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ABSTRACT
Spatial join is a crucial operation in many spatial analysis appli-
cations in scientific and geographical information systems. Due to
the compute-intensive nature of spatial predicate evaluation, spatial
join queries can be slow even with a moderate sized dataset. Effi-
cient parallelization of spatial join is therefore essential to achieve
acceptable performance for many spatial applications. Technolog-
ical trends, including the rising core count and increasingly large
main memory, hold great promise in this regard. Previous paral-
lel spatial join approaches tried to partition the dataset so that the
number of spatial objects in each partition was as equal as possible.
They also focused only on the filter step. However, when the more
compute-intensive refinement step is included, significant process-
ing skew may arise due to the uneven size of the objects. This
processing skew significantly limits the achievable parallel perfor-
mance of the spatial join queries, as the longest-running spatial par-
tition determines the overall query execution time.

Our solution is SPINOJA, a skew-resistant parallel in-memory
spatial join infrastructure. SPINOJA introduces MOD-Quadtree
declustering, which partitions the spatial dataset such that the amount
of computation demanded by each partition is equalized and the
processing skew is minimized. We compare three work metrics
used to create the partitions and three load-balancing strategies to
assign the partitions to multiple cores. SPINOJA uses an in-memory
column-store to store the spatial tables. Our evaluation shows that
SPINOJA outperforms in-memory implementations of previous spa-
tial join approaches by a significant margin and a recently proposed
in-memory spatial join algorithm by an order of magnitude.

1. INTRODUCTION
Spatial join is pivotal in many scientific and geospatial applica-

tions such as cartography, city planning, land surveys and astro-
physics simulations. With the rapid rise in the volume and variety
of spatial data, “spatial analytics” is no longer just a niche in sci-
entific organizations and academia. The popularity of on-line ser-
vices are also contributing to the growth of spatial analysis appli-
cations. For instance, potential property buyers may be interested
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in services that offer information about flood-risk or the danger of
a toxic spill nearby. These online applications must respond to user
queries within a reasonable amount of time. Novel sources of dig-
ital spatial datasets are also helping to create new spatial analysis
applications. For instance, recent innovations in digital pathology
slide scanner technology have radically altered anatomic pathology.
This is paving the way to the quick and affordable generation of
large quantities of spatially derived micro-anatomic data. System-
atic analysis of such data involves complex spatial join queries [2]
and due to the critical nature of the application domain, fast query
response time is highly desirable.

Spatial queries typically involve computational geometry algo-
rithms to evaluate the relationships between spatial data types. These
geometric computations on datasets with many records impose a
high computational load, even with spatial indexing, leading to very
long query latencies. To reduce this cost, query evaluation consists
of a filter step that eliminates as many objects as possible based
on an approximation of the object geometry, and a more costly re-
finement step that uses the actual geometries of the remaining can-
didate objects. In spite of this optimization, spatial join queries
remain compute-intensive with long latencies.

Several prior research projects have investigated efficient algo-
rithms to address this important spatial join problem, with a focus
on the filter step. Many of these approaches [2, 15, 16, 19, 21] rely
on spatial declustering to partition the dataset, enabling paralleliza-
tion. These techniques are based on creating spatial partitions or
tiles such that each tile has roughly the same number of objects.
However, when both the filter and refinement steps are considered,
significant processing skew may be observed due to the variation
in the time it takes to process different tiles. This variation results
from differences in object properties, such as size or point density,
which are typical in many spatial datasets such as geospatial and
VLSI. To improve parallel performance of spatial join, the issue of
processing skew must be addressed.

The rapid growth in core counts and main memory sizes presents
significant opportunities for improving the performance of spatial
join queries. Today’s high-capacity servers may have hundreds of
cores and up to a terabyte of main memory. Due to the compact-
ness of the vector data representation, many spatial datasets can fit
completely in the main memory of a more modest machine. For in-
stance the TIGER [20] dataset, comprised of the polyline and poly-
gon features of all the contiguous states of the USA, is roughly 54
GB in size [19]. To exploit the potential of large memory machines,
Nobari et al. recently proposed TOUCH, an in-memory spatial join
algorithm [12]. Like previous spatial join approaches, TOUCH fo-
cuses on the filter step and does not address the processing skew
inherent in many datasets and spatial analysis applications.

We introduce SPINOJA (Skew-resistant Parallel IN-memOry spa-
tial Join Architecture), a main memory query execution infrastruc-



ture designed specifically to address processing skew for parallel
in-memory spatial join. SPINOJA takes into account the overall
query execution time, including the filter and refinement steps. It
introduces a new spatial declustering scheme called MOD-Quadtree
declustering, which alleviates processing skew. Unlike previous
declustering approaches that try to distribute the number of objects
evenly, our approach attempts to equalize the amount of required
computation per partition. The main idea is to decompose ob-
jects along tile (spatial partition) boundaries such that the amount
of work involved in processing the tiles is roughly equal. We ex-
plore three work metrics to determine the best way to approximate
the amount of work per tile. We also present three load-balancing
strategies to assign the tiles to worker threads.

To evaluate SPINOJA fairly against prior work, we implement
parallel in-memory versions of previously proposed disk-based spa-
tial join approaches, in addition to a parallel version of the TOUCH
in-memory spatial join approach. We evaluate eight spatial join
queries involving five spatial predicates that require complex re-
finement processing. Our experimental results show that SPINOJA
does a very good job of minimizing the processing skew and achieves
superior performance over the other approaches. In addition, the
memory requirements of SPINOJA are much lower than those of
Clone Join and comparable to those of TOUCH.

Our contributions are as follows:

1. We experimentally demonstrate that processing skew is a sig-
nificant bottleneck to the parallel performance of spatial join,
particularly when both the filter and refinement steps are taken
into account.

2. We present a novel spatial declustering technique based on
work metric and several load-balancing strategies to address
processing skew and significantly improve overall query per-
formance.

The rest of the paper is organized as follows. Related works are
discussed in Section 2.2. We describe the motivation of our work in
Section 3. Then we introduce the overall system organization and
the details of SPINOJA in Section 4. The evaluation is presented in
Section 5 and we draw conclusions in Section 6.

2. BACKGROUND AND RELATED WORK
In this section we provide some background on spatial query ex-

ecution. Next we present previous research related to spatial join.

2.1 Spatial queries
A spatial query execution system is essentially a relational database

system with enhanced support for spatial data types, spatial index-
ing and spatial join [9]. Geometric objects are modeled by spatial
data types such as point, line and polygon. Topological relations
are used to specify how the geometric objects are associated in a
two dimensional space. Some of the common relationships, also
called spatial predicates, are Intersects, Overlaps, Touches, Equals,
Contains and Disjoint. Recently, the Open Geospatial Consortium
(OGC) defined a core set of operations [13].

Most spatial applications today use vector data to represent com-
plex map features such as parks (represented as polygons) or roads
and rivers (represented by polylines). Vector data is much more
compact than its raster data counterpart. Vector data also enables
the use of sophisticated computational geometry algorithms for com-
mon spatial operations such as shape intersection.

Spatial query execution uses a two step evaluation mechanism.
The first step is filter, which returns a superset of the candidate
objects satisfying a spatial predicate, by comparing an approxima-

tion of actual objects (called the minimum bounding rectangle, or
MBR). The second step is refinement, in which the actual geome-
tries of the candidate objects are inspected. The filter step tries
to eliminate as many objects as possible, since the refinement step
uses time-consuming compute-intensive computational geometry
algorithms.

2.2 Related work
Jacox and Samet present a comprehensive survey of various spa-

tial join techniques [10], which they classify into two main cate-
gories: external memory and internal memory methods. We adopt
their classification for spatial joins in our discussion. Due to the
relevance to our work, we also present projects related to parallel
spatial join separately.

2.2.1 Spatial Join
The external memory or disk-based approaches attempt to min-

imize the disk I/O involved in fetching the actual objects from the
disk. The two step processing of spatial join, involving filter and
refinement, was introduced by Orenstein [14] so that only those ob-
jects that satisfy the filter step needed to be fetched from disk. The
filter step uses MBRs, which can be used to build a spatial index,
such as an R-tree. When a spatial index exists on one of the datasets
A, then an indexed nested loop join based technique can be used.
With this approach, the datasetB is iterated over and for each entry
b ε B the index onA is traversed to perform a window search based
on the MBR of b. However, if the cardinality of dataset B is much
higher than that of A, this approach is not very efficient.

When there is no pre-existing index on either of the datasets,
partitioning-based join techniques can be used. The main idea is
to decompose the spatial universe into partitions and then perform
pairwise spatial join for each partition. Because an object may
overlap multiple partitions, the result-set must be processed to elim-
inate duplicates. PBSM (Partition Based Spatial-Merge) [15] uses
this strategy by decomposing the spatial domain into equal sized
tiles. In the filter step for each tuple in a relation the<MBR, OID>
pair is appended into a disk file. Then these key-pointer elements
from the relations are loaded into memory for one single partition
at a time and MBR-join is performed using plane-sweep. The re-
sultant candidate set consists of OID pairs from both the relations.
The candidate set is sorted and the tuples (i.e. actual geometry ob-
jects) are read sequentially into memory to perform the refinement
step on the join attributes.

When the dataset completely fits in memory, the disk-based ap-
proaches can be used to perform in-memory spatial join. However,
a technique specifically designed to perform in-memory spatial join
may perform better than others. Without many disk-based restric-
tions, such as R-tree node size, there is more freedom in choosing
various design parameters. These insights led Nobari et al. to de-
velop an in-memory spatial join called TOUCH [12], in the context
of computational neuroscience simulation. TOUCH creates an R-
tree index on one of the relations. The key idea is to directly assign
the objects of the other relation to the index of the first to a non-
leaf level where they are fully contained by an MBR. This serves to
filter out many object pairs from the candidate set, which are then
joined using a PBSM-like partition join. TOUCH was shown to
have better single-threaded performance over the in-memory im-
plementations of several spatial join approaches. A limitation of
TOUCH is that its index works for a particular pair of relations,
because of the need to assign the objects of second relation to the
R-tree index of the first relation. If there are more than two spa-
tial relations in a dataset, a separate R-tree construction and object
assignment must be performed for each pair of relations.



2.2.2 Parallel Spatial Join
Parallelization has been studied by a few previous works as a

means to address the performance issues with spatial join process-
ing. When both datasets are indexed by the same indexing tech-
nique such as R-tree (or variations) it is possible to use both indexes
simultaneously. Brinkhoff et al. [5] presented such an approach.
Targeted for shared-virtual-memory architecture, their R*-tree in-
dex based spatial join parallelizes the filter step by assigning sub-
trees of the index to each processor. Starting at the root, the R-tree
indexes are synchronously traversed down to the leaf level. If two
nodes from two trees at the same level intersect, then their children
are checked for intersection.

Many disk-based parallel spatial join approaches [2, 16, 19, 21,
22] use spatial declustering to subdivide the spatial domain into
tiles so that different tiles can be concurrently processed by dif-
ferent processors. The declustering phase attempts to reduce the
variation in the number of objects in different tiles (known as tuple
distribution skew) by evenly distributing objects to tiles. However,
due to the properties of spatial datasets, such as object size and
point density, different objects may require different amounts of
computation in the refinement step. Thus, even when the number
of objects per tile is about the same, processing skew may result.
This is detrimental to the performance of a disk-based parallel spa-
tial join algorithm.

Zhou et al. [22] presented an early grid partitioning based paral-
lel spatial join approach. The paper addressed workload balancing
to deal with skew in the parallel filter stages. Their system was
evaluated with only one query.

Patel and DeWitt extended their PBSM work to deal with par-
allel spatial join [16]. Two partitioning-based parallel spatial join
algorithms, Clone Join and Shadow Join, were proposed. Clone
Join relies on a declustering technique similar to PBSM, called D-
W (decluster with whole tuple replication). As the same suggests,
entire tuples are replicated or cloned to nodes whose MBRs over-
lap with the tiles mapped to those nodes. Clone Join creates a large
number of disjoint tiles and then maps them to virtual nodes in a
round robin fashion. This scheme is expected to reduce tuple distri-
bution skew and hence balance the load, since nearby tiles, having
similar densities of objects, are assigned to different processors.
After both relations are declustered using D-W, they are locally
joined at each node using PBSM. Finally, the duplicates are elim-
inated from the result using a distinct operator. Shadow Join uses
a different declustering algorithm called Partial Spatial Surrogates
(PSS). Each tuple has a designated home node where the complete
tuple is stored. In addition, a fragment box is represents the parts
of the MBR of that tuple that overlap the tiles covered by any other
node. The fragment box and the OID of each tuple (together called
PSS) are then shipped to the destination node. Both relations are
declustered using PSS and the candidate set is produced by join-
ing partial spatial surrogates. Next, a redeclustering step sends the
candidates to their home nodes where they are joined with the first
relation. Then another redeclustering step sends the intermediate
result set to their home nodes to join with the second relation. The
authors reported that Clone Join performed better than Shadow Join
as the join selectivity increased.

The emergence of distributed data processing frameworks, such
as MapReduce, offered a new opportunity to parallelize spatial query
processing. A few systems were developed based on this idea.
SJMR [21] was designed to parallelize spatial join operations on
clusters of commodity machines using Hadoop. They used a grid-
based splitting approach with a Z-curve tile coding method and a
round-robin tile-to-partition mapping scheme. When joining 2 ta-
bles from the TIGER/Line dataset for California, SJMR showed

Table 1: Jackpine queries and abbreviations
Description (tables involved) Abbreviations
Polygon overlaps Polygon (Areawater and Areawater) Aw_ov_Aw
Polygon overlaps Polygon (Areawater and Arealm) Aw_ov_Al
Polygon within Polygon (Arealm and Areawater) Al_wi_Aw
Polyline Crosses Polygon (Edges and Arealm) Ed_cr_Al
Polyline Intersects Polygon (Edges and Areawater) Ed_in_Aw
Polyline Crosses Polygon (Edges and Areawater) Ed_cr_Aw
Polyline Touches Polygon (Edges and Areawater) Ed_to_Aw
Polyline Crosses Polyline (Edges and Edges) Ed_cr_Ed
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Figure 1: % execution time spent in filter vs. refinement with
Clone Join-IM and INLJ

slightly worse performance than a parallel implementation of PBSM.
A MapReduce-based data warehousing system for medical im-

age processing was developed by Aji et al. [2], which also utilizes
spatial join. They used spatial partitioning and observed issues with
skew in their dataset. To address this they use object count thresh-
old as the metric to split each tile into two. Objects crossing multi-
ple tiles are replicated to those tiles. Their query execution engine
supports on-demand R*-tree index construction on a per tile basis.

We previously introduced Niharika [19], a parallel spatial query
system that addresses the node performance heterogeneity in the
Cloud during the execution of parallel spatial join queries. Like
previous approaches, its spatial declustering scheme attempts to
evenly distribute the number of objects to each partition. These
spatial partitions are imported into PostgreSQL database tables as
“shards”. Niharika parallelizes spatial join by using individual Post-
greSQL instances in each member node and assigning the shards to
each node in a multi-round query execution model. We also ob-
served processing skew in Niharika, particularly with queries in-
volving polygons. In this paper, we show that the magnitude of the
skew issue is even more prominent with in-memory spatial join.

3. MOTIVATION
Spatial join queries are used to coalesce two different datasets

based on a spatial predicate. They are vital in a wide range of
spatial analysis applications, from scientific simulations, cartogra-
phy, and land surveys to flood risk analysis. New classes of spatial
analysis applications are also emerging, in domains as diverse as
VLSI, building information management, water/gas utilities, med-
ical imaging, digital pathology and computational neuroscience.

As described in Section 2.1, spatial join queries use a two-step
evaluation process. The refinement step typically involves compu-
tational geometry algorithms to evaluate the relationships between
spatial objects, which impose a high computational load, even with
spatial indexes. Consequently, a spatial join query involving even
a moderately sized dataset may lead to long query latencies. Previ-
ous spatial join research efforts focused on the filter step and did not
consider refinement (e.g., [4, 11, 15]). Moreover, they only consid-
ered one spatial predicate based on MBR comparison (MBR over-
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Figure 2: Histogram of the execution time per spatial partition
(tile) for query Ed_cr_Al

laps or intersects). Since the refinement step dominates the overall
query latency, we argue that it is important to consider both the fil-
ter and refinement steps. To illustrate our point, we selected 8 spa-
tial join queries from the Jackpine spatial database benchmark [18].
These queries are shown in Table 1. To identify the specific tables
involved in the join we use abbreviations with the 2 initial letters
of the tables. We also selected five different spatial predicates de-
fined by OGC. In Figure 1 we show the percentage of execution
time spent in filter and refinement steps for these queries. We im-
plemented in-memory versions of two disk based spatial join ap-
proaches: Clone Join and Indexed Nested Loop join (INLJ) based
on in-memory R-tree filtering. We use the label Clone Join-IM
to distinguish the in-memory version of Clone Join. We use the
TIGER California dataset, details of which are in Table 3 in Sec-
tion 5.1. As Figure 1 shows, for all queries, except for Ed_cr_Ed,
the refinement step takes over 98% of the overall filter+refinement
time. Therefore, it is imperative that a spatial join approach be op-
timized for refinement to address the long query latencies.

The recent TOUCH [12] in-memory spatial join approach, like
previous disk-based approaches, also only considers the filter step
for the evaluation. With an in-memory spatial join, disk latency is
no longer an issue, and the refinement step dominates the overall
query latency. When the actual object geometries are used during
refinement, the processing skew can become a critical issue.

To illustrate the problem, we use the Clone Join-IM algorithm.
We execute the Ed_cr_Al query for each tile generated by Clone
Join-IM declustering and report the execution times in a histogram
in Figure 2. As can be seen, the vast majority of the tiles took less
than 0.5 seconds. Only three tiles took more than 5 seconds, and
only one took over 6 seconds, which indicates significant process-
ing skew. In a parallel spatial join query processing system it is
important to distribute equal amounts of work to each processor. If
a processor takes significantly longer than others due to processing
skew, it becomes a “straggler” and the overall query latency suffers.

4. SPINOJA
We now describe various aspects of our system, called SPINOJA.

SPINOJA is an in-memory parallel query execution system devel-
oped with the goal of minimizing the spatial join query latency. It
addresses the challenges of processing skew using a metric-based
spatial declustering scheme and dynamic load balancing.

4.1 System organization
SPINOJA’s system organization is modeled after the master-slave

architecture. As shown in Figure 3, the task scheduler is called
the TaskManager, and worker threads are called Workers. The
TaskManager is responsible for scheduling a query job and as-
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Figure 3: SPINOJA system organization

signing parts of each job or tasks to the available Workers. The
TaskManager also performs result aggregation, which involves spa-
tial predicate evaluation and group-by operations, and eliminates
duplicates from the resultset using a distinct operator.

SPINOJA uses a spatial declustering scheme (described next in
Section 4.2) that attempts to reduce processing skew. Key to this
declustering process is the work metric and we describe three such
metrics. The Table loader and Index builder component loads the
tiles created by the spatial declustering into in-memory tables. It
also constructs the Tile index to be used during the query execution.
To implement the Tile index we use a compressed bitmap, which
requires less memory than other data structures. More specifically,
we use the CONCISE [7] compressed bitmap. The Scheduler com-
ponent of TaskManager assigns the tiles to the workers using load-
balancing algorithms such that each Worker only processes objects
from its assigned tiles. We evaluate three algorithms for dynamic
load balancing within this framework.

4.2 MOD-Quadtree declustering
A join query can be parallelized by partitioning the data do-

main into disjoint chunks and assigning the corresponding pair of
chunks from the two tables to a separate processor. This spatial
declustering process involves subdividing the spatial domain into 2-
dimensional tiles. Each tile contains those objects whose MBRs it
overlaps, which implies that any object whose MBR is overlapped
by multiple tiles may need to be replicated to each of those tiles.
As noted in Section 2.2.2, previous approaches to spatial declus-
tering aimed to equalize the number of objects in each tile to try
to ensure that each tile would incur roughly the same amount of
computation. This may work if only the filter step is considered,
as it makes only four numeric comparisons to check if the MBRs
of two objects overlap. However, when the refinement step is also
taken into account, this approach does not work because the amount
of computation is dependent on the properties of the objects and
the underlying computational geometric algorithm. Moreover, the
replication of large objects to multiple tiles increases the amount of
computation for each such tile.

To address the issues with existing spatial declustering approaches,
SPINOJA uses a novel technique we call MOD-Quadtree (metric-
based object decomposition quadtree) declustering. The main idea
behind our technique is to create the tiles such that the amount of
computation required by each tile is roughly the same. As the name
suggests, MOD-Quadtree is a region quadtree variant that recur-
sively decomposes a tile into four equal-sized tiles. The decom-
position criteria is not based on the number of objects, but rather
on the amount of computation estimated by a suitable work met-
ric. When the amount of computation among the tiles is equalized,
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Figure 4: MOD-Quadtree object decomposition

Require: tileMBR is the MBR of the tile for which the metric is
calculated; tableList is a list of tables containing the original
spatial objects

1: workMetric← 0
2: for tab in tableList do
3: origObjList← retrieveOverlappingObjects(tileMBR, tab)
4: for obj in origObjList do
5: objFrag← getIntersection(obj,tileMBR)
6: workMetric← workMetric + calculateMetric(objFrag)
7: . . .
8: return workMetric

Figure 5: Procedure getWorkMetric4Tile

it is expected that it would take roughly the same amount of time
to process each tile and that there would be no “straggler effect”.
A suitable work metric is therefore important to evenly distribute
the work among the tiles. Another key aspect of MOD-Quadtree
is that when a tile is subdivided into four, any object that overlaps
with the newly created (smaller) tiles is also decomposed along the
boundaries of them. This is illustrated in Figure 4, in which an ob-
ject Obj is decomposed into three fragments Obj1, Obj2 and Obj3
by clipping against the four tile boundaries. The termination cri-
teria of quadtree approaches is typically related to a threshold on
the number of objects, for instance, with point region quadtree the
decomposition of a tile halts when a tile contains one point. In
MOD-Quadtree, the recursive decomposition stops when the total
number of tiles created so far exceeds a threshold.

In each round of the MOD-Quadtree declustering algorithm the
tile with the largest work metric value is selected for decompo-
sition. The center point of its MBR is calculated before remov-
ing the tile from a global tile list. A new tile tile0 is created and
its properties are set, in particular, the work metric is calculated
for the newly created tile by invoking the procedure getWorkMet-
ric4Tile. Then tile0 is inserted into the global tile list. Similarly,
tiles tile1, tile2 and tile3 are created and inserted into the global
tile list. The MOD-Quadtree declustering algorithm is parallelized
to attain multi-threaded performance and reduce overall execution
time. Note that the tiles are ordered with Hilbert SFC (space-
filling curve) orientation to enable traversing them using Hilbert
order when assigning to Workers. This allows nearby tiles with
similar object densities to be assigned to different Workers during
query execution. Hilbert ordering also prevents a drawback with
tile assignment approaches such as round robin or range partition-
ing. With round robin assignment, the tiles assigned to a Worker
may form long columns when the number of tiles are integral mul-
tiples of the number of Workers. This may degrade overall per-
formance, as was observed in [15]. With range assignment large
blocks of tiles may be formed and also degrade performance.

Figure 5 shows the getWorkMetric4Tile procedure. It iterates
through each spatial object that overlaps the MBR of a newly cre-
ated tile tileMBR and determines the object fragment (line 5). Then
the work metric is calculated and a local variable is updated (line
6). These steps are repeated for each of the tables involved in
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Figure 6: Histogram of total area in hectares per tile of Arealm
(landmass polygons) table

the spatial join queries. For convenience, we upload the original
dataset into PostgreSQL tables and issue SQL queries as part of
the procedure call retrieveOverlappingObjects(). The actual work
metric calculation (procedure calculateMetric) depends on which
work metric to use. We evaluate three metrics in Section 4.3.

Once the declustering process completes, the generated tile list
is iterated with Hilbert SFC order and for each object fragment a
record is generated. The fields of the record include the tile id, orig-
inal object id, the MBR of the object, the fragment id, the fragment
geometry, the fragment MBR and other fields. These records are
persisted in disk files to be later retrieved when the in-memory ta-
bles are populated. For parallel retrieval multiple disk files are used
for a particular table.

When the query execution engine of SPINOJA starts, first each
in-memory table is populated by reading the corresponding disk
files. The schema of a given in-memory table tab is as follows:

{ObjectId, ObjectMBR, FragmentId, FragmentMBR,
FragmentGeom, ... <other fields of tab>}

As part of the table loading process a tile bitmap index is also cre-
ated. The index maps each fragment id to the tile id to which it
belongs. The index is essentially a dictionary as shown below:

{key: TileId, value: compressed bitmap of FragmentIds}
The use of a compressed bitmap is meant to keep the memory foot-
print of the index low.

4.3 Work metrics
The declustering phase in SPINOJA attempts to create tiles with

about the same amount of computation demands. Key to this pro-
cess is choosing a good work metric – one that is able to estimate
the actual amount of computation needed while processing a tile.
We describe and compare two different work metrics: object size
based and point density based.

4.3.1 Object size based metrics
A potential work metric candidate is the object size. Intuitively,

the larger the object the more work is needed in the refinement step.
Many spatial datasets, such as geographical and VLSI datasets, are
characterized by significant variation in the sizes of the objects. To
demonstrate, we calculated a frequency histogram of the total area
of all the polygons in the tiles created by Clone Join declustering
from the Arealm table. Figure 6 shows the histogram for tiles with
non-zero area. As can be seen, in 169 out of 1928 tiles ( 8.7%
of the tiles), the total area of all polygons is over 1200K hectares.
Usually these tiles contain very large objects such as the Death Val-
ley National Park. Moreover, several large polygons usually clus-
ter within the same spatial partition. These large objects require
expensive refinement processing more frequently, since their mini-
mum bounding rectangle (MBR) interacts with a larger number of
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Figure 8: The cost of evaluating polygon overlaps polygon

other objects. In the rest (91.3%) of the tiles the total area of all
polygons is less than 600K hectares. Note that the TIGER dataset
already does a good job of refactoring very long polyline features
(such as rivers, or roads) into smaller polyline segments. This is
illustrated in Figure 7, which shows the frequency histogram of the
total length for all polylines in each tile (with non-zero length) from
the Edges table. To contrast the variability in object sizes between
Arealm and Edges tables, we computed the standard deviation of
the total area of all polygons and the total length of all polylines
among the tiles in Arealm and Edges respectively. The standard
deviation is 354335.2 for Arealm, whereas it is 235.5 for Edges.
Therefore, it is expected that the processing skew would be less
pronounced in “polyline and polyline” queries.

Since the MOD-Quadtree declustering decomposes the spatial
objects, a metric based on object size would lead to creating smaller
objects and hence reduce the overall computation. For a polygon
the size of an object is its area, but for polyline objects the size is
related to its length. To use a metric with uniform dimension we
use the area of the MBR of an object or AreaOfMBR as the metric.
Formally, the work incurred by tile t with this metric is given by,

Wt =
∑R

i=1 AreaOfMBRi

where the number of objects in t is R.

4.3.2 Point density based metrics
The processing of a spatial predicate is dominated by the re-

finement step, which itself consists of two steps: an intersection
determination step, based on the Bentley-Ottmann plane sweep al-
gorithm [3], and a matrix creation step, based on the dimension-
ally extended 9-intersection model [6]. The dominant cost compo-
nent of these two is the plane sweep algorithm, which has a run-
ning time of O((n + k) logn). Here n is the total number of
points in all objects involved and k is the number of intersections
in the output. Since k is not known in advance, this cost can be
approximated by O(n logn) for relatively small k. In the exist-
ing approaches to spatial join, the actual geometry of each object
from the first dataset must be compared with that from the second
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Figure 9: Execution times of queries with different metrics (2
cores)

dataset. For objects with many points this may incur significant
processing cost in the plane sweep algorithm. For instance, in Fig-
ure 8 there are two polygons: A (representing San Bernardino Natl
Forest with 11,931 points) from the first dataset and B (a small
lake B with 9 points) from the second dataset. The cost of the
plane sweep, to determine if B overlaps A, can be approximated as
(11931 + 9) ∗ log(11931 + 9) ≈ 112078.5.

In the SPINOJA approach, the objects are decomposed by clip-
ping against the tile boundaries. Therefore, only the object frag-
ments within each tile need to be compared. In Figure 8 there
were 51 tiles generated by SPINOJA, T0 to T50. For demon-
stration purposes, we label the tiles sequentially from left to right
and then top to bottom, rather than using Hilbert SFC order. As
can be seen, object A is split into multiple polygons at the tile
boundaries and object B is entirely contained by tile T43. Thus,
only the object fragment of A contained within T43 needs to be
evaluated. The cost of the plane sweep can be approximated as,
(4 + 9) ∗ log(4 + 9) ≈ 33.3, which is significantly lower than
the original. As a result, we choose the plane sweep cost based
on the number of points as another work metric. We call this
PSC_NumPts. The work incurred by tile t with this metric is:

Wt = Pt ∗ log(Pt)
where Pt is the total number of points in all objects in tile t.

The factor k (the number of intersections found) in the true cost
of Bentley-Ottmann’s plane sweep algorithm can be approximated
by the selectivity of the spatial join predicate for a particular tile
being evaluated. We use this as the third work metric and call it
PSC_SelectNumPts. The work involved in tile t with this metric is:

Wt = Selt ∗R ∗ Pt ∗ log(Pt)
where Pt is the total number of points in all objects in tile t, number
of objectsR and Selt the selectivity of t. For selectivity estimation
any technique such as [1] can be used. Since Intersects is one of
the least restrictive OGC predicate, we use the aggregate of the
selectivity estimates for this predicate between each pair of tables.

4.3.3 Evaluation of the metrics
To evaluate the three metrics we executed the queries (Table 1)

with 10K tiles generated by MOD-Quadtree declustering. We used
the setup described in Section 5.1 with 2 cores. Figure 9 shows the
execution times of 4 queries with the three partitioning metrics. We
see that the PSC_NumPts metric performs best in all cases. Note
that the difference in query execution times between the two point
density metrics (PSC_NumPts and PSC_SelectNumPts) is not very
significant. However, PSC_SelectNumPts requires the additional
step of selectivity estimation and hence more computation.

Intuitively, a point density based metric may be superior since the
cost of the plane sweep algorithm in the refinement step is depen-
dent on the number of points. PSC_NumPts is a clear winner over
AreaOfMBR, especially with the longest running query Ed_cr_Ed.
Therefore, we use PSC_NumPts as the default metric in all subse-
quent experiments where applicable.



Figure 10: Processing of predicate Polygon overlaps polygon

Figure 11: Processing of predicate Polygon contains polygon

4.4 Processing of spatial predicates
The spatial predicates describe how two spatial objects relate to

each other in terms of topological constraints. A number of formal
models have been been proposed, including the nine-intersection
model [8], to characterize these topological relations. However,
many of these relations are difficult to embed in a DBMS query
language. Clementini and Di Felice proposed a model to derive a
subset of the relationships in the nine-intersection model [6]. This
model, known as the Dimensionally Extended Nine-Intersection
Model (DE-9IM), has been adopted by OGC.

In the existing spatial join approaches that rely on spatial declus-
tering, a result aggregation step is needed to remove duplicates
from the resultset. This may be necessary because in a grid parti-
tioning approach such as Clone Join, the same object can be repli-
cated to multiple grid tiles. In SPINOJA, the objects are not repli-
cated, but rather decomposed into fragments along tile boundaries.
Therefore, the result aggregation step is different from other ap-
proaches and depends on the type of spatial predicate.

For some of the DE-9IM predicates, such as Intersects, Touches,
Crosses and Overlaps, the satisfaction of the predicate by any one
pair of the object fragments in one of the tiles is sufficient. This is
illustrated in Figure 10. The polygon A has been decomposed into
fragments A0 through A8. Another polygon B has been split into
fragments B0, B1 and B2. Since the fragment pairs from each tile
are evaluated individually, if the predicate is satisfied by any one
fragment pair of A and B, the predicate is satisfied for the entire
object. In this example, if the predicate is “A Overlaps B”, it is
satisfied for fragment pairs A3 and B0, A6 and B1, and A7 and B2.

For several of the DE-9IM predicates, namely, Equals, Within
and Contains, all the fragment pairs from every tile for object A
and B must satisfy the predicate. In order to avoid costly refine-
ment involving the fragments, after the filter step and prior to re-
finement we check to see if the MBRs of the entire objects satisfies

the predicate, i.e., whether the predicate is satisfied by MBRA and
MBRB . Whereas in the filter step the fragment MBRs are used, in
this evaluation step the MBRs of the entire objects are used. This
is illustrated in Figure 11. If the predicate is “A Contains B”, all
the fragment pairs, namely, A0 and B0, A1 and B1, A2 and B2, A3
and B3, and A4 and B4 must satisfy the predicate Contains.

4.5 Load balancing
In a parallel query execution system load balancing is necessary

to evenly distribute workload to worker threads to ensure that the
overall query execution time is reduced. The aim of load balanc-
ing is to minimize the idle time by attempting to assign an equal
share of work to the workers so that they are always kept busy. In
practice, however it is not easy to allocate an equal amount of work
to each worker. If a certain task takes much longer than others it
will increase the idle times for the remaining worker threads and
the slowest task will determine the overall query latency.

Load balancing could be based on static or dynamic work assign-
ment. In the static approach, the workload is partitioned into equal
sized tasks before assigning to the workers (e.g., Clone Join stati-
cally assigns the spatial partitions to workers in a round-robin fash-
ion). This method cannot guarantee uniform idle times among the
worker threads even when number of objects are the same per spa-
tial partition. As noted in Section 3, some partitions may take much
longer to process due to the properties of the objects. Dynamic
work assignment addresses the load imbalance using a scheduler
and a task queue. The scheduler enqueues the next task from a task
pool until exhausted. Each worker dequeues an entry from the task
queue and once the execution is complete it looks for the next task.

SPINOJA uses the dynamic task assignment approach. For each
query job the scheduler creates many tasks, each with the id of a tile
generated during the declustering step. These tasks are inserted into
a synchronized task queue. Each worker thread picks the next task
and performs the spatial join on the objects from both tables that
belong to the corresponding tile. Since there are two distinct phases
of filter and refinement, it is possible to use different strategies as
to when to schedule the filter and refinement. We describe and
evaluate three strategies.

In the first approach, the tuples from the left table belonging to
the current tile are iterated over. For each such tuple, the tuples
from the right table in the current tile are checked to see if their
MBR satisfies the spatial predicate; if so, the actual geometries are
compared immediately in the refinement step. This is essentially
a per tile nested loop join and we call this approach TileNLJ (tile-
wide nested loop join). The sketch of the algorithm is shown in
Figure 12. The TaskManager creates and enqueues a task SPJTask
for each tile (lines 1-3). A Worker retrieves the next task from the
queue and obtains the tile bitmaps for the tileid from the left and
right tile indexes (lines 10-12). Then for each entry in the left tile
bitmap the fragment geometry is retrieved from leftTable. Simi-
larly, in the inner loop the fragment geometries are retrieved from
the rightTable (lines 13-16). In the filter step the MBRs of the two
geometries are checked for intersection (line 18). If true, the re-
finement step is performed with the actual geometries and for the
spatial predicate spPredicate (line 20). If the predicate is satisfied,
the corresponding object ids are added to the local resultset (lines
21-23). When all the tasks are completed, the TaskManager re-
trieves the local resultsets and performs the result aggregation and
duplicate elimination (line 5-7).

In the second approach, a tile-wide plane sweep is performed
to do the filter and then the refinement step is immediately con-
ducted on the candidate tuple pairs generated by the filter. The
plane sweep technique, used in [4, 15, 17], involves sorting the ob-



ject fragment MBRs on their lower x-coordinate. Then the MBR
with the smallest x-value is chosen and all the MBRs from the other
table that overlap it along the x-axis are chosen. Then those MBRs
are checked for overlap along the y-axis, and candidate pairs are
generated with the fragment ids of the matching MBRs. This pro-
cess is repeated until all tuples from both the tables are merged.
All the candidate pairs from a tile that pass the filter step then go
through the refinement. We call this scheduling approach TilePS
(tile-wide plane sweep) and the algorithm sketch is shown in Fig-
ure 13. The TaskManager steps for this are the same as in Figure 12.
For a particular tile, the Worker retrieves and adds the MBRs of all
fragment geometries from the leftTable and rightTable into two lists
(lines 7-12). These two lists are used as inputs to the tile-wide plane
sweep in the filter step (line 14). The fragment id pairs from two
tables that satisfy this plane sweep step constitute the candidate set.
The actual geometries for each member of this set are tested to see
if they satisfy the predicate in the refinement step (lines 17-19).

The filter step of the third scheduling strategy is similar to that
of the second approach. However, unlike an immediate refinement
that follows the filter step, in this approach the refinement step is
performed separately for a fixed size batch of candidate set. The
idea behind this strategy is to evenly distribute the refinement load
among the worker threads. Some tiles may produce more candi-
date set pairs in the filter step than other tiles. So if the refine-
ment step is also performed by the same thread as the filter, some
threads may end up doing more refinement work. For this rea-
son, the candidate pairs generated in the filter step are grouped to-
gether in batches of size BATCH (we use BATCH=100) to create a
new task. The Worker enqueues these tasks in the queue after the
tile-wide plane sweep filter step. Since the refinement step is ex-
ecuted as part of a separate task, we call this scheduling approach
TilePS_sepRefine (tile-wide plane sweep with separate refinement;
Figure 14). Again, the TaskManager steps for this are the same as
before. After the tile-wide plane sweep is performed (line 15), the
Worker iterates over the candidate set and produces batches of size
BATCH. For each batch it enqueues a task SPJTask of type REFINE
(lines 17-23). When a Worker retrieves such a task from the queue,
the actual geometries for each entry of the batch are obtained and
the refinement step is performed (lines 26-30).

We implemented the three load balancing strategies and evaluate
them with 10K tiles generated by MOD-Quadtree declustering. We
assign each Worker to a different core using Linux setaffinity. We
used the setup in Section 5.1 with 2 cores. Figure 15 shows the ex-
ecution times of four queries with the load balancing approaches.
TileNLJ does significantly worse than the other scheduling strate-
gies with queries Ed_cr_Ed, but does slightly better with the other
three queries. The candidate set size or the number of candidate
pairs generated from the filter steps of these approaches with differ-
ent queries are shown in Figure 16. Clearly, for Ed_cr_Ed query the
candidate set size is significantly larger with TileNLJ than the other
two strategies and this is reflected in the query execution times. Fig-
ure 17 shows the break-down of execution times of the scheduling
strategies with two queries Ed_cr_Aw and Ed_cr_Ed. For schedul-
ing approaches TilePS and TilePS_sepRefine there is a Tile-wide
plane sweep step, whereas for TileNLJ there is a Pairwise filter
step. The tile-wide plane sweep, as explained earlier, is a filter step
performed for all the objects in a tile, whereas the pairwise filter is
done for each pair of objects as part of the nested loop in TileNLJ.
The tile-wide plane sweep does a better job of reducing the candi-
date set size than the pairwise filter (as is evident from Figure 16),
but takes longer. The overhead of this step causes the queries to
take longer with TilePS and TilePS_sepRefine than TileNLJ for the
polyline and polygon queries. However, for Ed_cr_Ed query this

Require: leftTable and rightTable are the 2 tables, and leftTileIndex and
rightTileIndex are the corresponding indexes; spPredicate is the spa-
tial join predicate

TaskManager:
1: while tileId in leftTileIndex do
2: Create a new SPJTask with tileId
3: TaskQueue.push(SPJTask)
4: {//Wait for all tasks to complete}
5: for worker in listOfWorkers do
6: localResultset← worker.getLocalResultset()
7: update query resultset with localResultset

Worker:
8: while true do
9: SPJTask← TaskQueue.pop()

10: tileId← SPJTask.tileId()
11: leftObjBitmap← leftTileIndex.getBitmap()
12: rightObjBitmap← rightTileIndex.getBitmap()
13: for leftBitIdx in leftObjBitmap do
14: leftGeom← leftTable.getGeomAtFragId(leftBitIdx)
15: for rightBitIdx in rightObjBitmap do
16: rightGeom← rightTable.getGeomAtFragId(rightBitIdx)
17: {//Filter step: pairwise MBR compare}
18: if MBRIntersects(leftGeom.MBR,rightGeom.MBR) then
19: {//Refinement step}
20: if satisfies(spPredicate,leftGeom,rightGeom) then
21: leftObjId← leftTable.getObjId(leftBitIdx)
22: rightObjId← rightTable.getObjId(rightBitIdx)
23: UpdateLocalResultset(leftObjId,rightObjId)

Figure 12: Algorithm Load-balance TileNLJ

TaskManager:
1: {//same as before}

Worker:
2: while true do
3: SPJTask← TaskQueue.pop()
4: tileId← SPJTask.tileId()
5: leftObjBitmap← leftTileIndex.getBitmap()
6: rightObjBitmap← rightTileIndex.getBitmap()
7: for leftBitIdx in leftObjBitmap do
8: leftGeom← leftTable.getGeomAtFragId(leftBitIdx)
9: leftMBRList.add(leftGeom.MBR,leftBitIdx)

10: for rightBitIdx in rightObjBitmap do
11: rightGeom← rightTable.getGeomAtFragId(rightBitIdx)
12: rightMBRList.add(rightGeom.MBR,rightBitIdx)
13: {//Filter step: tile-wide plane sweep}
14: rsFragmentIdPairList← PlaneSweep(leftMBRList,rightMBRList)
15: {//Refinement step}
16: for fragIdPair in rsFragmentIdPairList do
17: leftGeom← leftTable.getGeomAtFragId(fragIdPair.leftId)
18: rightGeom← rightTable.getGeomAtFragId(fragIdPair.rightId)
19: if satisfies(spPredicate,leftGeom,rightGeom) then
20: leftObjId← leftTable.getObjId(fragIdPair.leftId)
21: rightObjId← rightTable.getObjId(fragIdPair.rightId)
22: UpdateLocalResultset(leftObjId,rightObjId)

Figure 13: Algorithm Load-balance TilePS

overhead is more than compensated by the reduction of time in re-
finement due to the much smaller candidate set, as can be seen in
Figure 17, This suggests that for queries with relatively smaller fil-
ter selectivity, TileNLJ is the best approach, but for queries with a
large candidate set TilePS is a better option. It is possible to design
a hybrid strategy that chooses either TileNLJ or TilePS depending
on the filter selectivity.

Interestingly, TilePS_sepRefine does slightly worse than TilePS.
To see why, we present the last level cache misses with TilePS and
TilePS_sepRefine in Figure 18. As can be seen, TilePS exhibits
fewer cache misses for all queries. With this strategy, the same
worker thread performs both the filter and refinement step for the
objects of a particular tile and so the queries with TilePS have better
data locality. We use TilePS as the default load-balancing strategy
unless otherwise specified.



TaskManager:
1: {//same as before; Create tasks SPJTask with type FILTER}

Worker:
2: while true do
3: SPJTask← TaskQueue.pop()
4: if SPJTask.getType = FILTER then
5: tileId← SPJTask.tileId()
6: leftObjBitmap← leftTileIndex.getBitmap()
7: rightObjBitmap← rightTileIndex.getBitmap()
8: for leftBitIdx in leftObjBitmap do
9: leftGeom← leftTable.getGeomAtFragId(leftBitIdx)

10: leftMBRList.add(leftGeom.MBR,leftBitIdx)
11: for rightBitIdx in rightObjBitmap do
12: rightGeom← rightTable.getGeomAtFragId(rightBitIdx)
13: rightMBRList.add(rightGeom.MBR,rightBitIdx)
14: {//Filter step: tile-wide plane sweep}
15: rsFragIdPairList← PlaneSweep(leftMBRList,rightMBRList)
16: {//Enqueue Refinement task}
17: Create a new SPJTask with type REFINE
18: for fragIdPair in rsFragIdPairList do
19: SPJTask.add(fragIdPair)
20: if SPJTask.batchSize() = BATCH then
21: TaskQueue.push(SPJTask)
22: Create a new SPJTask with type REFINE
23: TaskQueue.push(SPJTask)
24: else
25: rsFragmentIdPairList← SPJTask.getFragmentIdPairList()
26: for frIdPair in rsFragmentIdPairList do
27: leftGeom← leftTable.getGeomAtFragId(frIdPair.leftId)
28: rightGeom← rightTable.getGeomAtFragId(frIdPair.rightId)
29: {//Refinement step}
30: if satisfies(spPredicate,leftGeom,rightGeom) then
31: leftObjId← leftTable.getObjId(frIdPair.leftId)
32: rightObjId← rightTable.getObjId(fragIdPair.rightId)
33: UpdateLocalRefineResultset(leftObjId,rightObjId)

Figure 14: Algorithm Load-balance TilePS_sepRefine
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Figure 15: Execution times of queries with different load-
balancing strategies (2 cores)
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Figure 16: Candidate set size of queries with different load-
balancing strategies (2 cores)

4.6 Determining the number of partitions (tiles)
An important question in spatial declustering is how many tiles

to create in order to achieve the best query execution time. In ex-
isting declustering approaches that replicate objects to all tiles that
they overlap, there is a trade-off. The more tiles that are created, the
more object replication is needed because of the increased probabil-
ity of overlapping with the tile boundaries, leading to more memory
consumption. However, more tiles imply smaller tiles with fewer
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Figure 17: Break-down of time with different load-balancing
strategies (2 cores)
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Figure 18: Cache misses with different load-balancing strate-
gies (2 cores)
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Figure 19: Execution times of queries with different number of
tiles (2 cores)
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Figure 20: Candidate set size of queries with different number
of tiles (2 cores)

objects and faster processing time per tile.
Since SPINOJA’s MOD-Quadtree declustering does not replicate

objects, but rather decomposes objects along tile boundaries, the in-
crease in memory usage is less significant. Although smaller tiles
incur less processing costs, if there are too many tiles the schedul-
ing overhead may outweigh the benefits of partitioning. To explore
these issues, we evaluate SPINOJA with 1K, 10K, 100K and 1000K
tiles using the setup in Section 5.1 with 2 cores. Figure 19 shows
the query execution times with the four tile number configurations.
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Figure 21: Execution times of different tiles for the query Ed_cr_Al

Table 2: Point density per tile for Ed_cr_Ed
1K 10K 100K 1000K

43494.7 4329.4 444.2 50.75

As expected, 1K tiles results in the worst execution times for all
queries. For short-running queries (i.e., overall latency of less than
a second) the best performance is achieved with 10K tiles. From
1K to 10K tiles, the execution times of all queries improve. For
relatively longer-running queries (i.e., overall latency greater than
10 seconds) the performance further improves when the number
of tiles is increased from 10K to 100K. Beyond 100K tiles, the
performance of all queries worsens, except for the longest-running
Ed_cr_Ed. To explain the result, in Figure 20 we plot the candidate
set size generated by the filter step of some of the queries for dif-
ferent numbers of tiles. As can be seen, for the short-running query
Aw_ov_Al, the candidate set size is the smallest for 10K tiles. For
the longer running queries, Ed_cr_Al, Ed_cr_Aw and Ed_to_Aw, it
is the smallest for 100K tiles. The candidate set size remains rela-
tively unchanged for the query Ed_cr_Ed. However, since the point
density per tile decreases (Table 2) as the number of tiles increases,
the amount of work per tile is reduced. Therefore, the execution
time for Ed_cr_Ed continues to decrease as the tile count increases.

4.7 Managing processing skew
Parallel spatial join query execution is susceptible to processing

skew due to the dataset properties. Object replication based declus-
tering may aggravate the situation. As shown in Figure 2, although
the vast majority of tiles take less than 0.5 seconds to process the
Ed_cr_Al query with in-memory Clone Join (which we call Clone
Join-IM), a few take significantly longer. SPINOJA was designed
to address this processing skew. To show how well it achieves this
goal, we execute the Ed_cr_Al query with 10K tiles and plot the ex-
ecution times of each individual tile in Figure 21. As can be seen,
none of the tiles takes more than 0.2 seconds. To contrast, we also
plot the execution times of the tiles with Clone Join-IM. The stan-
dard deviation of the tile execution times is 0.167 for Clone Join-IM
and 0.006 for SPINOJA. Thus, it is apparent that SPINOJA does a
much better job in reducing the processing skew and hence improv-
ing on the overall query execution time.

5. EXPERIMENTAL EVALUATION
In this section we evaluate SPINOJA in various settings. We first

describe the datasets and the settings used in our experiments.

5.1 Experimental setup
We use a real-world spatial dataset that contains diverse geo-

graphical features, drawn from the TIGER R© data [20], produced
by the United States (US) Census Bureau. This is a public domain
data source available for each US state. The dataset that we use
consists of the polyline and polygon shapefiles for all the counties
of California. We merged the shapefiles to create single shapefiles.

Table 3: Database tables
Dataset Database table Geometry Cardinality
California Edges polyline 4173498

Arealm polygon 7953
Areawater polygon 39334

Table 3 shows the details of each, including the the geometry and
cardinality. We use the best of 3 warm runs to report the query
execution time results for the queries in Table 1.

The experiments were conducted on a machine having 16 GB
memory, eight 3.0 GHz Intel Xeon CPU cores with 6 MB cache,
and an 880 GB 7200-RPM SATA disk. We run Ubuntu 10.04 Lucid
64-bit with kernel version 2.6.32-33-generic as the OS.

5.2 Multicore scalability
SPINOJA’s declustering mechanism already does a good job of

reducing the overall query execution time by minimizing the pro-
cessing skew. Since it is a parallel spatial join approach, we are
also interested in its multicore scalability. To evaluate the multi-
core performance we executed the queries with 2, 4, 6 and 8 cores.
We use TilePS as the load-balancing strategy and 100K tiles.

Figure 22 shows the speedup achieved with 2, 4, 6 and 8 cores
over the the execution times with 1 core. All queries with latency
more than 1 second exhibit significant decrease in execution time,
obtaining benefit from the addition of cores. These queries show a
“staircase” pattern in the reduction in latency. With SPINOJA the
queries achieve near linear speedup in the number of cores.

5.3 Comparison with other in-memory spatial
join approaches

To evaluate the performance of SPINOJA against in-memory
spatial join approaches we implemented TOUCH [12]. We also im-
plemented in-memory versions of Clone Join [16], INLJ (indexed
nested loop join) and NLJ (nested loop join). Both TOUCH and
INLJ use a bulk-loading in-memory R-tree variation called STR-
tree that offers the best query performance. Since SPINOJA is a
parallel spatial join, in order to do a fair comparison we paral-
lelized each of these approaches. The Join Phase of TOUCH was
parallelized by assigning cells to different threads in a round-robin
manner. We call this parallel version TOUCH-P. The other phases
of TOUCH (Tree Building and Assignment) were processed using
pre-processing steps and are not part of the comparison.

The INLJ approach was parallelized by range partitioning the
larger table among the worker threads and creating an STR-tree in-
dex on the other table. Similarly NLJ was parallelized by range
partitioning the larger table among different threads. We found
that the NLJ approach takes too long for queries with Edges and
Areawater tables and so we omit NLJ from the results.

First, we report the memory usage of the different approaches.
With Clone Join the number of tiles is a crucial factor in the over-
all memory consumption. The authors of Clone Join used 10K
tiles in the spatial declustering function for their experiments and
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Figure 22: Multicore speedup of SPINOJA over 1 core performance (2, 4, 6 and 8 cores)
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Figure 23: Memory usage for queries with SPINOJA vs. other approaches (8 cores)
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Figure 24: Execution times of queries with SPINOJA vs. other approaches (8 cores)
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Figure 25: Execution times of queries with SPINOJA vs. PostgreSQL

did not report the effect of the number of tiles. We implemented
in-memory versions of Clone Join with both 10K and 100K tiles
and call them Clone Join-IM (10K) and Clone Join-IM (100K)
respectively. To compare, we also present the memory usage of
SPINOJA with the same tile configurations. As shown in Figure 23,
Clone Join-IM with 100K tiles requires significantly more memory
than all other approaches. This is because with more tiles the proba-
bility of an object overlapping multiple tiles increases and hence the
likelihood of it getting replicated to each such tile also increases.
SPINOJA uses slightly more memory with 100K tiles than with
10K, but is still comparable to the memory usage of TOUCH-P.

For SPINOJA we report the execution times with 100K tiles, as
this gives the best performance for the longer running queries. The
execution times of the queries with SPINOJA and the other ap-
proaches are shown in Figure 24. All the query execution times
are reported for the 8-core execution. It is evident that SPINOJA
outperforms all other approaches by wide margins. SPINOJA is
90X faster than INLJ in the best case. Compared to TOUCH-P,
SPINOJA is significantly faster, particularly, with the queries in-
volving Edges and Areawater. For instance, SPINOJA is about 50X
faster than TOUCH-P with Ed_cr_Aw query. Note that TOUCH-
P does better than INLJ in most queries but TOUCH-P performs



worse with self-join, namely Aw_ov_Aw and Ed_cr_Ed. This is
because its Assignment step is unable to filter objects for self-join.

Between the two Clone Join variations, there is no clear winner
in terms of execution time: Clone Join-IM (10K) does better than
Clone Join-IM (100K) with the short running queries and Clone
Join-IM (100K) performs better than the other with the longer run-
ning queries. In fact, Clone Join-IM (100K) is faster than both
TOUCH-P and INLJ with the longer running queries. However,
Clone Join-IM (100K) requires significantly more memory than
Clone Join-IM (10K). Due to this increased memory usage, Clone
Join-IM (100K) may not be practical with larger datasets. SPINOJA
does better than Clone Join-IM (100K) and Clone Join-IM (10K)
in all cases. For instance, with Ed_to_Aw query SPINOJA is about
30X faster than Clone Join-IM (10K) and 17X faster over Clone
Join-IM (100K). With the purely polyline based query Ed_cr_Ed,
SPINOJA achieves the least speedup over the other approaches be-
cause, this query exhibits less processing skew than the others, as
explained in Section 4.3.1.

5.4 Comparison with PostgreSQL
SPINOJA is essentially a main-memory column store database

optimized for spatial join. A direct comparison with a general
purpose relational database, such as PostgreSQL, cannot be made
because SPINOJA lacks several features such as transactions and
a query optimizer. However, by comparing SPINOJA with Post-
greSQL we make the case that a custom-built database might be
better suited for spatial join than a general purpose relational database.
In Figure 25 we compare the execution times of the queries with
PostgreSQL 8.4.4. The bufferpool of PostgreSQL was set to 8
GB so that the database completely fits in memory. Since Post-
greSQL does not yet support intra-query parallelism, we present the
query execution times with SPINOJA for one core, alongside those
with 8 cores. The single-core performance of SPINOJA over Post-
greSQL is quite good for both short and long-running queries. For
instance, SPINOJA attains a speedup of 19X with Al_wi_Aw and a
speedup of 123X with Ed_cr_Aw query. Consequently, the 8-core
speedup of SPINOJA over PostgreSQL is significant. For example,
this speedup is 749X with Ed_cr_Aw. Note that with the Intersects
predicate (i.e. Ed_in_Aw query), SPINOJA achieves relatively less
speedup than other “polyline and polygon” queries with different
predicates. This is because PostgreSQL uses an optimization with
this predicate, which SPINOJA currently does not implement.

6. CONCLUSIONS
Spatial join is important in many traditional and emerging spa-

tial data analysis applications. We have introduced SPINOJA, a
parallel in-memory spatial query execution infrastructure. It is de-
signed to accelerate spatial join performance by exploiting large
main-memory available in modern machines and rising core count.

Previous approaches to disk based parallel spatial join used spa-
tial declustering that attempted to distribute the objects to tiles based
on object count. Moreover, they focused on the filter step. How-
ever, when the more compute-intensive refinement step is taken
into account, the object properties, such as size or point density, be-
come important. As a result, even when the number of objects per
tile is roughly equal, processing skew can occur. In an in-memory
spatial join query, in the absence of disk latency, the processing
skew becomes the key bottleneck to parallel performance.

SPINOJA addresses this processing skew by using an object de-
composition based declustering. The declustering uses a work met-
ric to equalize the amount of computation demanded by each tile.
We also present three load balancing strategies. With extensive
evaluation we demonstrate that SPINOJA does significantly better

than in-memory implementations of previous parallel spatial join
approaches and the parallel performance of a recently proposed in-
memory spatial join.
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