datasets is limited
scalability. We were not able to use TB-tree with a larger
trajectory dataset (one with 1 billion location records), as it
takes too long to create the index with TB-tree. Furthermore,
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existing in-memory spatial indexing techniques are not fast
enough with point-in-polygon tests, which is an important step
in the processing of spatiotemporal predicates.

To address the performance and scalability issues with
these indexes, we propose PISTON (Parallel In-memory
trajectory-based Spatiotemporal TOpological joiN), a parallel
main memory query execution infrastructure designed specif-
ically to address spatiotemporal join. PISTON does not use
any existing trajectory index or spatial index. Rather, we
introduce a novel parallel in-memory trajectory index and a
parallel in-memory spatial index, that are part of PISTON.
The trajectory index offers significantly better performance
than existing approaches in supporting high update rates and
fast data loading times. The spatial index is optimized for
point-in-polygon operations and is very fast for common cases.
We experimentally evaluate PISTON against INLJ2I-TF in
a single-threaded setting, because TB-tree and STR are not
parallel indexes. We show that single-threaded PISTON is two
to three orders of magnitude faster than INLJ2I-TF with the
trajectory dataset having 100 million records. Further, PISTON
is significantly more memory efficient than TB-tree & STR
for medium and large datasets. We also show the parallel
scalability of multi-threaded PISTON with a much larger
trajectory dataset consisting of 1 billion records. Moreover,
we evaluate PISTON with three polygon datasets consisting
of evolving polygons and show that its performance does not
diminish.

Our contributions are as follows:

1) We systematically evaluate applicable main memory al-
gorithms with existing trajectory and spatial indexes and
demonstrate that they can be long running and are not
suitable for real-time applications.

2) We introduce a parallel in-memory spatiotemporal index-
ing system (PISTON) that includes a novel in-memory
trajectory index and a spatial index. We show that even the
single-threaded performance of PISTON is significantly
better than the in-memory spatiotemporal topological join
algorithms that use existing trajectory and spatial indexes.

The rest of the paper is organized as follows. We discuss
spatiotemporal join queries, including predicate evaluation
and applicable algorithms, in Section II, We introduce our
system in Section III and present evaluation in Section IV.
Related works are discussed in Section V and conclusions in
Section VI.

II. SPATIOTEMPORAL JOIN QUERIES

The spatiotemporal queries were classified into two
main categories by Pfoser et al. [20]: coordinate-based and
trajectory-based. The former type of queries deal with the
selection of all objects with respect to a given range (e.g., range
queries and nearest neighbor queries). The trajectory-based
queries, on the other hand, deal with properties of the trajectory
of each individual object, such as topology and direction. The
trajectory-based queries were further classified into topological
queries and navigational queries.

Spatial join queries are used to coalesce two different
datasets based on a spatial predicate. In the case of trajectory-
based spatiotemporal topological join, one of the two datasets

TABLE I: Queries with different predicates and
abbreviations

Description (tables involved) Abbreviations
Trajectory crosses Polygon Crosses
Trajectory enters Polygon Enters
Trajectory leaves Polygon Leaves

is a trajectory dataset and the other is a dataset of spatial
objects such as polylines or polygons. The objects in the spatial
dataset could be stationary or evolve over time. Moreover,
the predicate must be a spatiotemporal predicate. We formally
define the spatiotemporal join operations.

A. Trajectory-based Spatiotemporal Topological Join

Definition: Given a trajectory dataset R, and spatial objects
dataset S, a time interval T and spatiotemporal predicate P, the
query operation finds for each r ε R, all s ε S such that each
r and s satisfies the predicate P within interval T. Formally,

R ./P,T S ≡ {(r, s, {t}) | rεR ∧ sεS ∧ ∃t⊆TP (r(t), s(t))}

Here, t is a sub-interval of T. Each trajectory r is a sequence
of triples:

r = {(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)},

where (xi, yi) location coordinates, ti timestamps and t1 <
t2 < ... < tn. S can be polygon or polyline spatial objects.
For the rest of the paper we mean polygons by spatial objects.

B. Spatiotemporal Topological Predicates

The spatial predicates describe how two spatial objects
relate to each other in terms of topological constraints. Several
formal models have been been proposed, to characterize these
topological relations. The Open Geospatial Consortium (OGC)
has adopted one of these, called the Dimensionally Extended
Nine-Intersection Model (DE-9IM) [5].

When it comes to spatiotemporal predicates, OGC has
still not adopted a standard model. In fact the definition of
data models and predicates in this context is a fertile ground
of research. Erwig and Schneider [6] proposed a number of
spatiotemporal predicates. A number of data models have also
been proposed [19]. For our discussion we use three spatiotem-
poral predicates, which seems to be commonly present in all
proposed models. Table I shows the predicates and the queries.

C. Predicates Evaluation

The efficient evaluation of the predicates is necessary to
be able to use them in spatiotemporal join queries in a real
database system. There have been a few research projects, such
as the work by Forlizzi et al. [8], that dealt with the represen-
tation of moving objects. The main idea behind these works is
to describe the moving objects using sliced representation or
unit representation. In this approach, the temporal evolution
of an object is decomposed into a sequence of slices or time
units such that within each unit the evolution is specified by a
“simple” function. Schneider [23] proposed a generic mecha-
nism in which the evaluation of a spatiotemporal predicate is
described by a sequence of topological relationships that may
hold at different time units. For each pair of matching time
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Fig. 1: Evaluation of the spatiotemporal predicates

unit a basic topological relation, called the unit development
is evaluated. For a trajectory of moving points and a polygon
object the unit development is the outcome of the predicate
point inside polygon. The concatenated sequence of all the
unit developments collected over the entire query interval
can then be inspected for certain patterns that evaluate the
spatiotemporal topological predicate to be true. This process
is illustrated in Figure 1(a), which checks if the spatiotemporal
predicate Crosses is valid between a trajectory and a polygon
object. The basic topological relations are evaluated at each
time unit. Prior to t2 the trajectory and the polygon are disjoint.
The trajectory is inside the polygon between t2 and t3, after
which they are disjoint again. The predicate evaluation process
is shown in Figure 1(b) and Figure 1(c) for Enters and Leaves
respectively. For the purpose of evaluating the spatiotemporal
topological predicates Crosses, Enters and Leaves between
a trajectory and a polygon, it is sufficient to evaluate basic
topological relation point inside polygon (point-in-polygon
test) at each time unit.

D. Applicable Spatiotemporal Join Algorithms

We discuss applicable spatiotemporal topological join algo-
rithms in this section. They are all based on the same principle
of spatiotemporal predicate evaluation used by previous works
(as outlined in Section II-C). For this discussion we assume
that in-memory table R is used to store the location updates
corresponding to each moving object’s trajectory and table S
is used to maintain the spatial objects. The spatiotemporal
predicate is P, where the predicates can be Crosses, Enters
and Leaves. The query time interval is T. We assume that
the records in table R are similar to “location” records, each
with attributes such as timestamp, latitude, longitude, velocity,
direction and the moving object id. The records in table S
have the attributes: the spatial object geometry, name, start-
timestamp, end-timestamp and object id. The start and end
timestamps of the spatial objects are used to specify their active
lifespan.

The first algorithm, Nested Loop Join or NLJ, uses no index
on either table and so this is a naive approach. The second
algorithm uses a trajectory index, IR, to index the location
records in table R. There is no index on table S. We call
it Indexed Nested Loop Join (1 Index) or INLJ1I. The next
algorithm introduces an in-memory spatial index, IS , on the
geometry attribute of S. It also uses an in-memory trajectory

index, IR, as before. Since this algorithm uses two indexes we
call it Indexed Nested Loop Join (2 Index) or INLJ2I. We skip
the details of NLJ, INLJ1I and INLJ2I due to space constraints.

III. OUR APPROACH

First we introduce an optimization into the algorithm
INLJ2I. We also examine the performance of applicable spatial
join approaches against our optimization. Then we describe our
system that we call PISTON (Parallel In-memory trajectory-
based Spatiotemporal TOpological joiN).

A. Trajectory Filtering

In algorithm INLJ2I the point-in-polygon test is performed
on each coordinate of a trajectory with each spatial object
returned by IS . Inspired by the Filter step of the two-step
processing of spatial predicates, we introduce a “trajectory
filter” step in the INLJ2I algorithm. This involves checking
the minimum bounding rectangle (MBR) of a trajectory for
intersection against the spatial index IS . If this trajectory
MBR does not intersect the MBR of any spatial object,
then no further action is needed for this particular trajectory.
Otherwise the point-in-polygon test needs to performed. We
call this algorithm Indexed Nested Loop Join (2 Index) with
Trajectory Filtering or INLJ2I-TF. The algorithm builds the
trajectory MBR for each trajectory returned by IR. Then MBR
intersection test is performed to filter out trajectories from
further processing. Otherwise, the same processing steps are
performed as in algorithm INLJ2I.

B. Initial Evaluation and analysis

To evaluate the spatiotemporal join algorithms that we have
described so far, we select two trajectory datasets: Dataset-
10mi consists of the trajectories of 10 thousand moving objects
(having 10 million location records) and Dataset-100mi has
100 million records for 100 thousand moving objects. Furthers
details about them can be found in Table II. We select a spatial
dataset: the Arealm polygons from TIGER Texas dataset. The
details of this dataset are shown in Table IV. To index the
trajectories we chose TB-tree. The polygons were indexed
using an efficient spatial index, STR. In both cases we use in-
memory implementations of the indexes. We use GEOS [9]
as the geometry library. We ran the applicable algorithms
presented in Section II-D with the Crosses query by varying
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Fig. 2: Execution time of Crosses query with different spa-
tiotemporal join algorithms
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Fig. 3: Breakdown of time with INLJ2I-TF (TB-tree & STR)

the query intervals among 200, 400, 600, 800 and 1000.
Algorithms NLJ and INLJ1I took too long to be practically
used in any application. So we only present the execution times
(in seconds) for INLJ2I. We compare its performance against
INLJ2I-TF in Figure 2 for both trajectory datasets (label prefix
“Dataset” is shortened as “D”). As can be seen, INLJ2I-
TF took much less time than INLJ2I in all cases. However,
even with the filtering algorithm INLJ2I-TF took hundreds to
thousands of seconds.

We profiled the execution of INLJ2I-TF with Crosses
query for Dataset-10mi and interval 100 using the profiling
tool Valgrind (“–tool callgrind” option). Figure 3 shows the
breakdown of time reported by Valgrind. As shown, the most
time (over 64%) is spent in the spatial index (STR) search.
About 24% of time is spent in point-in-polygon test and about
8% in trajectory index search. This suggests that reducing the
costs of spatial index and point-in-polygon test are important
to improve overall performance.

C. Overview of PISTON

As we have demonstrated, existing approaches to indexing
trajectories and spatial objects do not scale. These approaches,
such as TB-tree and STR, are usually tree-based and were
designed for external memory (disk) join algorithms. More-
over, the spatial indexes do not optimize the basic topological
relation such as point-in-polygon test. To improve the per-
formance of trajectory-based spatiotemporal join algorithms,
we propose a new parallel, in-memory approach that we
call PISTON. The architecture of PISTON is illustrated in
Figure 4. PISTON is a grid-based approach that organizes the
spatial domain into regular cells. There are two in-memory
indexes: the first to index the moving object trajectories and the
second to index the spatial objects (e.g., polygons). PISTON’s
spatial index is specifically optimized for point-in-polygon
test. PISTON uses these indexes to implement a parallel in-
memory spatiotemporal topological join algorithm, described

In-memory Trajectory index 

Per cell temporal index 

Interval 
table 

Compressed bitmap 

Partial traj. 
MBR map 

… … 

Level0  grid 

  RID list 
  map 

Level1  grid 

In-memory Spatial index 
Per cell 
spatial  
index 

… 

TS1 

TS2 

TSJ 

Fig. 4: PISTON overview
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Fig. 5: Trajectory index update process

in Section III-F. The trajectory index is a high performance
index designed to handle a high rate of location data updates.
The index can handle both a coordinate-based range query
and a trajectory-based query. More details about this index
are in Section III-D. The spatial index has a two level grid
organization: Level0 and Level1. The Level0 grid of the spatial
index uses the same grid organization and is aligned exactly
with that of the trajectory index. The purpose of Level1 grid
is to impose grids inside the bounding box of each spatial
object. Further details of the spatial index are provided in
Section III-E.

D. In-memory Trajectory Index

When a new location update is received, a record
is inserted into in-memory table, R (Figure 5), and a
unique record id RID is obtained. The table schema:
{ObjectId,Latitude,Longitude,Direction,Speed,Datestamp}.
Next the trajectory index is updated. Our in-memory
trajectory index discretizes the temporal dimension by
maintaining location update information for a fixed length
interval i. It discretizes the spatial dimension by imposing
regular grid SGridc on the spatial domain. Here c=1 to C,
where C is the total number of cells. A “cell trajectory”, Tc, is
part of a moving object’s trajectory that is completely within
a given grid cell c. Essentially, all the location coordinates
corresponding to a moving object’s trajectory that are inside
a cell boundary belong to Tc. A “partial trajectory”, Ti, is
comprised of those location coordinates from Tc, whose
timestamps are within an interval i. The minimum bounding
rectangle (MBR), PMi, corresponding to a partial trajectory Ti

is its “partial trajectory MBR”. As illustrated in Figure 6(b),
the these MBRs are used to filter out those segments of the
trajectory that do not intersect any polygons.

We describe the different components of the in-memory
trajectory index, as shown in Figure 4. The main idea behind
this is to maintain a per cell temporal index structure for all
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the moving objects that visited a grid cell SGridc. For each
temporal interval i ε I during the past N (configurable) days,
an entry is maintained in an interval lookup table Itabc within
SGridc. Each entry in Itabc corresponds to three data struc-
tures: a compressed bitmap CBmapc,i, a hashmap RIDListc,i
and a second hashmap PtMBRc,i. CBmapc,i identifies the the
moving objects that were in the grid cell at the given time
interval. Therefore, if object m was present during i inside
SGridc, bit position m of CBmapc,i is set. Here m=1 to M ,
M being total number of objects. We use an insert-optimized
compressed bitmap, the details of which are beyond the scope
of the paper. Given an RID the actual record storing datestamp,
latitude and longitude can be retrieved from table R. The
hashmap RIDListc,i is used to maintain for each moving object
a list of RIDs corresponding to the location updates sent while
at the grid cell c during the time interval i. Essentially the RID
list constitutes the partial trajectory for a moving object. To
keep the minimum bounding rectangle (MBR) of each partial
trajectory, the hashmap PtMBR is used, which is keyed by the
object id.

Next we describe the trajectory index update workflow. As
a new location update is received from a moving object the
trajectory index is updated to modify its trajectory information.
To support high update rates with thousands of mobile objects,
the system is organized to be highly parallel. As shown in
Figure 5, an incoming location update is first placed in one of
a set of queues RQ-t from which it is picked up by a thread
in the threadpool TP-t. The location table R is partitioned by
dividing the RID domain into a number of sub-ranges and a
separate TP-t thread handles insert into a different partition.
Upon inserting a record into the corresponding table partition,
it is then enqueued randomly in one among a set of queues
RQ-x. Since the distribution of the objects and their trajectories
could be highly skewed, it is necessary to load-balance the
trajectory index update process. The load-balancing scheme
involves the threads in the threadpool TP-x iterating over the
queues RQ-x. Each TP-x thread inspects the currently chosen
queue and processes the next available record. Let the record
fields be coordinate (x,y), datestamp dst, object id m, and
record id RID, among others. The target grid cell SGridc
is determined from its coordinate (x,y). The datestamp dst
determines the corresponding interval i in the interval table
Itabc, where dst is the datestamp at time t. If dst does not
map to an existing interval i in Itabc, a new interval i and
related data structures are instantiated. The data structures
CBmapc,i and RIDListc,i are updated from the record fields
as described earlier. To update PtMBRc,i, the old trajectory

Level1  grid 

Level1  grids 

Level0  grid 

Cell 1 Cell 2 

Obj2.2 

Obj2.1 

Obj1.1 

Fig. 7: Different Level1 grid resolutions

MBR of object m, MBRc,i,m is retrieved and is expanded to
include new location (x,y).

E. In-memory Spatial Index

We introduce a novel in-memory index for spatial objects
that is particularly suitable for point-in-polygon queries. With
a tree-based spatial index such as STR, evaluating point-
in-polygon query for a given point involves first using the
index to retrieve all candidate spatial objects whose MBRs are
intersected by the point. Then each candidate spatial object’s
actual geometry is tested for point containment. However, with
our index there is a single processing step that returns all the
spatial objects that contain a given point.

Our index is a hierarchical grid based approach. The base
level (Level0) grid is aligned exactly with the grid of the
trajectory index. A higher level (Level1) grid is imposed on
each of the spatial objects indexed. The resolution of the
grid cells at Level1 is different at different Level0 cells. This
depends on the dimension of the smallest object MBR in a
cell, as illustrated in Figure 7. In Cell2 there are two objects:
Obj2.1 and Obj2.2. The smaller of the two is Obj2.2 and its
MBR dimension determines grid cell resolution of Cell2. All
Level1 grids imposed on a Level0 cell have the same resolution.
So Obj2.1 and Obj2.2 have the same resolution.

A polygon that overlaps multiple Level0 grid cells requires
special treatment. In many of the existing approaches to
parallel spatial join [17], [18], such an object is replicated
to each cell that it overlaps. We use a technique in which
an object is split along the cell boundaries. This is shown
in Figure 6(a). In this example the object Obj is split into 3
objects: Obj1, Obj2 and Obj3. When a spatial object is split
along the cell boundaries of multiple Level0 cells, different
fragments of that object would have Level1 grid imposed on
them with different resolutions. As explained previously, this
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depends on the dimension of the smallest MBR of that cell.
During the processing of the spatiotemporal join query, an
aggregation step is used to combine the partial results for the
different fragments of an object.

There is a setup process when the spatial objects are
indexed for the first time. There are 3 steps in this process.
First, each spatial object in table S is iterated over and
the Level0 grid cell in which it lies is determined. Objects
overlapping multiple cells are also split in this step. In Step
2, each Level0 grid cell is checked to determine the spatial
object with the smallest MBR dimension. Then based on that
Level1 grid is imposed on the spatial objects. Step 3 involves
recording the status of the Level1 cells relative to the spatial
objects. With respect to a given polygon, a Level1 grid cell
status could be fully inside, fully outside, or indeterminate.
As shown in Figure 8, Cell0 is fully outside of the polygon
and Cell13 is fully inside. However, Cell17 is indeterminate
with respect to the polygon because one of the edges of the
polygon overlaps Cell17. The indeterminate cells could also
have several polygon edges which overlap the cell. The setup
process collects information for each Level1 grid cell regarding
which corner(s) of the cell is inside or outside of the polygon
and whether any polygon edge crosses the cell. To deal with
overlapping polygons, status information is collected for all
polygons and maintained separately within each Level1 cell.
To reduce memory consumption due to the setup process, the
cell status is recorded for only those Level1 cells that are
overlapped by the MBR of any spatial object. If no record
is found for a Level1 cell, it means that it is outside of any
polygon.

Once the setup process for all the polygons is complete, the
spatial index can be used to answer point-in-polygon queries.
The griding method [11] suggested a similar point-in-polygon
test procedure, that works for a single polygon only. In our
approach, this test is performed for the points of the trajectories
against all polygons. To check if a point is inside any of the
polygons indexed by the spatial index, first the Level0 cell in
which the point lies is determined and then its corresponding
Level1 cell is determined. For a given polygon many of the
Level1 grid cells are either completely inside or outside. Hence
a simple look-up is all that is needed to determine if a point
is inside the polygon. As a result, this operation could be
extremely fast in most cases. For instance, in Figure 8, point
P1 is outside of the polygon because the status of Cell0 is fully
outside. Similarly, point P2 is inside of the polygon because
cell Cell13 is fully inside.

If the Level1 cell, inside which the point lies, contains any
edges, then a line segment is formed from the test point to

Require: pt is a given point and T is the query time interval. The
procedure returns a list resultListOfPoly of all polygons inside
which pt lies and the polygons are active during T.

1: level0Cell ← getLevel0CellForGivenPoint(pt)
2: level1Cell ← getLevel1CellForGivenPoint(pt,level0Cell)
3: listPolyRecorded ← getPolygonsRecordedAtCell(level1Cell)
4: if listPolyRecorded.count = 0 then
5: resturn NULL
6: else
7: for poly in listPolyRecorded do
8: if level1Cell is fully inside of poly then
9: if isActiveDuring(poly,T) then

10: resultListOfPoly.add(poly.id)
11: else if level1Cell is fully outside of poly then
12: continue
13: else
14: corner ← determine the best cell corner to test
15: insideFlag ← initFlag(corner)
16: send a line fragment ray from pt towards corner
17: edges ← getPolyEdgesRecordedAtCell(poly)
18: for edge in edges do
19: if ray intersects edge then
20: insideFlag ← !insideFlag
21: if insideFlag and isActiveDuring(poly,T) then
22: resultListOfPoly.add(poly.id)
23: return resultListOfPoly

Fig. 9: Procedure evalPntInPoly

one of the corners of the cell. This is illustrated by an arrow
pointing from point P3 to the top-left corner of cell Cell17 in
Figure 8. This line segment is tested for intersection against
all recorded polygon edges for the cell. Since the state of the
cell corner (whether inside or outside) is known, the number
of times this line crosses the edges of the polygon determines
if the point lies inside or outside of the polygon. The steps
of this procedure to perform a point-in-polygon test is shown
in Figure 9. To support evolving polygons, such that they can
change their locations and sizes over a period of time, the
spatial index supports multiple versions of the same spatial
object. Each version is associated with an active lifespan,
with start-timestamp and end-timestamp. The lifespan must be
active during query interval T for it to be included in the return
result.

F. A Parallel In-memory Join Algorithm

PISTON introduces a parallel in-memory spatiotemporal
topological join algorithm. Like any other parallel task ex-
ecution, load-balancing is needed to evenly distribute the
query workload to the worker threads. This could be based
on static or dynamic work assignment. PISTON follows the
dynamic approach with a master/slave model, where the master
is called Manager and the slaves Worker. For each query
job the Manager creates many tasks, one for each grid cell,
and enqueues them into a synchronized queue. Each Worker
thread picks the next task from the queue and performs the
spatiotemporal join on the objects from both tables belonging
to the corresponding cell.

The sketch of the algorithm is shown in Figure 10. The
Manager creates and enqueues a task STJTask for each cell
(lines 1-3). Then it waits for the Workers to complete. A
Worker retrieves the next task from the queue and with the
cell id it retrieves the partial trajectory information for that
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grid cell from the trajectory index PiIR (line 19-21). The
trajectory index maintains information for all valid active time
intervals in memory. For every time interval it is necessary
to inspect the “partial trajectory” of each moving object. For
each such moving object indexed by the trajectory index, the
corresponding “partial trajectory MBR” is retrieved. Then this
MBR is checked against the spatial index PiIS to see if the
MBRIntersects spatial predicate is satisfied (lines 23-27). This
process is similar to the Filter step of the two step Filter
and Refinement in regular spatial predicate evaluation. If the
object’s trajectory MBR does not satisfy the MBRIntersects
predicate, no further action is needed for that partial trajectory.
Otherwise, every coordinate of that partial trajectory is tested
against the spatial index PiIS to do a point-in-polygon test (line
32). The details of Procedure evalPntInPoly is in Figure 9. The
index returns all spatial objects (polygons), {st}, that contain
the coordinate. Each such spatial object becomes part of the
moving object’s unit development sequence (lines 32-34). This
process is illustrated in Figure 6(b). As can be seen, the “partial
trajectory MBRs” PM1, PM2 and PM3 do not intersect the
MBR of object Obj1 and hence can be ignored. Since PM4,
PM5 and PM6 satisfies MBRIntersects with Obj1, only those
points in their corresponding “partial trajectories” need to be
further processed.

Once all the Workers have processed all the grid cells,
the Manager iterates over each task that was scheduled and
retrieves partial unit development sequences. For each moving
object the partial sequences are merged to create the complete
unit development sequences (line 7-12). Finally, for each such
sequence the spatiotemporal predicate P, such as Crosses,
Enters or Leaves, is evaluated (lines 14-17 in Figure 10).

IV. EXPERIMENTAL EVALUATION

In this section we evaluate PISTON. We first describe the
experiments involving polygon dataset with shapes that are
static and next we conduct experiments with evolving polygons
dataset. The trajectory dataset remains the same in both cases.

A. Dataset with static polygons

1) Experimental setup: We use a real-world spatial objects
dataset that contains the geographical features of of Texas,
drawn from the TIGER R© data [25]. Table IV shows the details
of this dataset (table S). To generate the trajectory dataset (table
R), the polyline shapefiles of Texas from the TIGER R© dataset
were fed into the mobility trace generator MOTO [14]. As
shown in Table II, we generated the trace files for 3 different
sizes. The largest trajectory dataset, Dataset-1bi, contains one
billion location records for 1 million moving objects. The dif-
ferent configuration parameters used to generate the trajectory
dataset is shown Table III. The experiments were conducted
on a machine having 256 GB memory, 8 Intel Xeon processors
with 64 cores, each running at 1064 MHz.

2) Comparison with existing trajectory and spatial index:
In Section II-D we described algorithms NLJ, INLJ1I and
INLJ2I. Then we presented an optimization to INLJ2I, called
INLJ2I-TF. They were implemented with trajectory index TB-
tree and spatial index STR. We use INLJ2I-TF results as the
baseline to compare against PISTON, because INLJ2I-TF
performs significantly better than NLJ, INLJ1I and INLJ2I.

Require: R and S are the 2 tables. PiIR is PISTON’s trajectory
index on table R; PiIS is PISTON’s spatial index on table S. The
join predicate is P, query time interval is T and mobjDevelMap
is a map containing the unit development sequence of each
object.

Manager:
1: for cellId in cellList do
2: Create a new STJTask with cellId
3: TaskQueue.push(STJTask)
4: TaskList.add(STJTask)
5: {//Wait for all tasks to complete}
6: ...
7: for STJTask in TaskList do
8: partialUnitDevelSeq ← STJTask.getPartialUnitDevelSeq()
9: for {Oi,partialDevelMapi} in partialUnitDevelSeq do

10: mObjDevel ← mObjDevelMap.get(Oi)
11: {//Merge to the unit development sequence}
12: mObjDevel.merge(partialDevelMapi)
13: mObjList ← mObjDevelMap.getKeys()
14: for mObji in mObjList do
15: mObjDevel ← mObjDevelMap.get(mObji)
16: {//Evaluate spatiotemporal predicate: crosses, enters, leaves

etc.}
17: resulti ← evalSTPredicate(P,mObjDevel)
Worker:
18: while true do
19: STJTask ← TaskQueue.pop()
20: cellId ← STJTask.cellId()
21: partialSTIndex ← PiIR.getPartialSTIndex(cellId)
22: {//Do for each interval and each moving object that was in

the cell during the interval}
23: for {intervalj ,partialTrajInfoj} in partialSTIndex do
24: for {Oi,objTrajInfoi} in partialTrajInfoj do
25: partialTrajMBRi ← objTrajInfoi.getPartialTrajMBR()
26: partialTraji ← objTrajInfoi.getPartialTraj()
27: if PiIS .MBRIntersects(partialTrajMBRi) then
28: for rt in partialTraji do
29: lt ← getLocation(rt)
30: tst ← getTimestamp(rt)
31: if tst is in T then
32: {el,s,t,lt,{st},t)} ← PiIS .evalPntInPoly(lt,T )
33: {//Add to partial unit development sequence}
34: mObjDevel.addPartUnitDevelSeq(el,s,t,lt,{st},t)

Fig. 10: Algorithm PISTON

TABLE IV: Details of polygon dataset

Dataset Database table Geometry Cardinality
Texas Arealm polygon 5651

a) Execution time: Since INLJ2I-TF does not support
intra-query parallelism we use single-threaded execution of
PISTON. We execute the Crosses query with Dataset-10mi
and Dataset-100mi. We vary the query interval 200, 400, 600,
800 and 1000. The results for Dataset-10mi can be seen in
Figure 11(a), and for Dataset-100mi in Figure 11(b). In both
cases, single-threaded PISTON is 2 to 3 orders of magnitude
faster than INLJ2I-TF. We were not able to evaluate INLJ2I-
TF with Dataset-1bi, because TB-tree takes too long to load
and create index.

b) Memory usage: Figure 12 shows the memory usage
of PISTON against TB-tree & STR. With the smallest dataset
Dataset-10mi, PISTON’s memory consumption is higher than
that TB-tree & STR. But with the moderate sized Dataset-
100mi PISTON requires half as much as memory. With the
largest dataset Dataset-1bi, TB-tree & STR approach requires
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TABLE II: Details of trajectory dataset

Dataset Num. of Num. of Size
name objects records on disk
Dataset-10mi 10,000 10 million 445 MB
Dataset-100mi 100,000 100 million 4.5 GB
Dataset-1bi 1,000,000 1 billion 46 GB

TABLE III: Trajectory data generation

Parameter Settings
Spatial domain 1251km x 1183km
Num. of polylines 56832846
Duration 1000 (timestamps)
Update frequency 10 seconds
Updates (num. of records) 10 mi, 100 mi, 1 bi
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Fig. 14: Execution times of Crosses: vary
number of threads (interval length 1000)
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Fig. 15: Execution times of query Crosses with different
number of Level0 grid cells (interval length 1000, 8 cores)

more memory than the machine’s available RAM capacity.
Due to the preprocessing step PISTON’S spatial index requires
more memory than the spatial index STR, that stores only
object MBRs. On the other hand, due to using compressed
bitmap PISTON’s trajectory index is much more memory
efficient than TB-tree. This suggests that with PISTON’s
memory usage scales well with Big Data.

c) Index creation time: To compare the overhead asso-
ciated with PISTON against TB-tree & STR approaches, we
report the time to create the trajectory index from the trajectory
dataset, as well as, the time to create the spatial index from the
polygon dataset. Here the polygon dataset remains the same,
but trajectory dataset is changed to Dataset-10mi and Dataset-
100mi. With PISTON the spatial index creation time (including

the setup steps for polygons) is longer than the trajectory index
creation time. With TB-tree & STR approach, the time taken
to create the trajectory index TB-tree dominates the overall
time. Figure 13, for Dataset-10mi the index creation time is
more than an order of magnitude longer with TB-tree & STR
compared to PISTON. With Dataset-100mi, TB-tree & STR is
more than two orders of magnitude longer than PISTON. In
fact, we could not use TB-tree to generate index for Dataset-
1bi, because it takes very long.

3) Multi-threaded scalability of PISTON: So far PISTON
was used in a single-threaded setup. To evaluate the multi-
threaded performance of PISTON we executed the Crosses
query with 2, 4, 6 and 8 cores. We use all three trajectory
datasets: Dataset-10mi, Dataset-100mi and Dataset-1bi. The
query interval length was 1000. Figure 14 shows the execution
times (in log scale) with different number of query execution
threads. As can be seen, with all three datasets PISTON shows
near linear speedup with the number of threads from 2 to 6.
From 6 threads to 8 threads the reduction in execution time
slows down. However, with 8 threads the query execution time
is less than a second for both Dataset-10mi and Dataset-100mi;
and for Dataset-1bi it is about 3 seconds. Due to the small
query execution times, adding more threads offers diminishing
returns. Note, that the 8-thread performance of PISTON with
Dataset-100mi and interval 1000 represents a speedup of
14,640X over INLJ2I-TF, which is quite significant. Note that,
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we limit the evaluation to 8 cores even though the machine
has more cores. Because, the query execution times with
Dataset-10mi and Dataset-100mi are already less than 1 second
and using more cores does not improve the performance
significantly.

4) Handling skew: The distribution of the trajectories and
the spatial objects can be highly skewed. In all previous
experiments, we chose PISTON’s Level0 grid dimension to be
100x100 (10000 cells). To show how PISTON manages skew,
we vary the number of Level0 grid cells to 400, 1600, 3600,
6400 and 10000 (corresponding to dimensions 20x20, 40x40,
60x60, 80x80 and 100x100). We executed the Crosses query
with 8 cores for query interval length 1000 using all three
trajectory datasets: Dataset-10mi, Dataset-100mi and Dataset-
1bi. Figure 15 shows the execution times (in log scale). As
can be seen, for the two larger datasets the query performance
remains relatively stable with the varying number of grid cells.
For the smallest dataset of Dataset-10mi, the query execution
time is the lowest when the number of grid cells is 400. This
is expected because for this dataset, the max execution time is
less than 0.1 second and the extra overhead of processing the
cells is the lowest when the number of grid cells is the least.
PISTON’s trajectory index uses an adaptive load-balancing
algorithm similar to in [21]. Its spatial index does not replicate
objects, but rather splits objects along tile boundaries. As a
result PISTON does a good job of handling the skew.

5) Different spatiotemporal predicates: We executed the
queries along with 8 threads for different predicates: Crosses,
Enters, Leaves. The interval length was 1000. All three trajec-
tory datasets were used. The results (omitted) show that the
performance of the queries was very similar regardless of the
predicate for any trajectory dataset.

B. Dataset with evolving polygons

In all previous experiments the polygon objects were fixed.
They did not move or change their sizes. There are many
scenarios where the objects could evolve over time, such as
in urban and agricultural land-use. Other use cases include
political boundary changes and geographical changes due to
glacial movements, deforestation or water-level changes etc.
Next we evaluate PISTON with datasets in which the polygons
also evolve with time in terms of changes in location and size.
The trajectory datasets remain the same as in Table II.

1) Experimental setup: To generate the moving polygons
dataset, we utilized the GSTD tool [24]. While generating
polygons dataset with GSTD we used the spatial dimensions of
Texas to exactly match with the trajectory dataset’s spatial di-
mensions. The configuration parameters are shown in Table V.
GSTD was used to generate evolving polygon datasets for three
different distributions: Random, Skewed and Gaussian. Visual
representations of the datasets are shown in Figure 18.

2) Different distributions: To compare the execution times
of spatiotemporal topological join query for Crosses predi-
cate with the different distributions, we executed the query
with three polygon datasets generated by the GSTD tool as
described above. We varied the trajectory datasets by using
Dataset-10mi, Dataset-100mi and Dataset-1bi. Figure 16 shows
the execution times of these queries. In all cases the combi-
nation of a given trajectory dataset and the polygon dataset

with Gaussian distribution took the longest times. And, it
look the shortest times with polygon dataset having Skewed
distribution. To understand this result, the trajectory dataset
Dataset-10mi is visualized in Figure 18(a). In the case of
polygons generated with Skewed distribution (Figure 18(c)),
the majority of the polygons are clustered in the top-left corner
of the region. When this dataset is joined with the trajectory
dataset, most of them are filtered out and very few polygons are
actually joined with the trajectories. However, with Gaussian
distribution, the majority of the polygons are situated about
the center of the region (Figure 18(d)), where most of the
trajectories are also clustered. Hence, many of the polygon-
trajectory pairs pass the partial trajectory MBR based filtering
into the actual predicate evaluation stage. Figure 17 shows
the multi-threaded scalability with PISTON for the polygon
dataset generated with Gaussian distribution. The trajectory
dataset is the Dataset-1bi. PISTON shows near linear speedup
as the number of threads are varied from 2 to 6.

V. RELATED WORK

Several projects looked into approaches to spatial join. Also
a large body of research explored temporal join. But only
a few projects investigated spatiotemporal join. We present
previous works related to spatiotemporal join, trajectory index
and spatial index.

a) Spatiotemporal Join and Trajectory Index: Most of
the past research projects in spatiotemporal query and indexing
addressed coordinate-based queries. A survey of recent devel-
opments in such indexing approaches can be found in [15]. In
our previous work we introduced a parallel in-memory index
for spatiotemporal range queries [21]. The few projects that
looked into spatiotemporal join dealt with problems that are
orthogonal to trajectory-based topological join. For instance,
Chen and Patel [4] proposed a framework for trajectory dis-
tance join and trajectory k Nearest Neighbor join between two
trajectory datasets. Iwerks et al. [12] introduced an algorithm
to maintain a dynamic view of the “spatial semijoin” results as
time progresses. Bakalov et al. [1] addressed the problem of
identifying all pairs of similar trajectories between two datasets
using symbolic representation.

The work that most closely relates to ours is that of Pfoser
et. al [20]. They introduced two spatiotemporal indexes TB-
tree and STR-tree, both are based on R-tree. They showed that
TB-tree performed better than STR-tree with trajectory-based
queries. The main idea behind TB-tree is to bundle segments
from the same trajectory into the leaf nodes of the R-tree. In
their paper they focussed on range and time-slice queries, but
provided no evaluation or result with the topological queries.
The Scalable and Efficient Trajectory Index (SETI) [3] is
another trajectory index that uses a two level organization to
disjoint the spatial from temporal indexing. SETI partitions
the 2D space into disjoint hexagon cells which remain static
during the structure’s lifetime. Like [20], the SETI paper
only evaluated range and time-slice queries. Recent works,
including [10], [16] addressed the problem of how to optimally
split trajectories to improve range query performance. But,
none of them addressed trajectory-based topological join.

b) Spatial Index: Since one of the two datasets in a
trajectory-based spatiotemporal topological join is a spatial
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Gaussian (Dataset-1bi, multi-threaded)

TABLE V: Evolving polygons dataset
generation settings

Parameter Settings
Space domain 1251x1183 km2

Num. of objects 1000
Time duration 1000
Distribution Random, Skewed,

Gaussian

(a) Trajectory dataset Dataset-10mi (b) Random distribution (c) Skewed distribution (d) Gaussian distribution

Fig. 18: Distribution of polygon objects

dataset (the other is a trajectory dataset), we survey works
related to indexing spatial objects. The most well-known
spatial index is the R-tree. It is susceptible to degraded search
performance due to node overlap and multi-path probing. A
number of heuristics have been proposed to reduce the node
overlap. The R*-tree [2] uses a custom split heuristics by
removing and reinserting a portion of the entries when a node
overflow occurs. The STR (Sort-Tile-Recursive) [13] sorts the
records in each axis and splits the space along each dimension
into strips with similar number of records.

VI. CONCLUSIONS

With the explosive growth of spatiotemporal data and the
increasingly popularity of Location-Based Services (LBS),
there is growing impetus to deal with more complex spatiotem-
poral queries. Whereas spatial join received wide attention
from the research community, it is not the case with spa-
tiotemporal topological join. We have showed that such queries
can be long running even with a moderately large trajectory
dataset.

We introduce PISTON, a parallel in-memory spatiotempo-
ral query processing system that consists of a high performance
spatial index and a trajectory index. With extensive evalua-
tion, we have demonstrated that our system achieves several
orders of magnitude better performance than the applicable
algorithms using existing trajectory and spatial index.
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