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Abstract—The volume of data that is generated each day is
rising rapidly. There is a need to analyze this data efficiently and
produce results quickly. Data science offers a formal methodology
for processing and analyzing data. It involves a work-flow
with multiple stages, such as, data collection, data wrangling,
statistical analysis and machine learning. In this paper, we
look at data analytics systems that support the data science
work-flow. The variety of current commercial and open-source
data analytics systems differ significantly in terms of available
features, functionality, and scalability. A benchmark can be
used to evaluate the functionality and performance of a system.
However, there is no standard benchmark for evaluating or
comparing these data systems for doing data science. In this
paper, we introduce a data science benchmark, Sanzu, to evaluate
systems with data processing and analytics tasks. Our benchmark
includes a micro and macro benchmark. The micro benchmark
tests basic operations in isolation. It consists of task suites for
reading and writing, data wrangling, statistical analysis, machine
learning and time series analysis. Each macro workload evaluates
an analytics application where a series of analysis or functions are
based on a real world application. The macro benchmark focuses
on sports and smart grid analytics. We evaluate these tasks on
five different popular data science frameworks and systems: R,
Anaconda Python, Dask, PostgreSQL (MADlib) and PySpark.
For micro benchmark we generate synthetic datasets with 3 scale
factors: 1, 10 and 100 (scale factor 1=1 million). The macro
benchmark uses data generated from real-world data sources.

I. INTRODUCTION

The digital information revolution is accelerating the growth
of data. Data is everywhere and a significant part of our daily
activities generate data. These activities include online shop-
ping, browsing and search, and even offline tasks like medical
checkup at a clinic or check-in at our local grocery stores.
Besides human activities, a vast amount of data is generated
from machine to machine (M2M) interaction. However, most
of the collected data is raw. To extract value from the data,
it is necessary to process and analyze the data to enable
the creation of actionable insights. With advances in data
collection and storage technologies, data analysis has become
widely accepted as the fourth paradigm of science [12].

Data science provides formal methods and techniques for
processing and analyzing data. Data science is evolving as
a field and it derives skills from different disciplines, such
as math, statistics and computer science. The data science
process is characterized by a workflow with a feedback loop
(described in Section III-B). In this workflow different tasks
are pipelined, which resemble the stages in the “big data
pipeline” as described in [14]. However, data science not only
includes notions of big data technical challenges, but also
considerations that might arise even with smaller datasets [3].

To derive value from raw data, it needs to be cleaned,
analyzed, manipulated, stored and retrieved. These actions can
be performed in different ways. Historically, data was stored
in the database, retrieved when needed and then operations
were performed on it. This can be very useful in many
situations. However, when there are large amounts of data
that need to be analyzed together and multiple times, this can
result in inefficiencies. Some of these inefficiencies are due to
constantly retrieving and storing data from the database. The
others are due to a lack of support for one or multiple stages
of the data science workflow. To address these challenges, a
number of data systems and frameworks have been developed
to analyze data. These data systems, libraries and platforms,
are constantly evolving. The variety of systems offered by
current commercial and open-source data analytics systems,
differ significantly in terms of available features, functionality
and storage capacity.

In computing, the purpose of a benchmark is to run one or
more computer programs to assess the relative performance
of an object, by running a number of standard tests against
it [4]. Benchmarks have been developed to evaluate some
of the big data systems ([1], [6], [5], [8], [29], [15]). They
focus on either business model queries or more specific tasks
and implementations, such as sorting, genomics algorithms
and smart grid analytics. However, to our knowledge, there is
no benchmark to evaluate the functionality and performance
of the systems for doing data science. It is unclear what
system does this best because there is no industry standard
for evaluating or comparing the data science systems that are
commonly used for these kinds of analysis.

To address this need we introduce a data science benchmark
called Sanzu. Our benchmark is intended to serve as a basis
for an industry standard benchmark for evaluating systems and
libraries for doing data science. The benchmark includes two
components: a micro benchmark and a macro benchmark. The
micro benchmark consists of several task suites that closely
follow the stages in the data science workflow, including data
loading, data wrangling, descriptive and inferential statistical
analysis and machine learning. For instance, Sanzu looks at
the capacity for the systems to do simple statistical tasks, such
as filtering and finding the central tendency, to more complex
tasks with machine learning, such as linear regression and K-
means Clustering. It also includes time series tasks owing to
its importance in different industries. The intent of the macro
benchmark part of Sanzu is to incorporate applications that
are representative of real-world data science use cases. To that
end, the macro benchmark includes some real-world tasks in
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the field of sport analytics, particularly, ice hockey. It also
includes a smart grid analytics application, with a focus on
demand curves. Sanzu is an open-source project and the source
code is publicly available 1.

We use Sanzu to evaluate five popular data science frame-
works and systems. The five data analytic systems are R [24],
Anaconda Python [23], Dask [2], PostgreSQL (MADlib) [22]
and PySpark [28]. The research focus of this paper is on
the performance of each individual system completing each
particular task. The benchmark aims to expose strengths of
the systems as well as particular limitations of each system.
The micro benchmark tasks were first evaluated with a small
dataset to ensure consistency of results across all systems.
Then they were tested with three different datasets by varying
the scale factor (SF: 1, 10, and 100, where SF 1=1 million
rows) to evaluate their scalability.

While developing this benchmark we have found that some
of the systems lack support for specific tasks. So wherever we
have specified “NF” (No Functionality) in the paper, we do not
claim that it is impossible to implement it in a given system.
But rather, we have found no ready to use built-in functionality.
We are also aware that while choosing some built-in function-
ality we may have excluded some optimization. Finally, we
have discovered that several systems do not scale with larger
datasets (scale factor 10 or 100). We believe that our findings
will open up ongoing discussion within the community, which
may lead to improved support for functionality and scalability
for the data science tasks within some of the systems. It is our
hope that our effort would help in the adoption of a benchmark
that will be widely used by the data scientists.

II. RELATED WORK

To our knowledge, no benchmark exists that can be termed
as a data science benchmark. However, there are several
categories of benchmarks that are related. Relational database
benchmarks belong in the first category. In the second category
are the big data systems benchmarks. Then, there are domain
specific analytics benchmarks; but these tend to focus on
specific tasks, such as smart grid or genomics problems.

A. Database benchmarks

There are a number of commercially available and free
database benchmarks. The most well known is the Transaction
Processing Performance Council (TPC) [30]. It is devoted to
defining transaction processing and database benchmarks for
diverse workloads. TPC-C is an On-line Transaction Process-
ing (OLTP) benchmark to measure transactional throughput.
TPC-H is a decision support benchmark characterized by the
execution of complex SQL queries. Some of these benchmarks
have evolved over the years. TPC-DS is TPC’s latest decision
support benchmark with a complex snowflake-like data model.

Besides transactional and decision support workloads, there
have been attempts to develop database benchmarks for other
kinds of workloads. For instance, Jackpine [25] is a benchmark
to evaluate spatial database performance.

1Sanzu data science benchmark: http://bigdata.cs.unb.ca/projects/sanzu

B. Big data systems benchmarks

The growing popularity of big data systems, such as
Hadoop [10] and Spark [28], led to the development of
several benchmarks. These benchmarks address the different
aspects of big data: volume, variety and velocity. YCSB [1] is
arguably the first among the big data benchmarks. The focus of
this benchmark was to evaluate the performance of emerging
NoSQL data stores and also to compare them against tradi-
tional relational databases. In the original paper, the authors
executed three different workloads with four different data
systems: HBase, Cassandra, PNUTs, and MySQL. TeraSort (or
GraySort) [8] is another well-known benchmark to be run on
commercially available hardware. It is a micro benchmark that
sorts a large number of 100-byte records with the goal of stress
testing processing, and storage I/O subsystems. BigBench [6]
is a popular end-to-end big data benchmark. It provides a
data model and synthetic data generator. Its data model was
adopted from the TPC-DS benchmark, and extended that with
semi-structured and unstructured data components. Recently,
a modified version of BigBench, called BigBench V2 [5],
has been introduced. It includes a new data model and an
overhauled workload, that includes Web-logs modeled as key-
value pairs.

C. Domain specific analytics benchmarks

Mehta et al. [17] evaluated several systems with scien-
tific image data processing tasks. The uses cases were from
neuroscience and astronomy. The systems they evaluated
were Spark, Myria, Dask, SciDB and TensorFlow. In [29]
a genomics benchmark, GenBase, was developed to measure
systems performance on data managaement and data analytics
tasks. The systems that were evaluated were R, PostgreSQL,
a column store database, SciDB, and Hadoop. A benchmark
to evaluate common smart grid analytic tasks was developed
by Liu et al. [15].

III. MOTIVATION

In this section, we discuss the motivation behind our work.

A. Data science

Data science provides tools, techniques and methodologies
to turn data into insight. It is still evolving as a field. Joel Grus
has defined a data scientist as someone who extracts insight
from messy data [9].

B. Data science workflow

Data science draws various techniques and skills from
different fields, including math and statistics, machine learning
and computer science. In addition, a data scientist may possess
domain expertise in her own areas. Invariably, data science
tasks follow a series of steps, from data gathering to building
analytical models. The data science process [26], can be
conceptualized as a workflow.

As shown in Figure 1, the first step of the workflow is the
collection of data. The second step is data wrangling, which in-
volves loading, cleaning, transforming, and rearranging messy

1041-4347 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication or
redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



Raw 
Data

Clean
Data

Data 
collection

Data 
wrangling

Explanatory
Model

Descriptive
and
Inferential 
statistics

Machine
Learning

Real
world

Data
Product

Build,
Communicate

Make decisions,
Interact Predictive

Model

Fig. 1. Data Science Workflow

data for easy access and analysis. This data preparation step
is vital for subsequent downstream processing. According to
some estimates [20], on average about 50% to 80% of the
time in the data science workflow is spent in data wrangling.
The next step is to apply statistical analysis on the clean data
to build explanatory model. The statistical analysis could be
descriptive or inferential. Descriptive statistics quantitatively
describes the characteristics of a dataset. Essentially, it is
used to summarize the entire population. Important descriptive
statistical properties include measures of central tendency and
measures of dispersion. Inferential statistics is used to make
generalization about the population based on representative
subsets of the population called samples. A common approach
to investigate a claim about the population by analyzing sam-
ples is hypothesis testing. The statistical analysis techniques
can be used to build explanatory model. The explanatory
model establishes a causal effect from the observed data. On
the other hand, the predictive model is used to predict new
observations and can be constructed by machine learning algo-
rithms. The choice of a particular machine learning algorithm
depends on the type of problem at hand.

Once there is a model we could communicate our results
or build a “data product”, such as an Email spam filter. The
data product is usually incorporated back into the real world,
thus enabling user interaction with that product. This process
helps generate more data, and in turn creates a feedback loop.
Schutt and O’Neil [26] noted that this feedback loop is a key
distinguishing feature of the data science process.

C. Why a data science benchmark?
We believe that a benchmark for data science should faith-

fully follow the data science process. Reflecting the ground
reality, it should contain tasks from every step of the workflow
(as in Figure 1). As described in Section II, there are a few
benchmarks that focus on a few domain specific analytics
applications. However, no benchmark exists that captures
the data science process. Given the growing importance of
data science, we have developed our benchmark. We call it
“Sanzu”, which is a mythical river of life in Japanese tradition,
to symbolize the workflow in data science.

IV. SYSTEMS EVALUATED

In this section, the five analytics systems that we have
evaluated are described. They are all publicly available open-
source software. The software version, programming language

Software Version Language Key libraries

Anaconda 4.4.0 Python
Pandas, Numpy,
MatplotLib, Scikit

Dask 0.15.1 Python
PySpark 2.11 Python Hadoop 2.3
PostgreSQL 9.6 SQL MADlib
R 3.4.1 R

TABLE I
SOFTWARE CONFIGURATION

and key libraries of these systems are shown in Table I.
We chose these five analytic systems because we believe
that they are a good representation of current state-of-the-
art tools used in data science. Moreover, they were used
in other benchmarks mentioned in Section II. PostgreSQL
is a popular relational database with support for machine
learning in SQL (MADlib) and it has been used by other
benchmarks such as [25], [29] and [15]. R is one of the most
popular statistical computing libraries and is also used in other
benchmarks ([29]). Anaconda is the most popular Python-
based data science platform. Dask extends Anaconda and adds
support for out-of-core execution and parallelism to some of
the libraries within Anaconda. It was used in the benchmark
in [17]. Spark is one of the leading candidates among the big
data systems with its distributed data processing framework
and it was used in a few benchmarks ([17], [5] and [15]).
Next we briefly describe each of the five systems.

1) Anaconda: Anaconda is an open data science platform,
with a collection of over 720 open source packages [23].
The source packages that are utilized in this benchmark
are: Pandas, NumPy, Matplotlib and scikit-learn. Pandas
is a package that provides data structures and tools for
data analysis [21]. NumPy is a package for scientific
computing with Python. With a powerful N-dimensional
array object, it supports linear algebra, and other ca-
pabilities [19]. Matplotlib is a Python plotting library
to produce figures and graphs [16]. Scikit-learn is a
machine learning library that is built on NumPy [27].

2) Dask: Dask [2] is a parallel computing library for analytic
computing. It is composed of two components: dynamic
task scheduling and big data collections. This collection
includes parallel arrays, dataframes, and lists that extend
common libraries like NumPy and Pandas. Dask repre-
sents computation as task graphs with data dependencies
and it supports out-of-core execution.

3) PostgreSQL (with Apache MADlib): PostgreSQL [22] is
an open-source object relational database management
system. PostgreSQL is accompanied by MADlib [11],
an in-database machine learning toolkit which performs
statistics and analytics. It provides many SQL-based al-
gorithms for machine learning, data mining and statistics
which run at scale within a database engine.

4) PySpark (with Hadoop): PySpark is the Python API from
Apache Spark [28]. Spark is a main-memory distributed
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data processing platform. It provides an application pro-
gramming interface centered on a data structure called the
resilient distributed dataset (RDD). An RDD is a read-
only multiset of data items that can be distributed over
a cluster of machines. Spark supports data manipulation,
statistical analysis and machine learning analysis.

5) R: R is a language and environment for statistical comput-
ing and graphics [24]. R has the ability for data handling
and storage facility, data manipulation, statistical analysis,
time series analysis, and machine learning algorithms.
R is extensible and includes a wide collection of open-
source packages.

V. THE BENCHMARK

Our benchmark, Sanzu, consists of two different com-
ponents: a micro benchmark and a macro benchmark. The
micro benchmark consists of several task suites, which involve
data wrangling, statistical, time series and machine learning
analyses. The macro benchmark contains two applications that
are modelled after real-world use cases.

A. Micro benchmark

The micro benchmark is intended to test the basic tasks
across multiple data analytics systems. These tasks are com-
mon and are used everyday in solving real-world and industry
problems. They are modeled after the data science workflow
(in Section III-B). The micro benchmark consists of 6 task
suites: basic file I/O, data wrangling, descriptive statistics,
distribution and inferential statistics, time series analysis and
machine learning. Each suite represents a different stage in the
data science workflow. Each suite includes a number of tasks.
Usually, some of the operations involving statistical distribu-
tion, such as correlation and skew, are considered as part of
descriptive statistics. But we put them under the task suite
distribution and inferential statistics, to have a sizable number
of tasks in that suite. Ideally, these tasks should be based on
built-in functions or should have simple implementation in
each of the systems. We implemented the tasks using built in
functionality when available. However, in some cases this was
not possible. The tasks included in the micro benchmark are
summarized in Table II. The table also indicates the level of
support for these tasks in each data system.

1) Micro benchmark task suites:

• Basic File I/O: An important goal of the micro bench-
mark is to demonstrate weaknesses and/or strengths on a
specific task for each of the systems. File I/O operations
are the basic tasks that are necessary to do any data
analysis. In our benchmark reading and writing operations
are performed with CSV files. This file format was chosen
for consistency, because each data system has the ability
to read and write from CSV.

• Data Wrangling: The data wrangling tasks are: sorting,
filtering, merging, group by and removing duplicates. All
the five data systems provide built-in functionality to
implement all of these tasks.

• Descriptive Statistics: The descriptive statistical analysis
tasks are: finding central tendency, finding measures of
dispersion, ranking, eliminating outliers and plotting a
scatter plot. However, the outcome of breaking ties in
sorting is different depending on the default data system.
Dask does not have the functionality to rank a column
based on value. For plotting tasks, Dask, Anaconda
(Matplotlib) and R have the built-in support for plotting.

• Distribution and Inferential Statistics: All the systems
are able to calculate correlation. However, when it comes
to estimating the PDF (probability density function),
hypothesis testing and skewness some of the systems do
not have the functionality. The PDF is calculated using
the kernel density estimator. The PostgreSQL (MADlib)
does not have any available functionality for PDF. Dask
has a rolling skew function, but the max window size is
the size of a partition, which is smaller than one million.
In our experiments, PySpark did not support efficient
hypothesis testing for datasets with over one million rows.

• Time Series: Time series is a sequence of data points
indexed by time order. The two tasks in this suite
are autocorrelation and EWMA (exponential weighted
moving average). Anaconda, Dask and R have built-in
functionality to calculate autocorrelation. PostgreSQL or
MADlib does not have either feature built-in and we have
not found an efficient user defined function (UDF). Dask
has built-in functionality for autocorrelation, but not for
EWMA. PySpark does not have built-in functionality for
either of the time series tasks.

• Machine Learning: The machine learning tasks are:
linear regression, K-means Clustering and Naive Bayes
Classification. All the the systems or libraries used by
the systems have built-in functionality to complete these
tasks. Dask and Anaconda use the same library scikit-
learn, PostgreSQL use MADlib, whereas, R and PySpark
have built-in functionality in the library.

2) Data model for the micro benchmark: We created a
synthetic dataset generator that can generate data tables (as
text files) with different scale factors. As shown in Table III,
each dataset consists two data tables: data1 and data2. For
a given scale factor, both the data tables contain the same
number of rows. For instance, with scale factor (SF) 1, each
data table has 1 million rows and with SF 100, each has 100
million rows. Three different scale factors were used for the
scalability experiments: SF 1, 10, and 100.

The schema and the number of columns of data1 and data2
differ. Table data1 contains one time series, two string, two
integer and three float columns. The time series column is
sequential and starts at the year 1970 and the time interval
between each row shrinks as the scale factor grows. One
string column values are chosen uniformly from a list of 1,000
elements and the other string column values are chosen from
a Zipf distribution of a list of 100,000 elements. One integer
column values are randomly chosen between 0 and 1,000,000
and the other between 0 and 231. The values of the three float
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Operation TaskId Description Support in the evaluated systems
Ana-
conda Dask Postgre-

SQL PySpark R

Basic File I/O
Read read Read from data1 Y Y Y Y Y
Write write Write data1 to a csv file Y Y Y Y Y
Data Wrangling

Sorting sort
Sort data based on the column
uni in data1 Y Y Y Y Y

Filtering filter
Filter the column rand1 of data1,
if smaller than a given value Y Y Y Y Y

Merging merge
Merge on column rand1
from both data1 and data2 Y Y Y Y Y

Group By groupby Group by column city in data1 Y Y Y Y Y

Removing Duplicates remdup
Remove duplicates from
column words in data1 Y Y Y Y Y

Descriptive Statistics

Central Tendency centend
Find the mean of uni, mode of rand1
and median of rand2 in data1 Y Y Y Y Y

Measure of dispersion dispers
Finds the range of exp and standard
deviation of uni column in data1 Y Y Y Y Y

Rank rank
Add a new column based on
rank of column uni in data1 Y NF Y Y Y

Outliers outlier
Remove the outliers of column
exp in data1 Y Y Y Y Y

Scatter Plot scatter
Draw the scatterplot based
on column uni and nor in data1 Y Y NF NF Y

Distribution and Inferential Statistics
Probability Density
Function (PDF) pdf Find the Pdf of the data series

on column rand1 Y Y NF Y Y

Skewness skew
Calculate the skewness of
the data1 series on column rand2 Y NF Y Y Y

Correlation corr
Calculate the correlation between
uni and exp columns in data1 Y Y Y Y Y

Hypothesis Testing hypo Hypothesis testing (shuffling method) Y Y Y NF Y
Time Series
Exponentially-weighted
moving average (EWMA) ewma Find the exponentially-weighted

moving average on column rand1 Y NF NF NF Y

Autocorrelation autocorr
Find the autocorrelation of the
nor column in data1 time-series Y Y NF NF Y

Machine Learning

Linear Regression linreg
Linear Regression between columns
rand1 and rand2 in data1 Y Y Y Y Y

Clustering kmeans
K-means Clustering with two clusters
between columns rand1 and rand2 Y Y Y Y Y

Classification naivebayes
Naive Bayes (rand1 as the target and
rand2 and uni in data1 as features) Y Y Y Y Y

TABLE II
MICRO BENCHMARK TASKS AND FEATURE MATRIX (NF=NO BUILT-IN FUNCTIONALITY)

columns are selected from a normal distribution, an exponen-
tial distribution and a uniform distribution respectively.

Table data2 contains one string, one integer and two float
columns. The string column values are chosen from a uniform

distribution from a list of 1000 strings, the integer column
values are randomly distributed between 0 to 1,000,000 and the
float columns values are selected from a normal distribution
and a uniform distribution between 0 and 231.
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Data
table

Scale factor
1 10 100
Rows
(Mil.)

Size
(MB)

Rows
(Mil.)

Size
(MB)

Rows
(Mil.)

Size
(GB)

data1 1 92.6 10 926.3 100 9.3
data2 1 43.9 10 438.9 100 4.4

TABLE III
MICRO BENCHMARK DATASET: CARDINALITY FOR VARIOUS SCALING

FACTORS (MIL.=MILLION)

Data table Rows
(K)

Size
(MB)

Benchmark
application

weather 35,064 0.863
Smart Grid Analytics -
Demand Forecast

consumption 35,064 0.875
Smart Grid Analytics -
Demand Forecast

hockey stats 888 1.2
Sports Analytics -
Corsi in Ice Hockey

TABLE IV
MACRO BENCHMARK DATASET (K=THOUSAND)

B. Macro benchmark

With the rapidly rising volume of data, the importance of
data science is growing in many application domains. The goal
of our macro benchmark is to model some of these applications
and assess the performance of the evaluated data systems with
each. In our macro benchmark we have included two real-
world applications. Each application consists of a series of
data science tasks that are executed in sequence. Table V
summarizes these applications and which data systems have
support for which tasks from these application. In the next
section, we briefly describe each application.

1) Macro benchmark applications:
• Smart Grid Analytics - Demand Prediction: The de-

mand prediction application focuses on predicting power
consumption over a year for a particular substation based
on the HDD (heating degree day) and CDD (cooling
degree day) curves. The tasks for the demand prediction
are: reading data from multiple CSV files, create 5 minute
time series intervals from 2013 to 2016, merge all the
data, add two separate columns, filter the data based on
two values, predict the consumption for the years and
correlate the real results with the predicted results.

• Sport Analytics - Corsi in Ice Hockey: The hockey
analytics application focuses on calculating well-known
and used statistics called Corsi and Fenwick. These are
used to calculate the player effectiveness while on the ice.
The tasks of finding Corsi and Fenwick are reading the
data from a CSV, calculate Corsi, as well as Fenwick,
based on several statistics, split the players based on
position and group the players by team so one could
evaluate each team puck possession skills.

2) Data model for macro benchmark: The details of the
datasets in the macro benchmark are shown in Table IV.

The data used for the smart grid demand prediction came
from two sources: historical weather data for New Brunswick
from Environment Canada [7], and historical New Brunswick
power demand from NB Power [18]. The data used for the
sports analytics came from the hockey analytic database [13].

VI. IMPLEMENTATION

In this section we discuss about the benchmark implemen-
tation and the challenges we encountered along the way.

A. Implementation overview

The details of the benchmark tasks can be found in the
Description columns of Table II and V. The source code of
Sanzu can also be inspected to glean additional details. While
implementing a task, we tried to use as much built-in function-
ality as possible. If the built-in functionality was absent, no
effort was made to implement it in a given system. However,
if open source libraries were available with that functionality,
it was implemented. An issue with using the built-in software
was the different built-in defaults. For example, while sorting
data if there was a tie, each system would arrange the tied
values based on a different criteria.

B. Challenges

Anaconda and R were similar in terms of implement effort,
as they both have sufficient documentation Dask extends
libraries used in Anaconda, but only partially. As a result,
implementation in Dask was straightforward until a certain
functionality was missing; this resulted in an incomplete
task. PySpark and PostgreSQL required more development
effort than the other systems. Sometimes, otherwise simple
operations needed significant coding effort. For example, in
PySpark there are only two ways to get rows by index while
using a dataframe. The first is to add a new column for
the index manually and filter based on this. The second is
to convert to another data-type or structure, perform slicing
and indexing operations there, and then convert back to a
dataframe. This issue presented itself when developing the
hypothesis testing, as there was no efficient way to shuffle
(randomize) data and then split it based on the index, into
a PySpark dataframe. Furthermore, when working with the
macro benchmark (i.e. real-world messy data), cleaning the
data up is much more difficult while using PostgreSQL or
PySpark, as opposed to Anaconda or R.

While running tasks involving certain aggregate functions
(e.g. finding the median and mode), PostgreSQL 9.3 took too
long even with dataset scale factor 1. After upgrading Post-
greSQL to the latest version (9.6), the issues were resolved.

VII. EXPERIMENTAL SETUP

During the experiments, for each task and for a specific data
system we loaded the data first. Then each task was run four
times. We exclude the first run from the results as this can be
affected by the loading of the data. We report execution times
of each task with error bars.

In-house data science tasks are usually run on a single
machine or on a small cluster. Since PySpark is a distributed
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Operation TaskId Description Support in the evaluated systems

Anaconda Dask Postgre-
SQL PySpark R

Smart Grid Analytics - Demand Prediction
Reading table data reading Read data from CSV files Y Y Y Y Y
Create data create Create five minute time series data Y Y Y Y Y
Join
tables merge

Join consumption and weather
tables on time columns Y Y Y Y Y

Added HDD
Heating Degree Day addcol

Calculated heating degree day from
outside temperature Y Y Y Y Y

Filter filter
filter on columns HDD
and on the hour of the day Y Y Y Y Y

Find curves 2linereg
Use linear regression to find heating and
cooling curve from HDD and consumption Y Y Y Y Y

Predict consumption predict
Predict power consumption for 3 years
from the curves and outside temperature Y Y Y Y Y

Correlation corr
Use correlation to see if curves
predicted realistic results Y Y Y Y Y

Sport Analytics - Corsi and Fenwick in Ice Hockey
Reading data reading read the data from a csv Y Y Y Y Y

Corsi statistics corsi
Add multiple columns for
each row/player for Corsi Y Y Y Y Y

Fenwick statistics fenwick
Add multiple columns for
each row/player for Fenwick Y Y Y Y Y

Split players
on position split

Filter the players based
on forwards and defense Y Y Y Y Y

Group players groupby Group payers based on their team Y Y Y Y Y
TABLE V

MACRO BENCHMARK TASKS AND FEATURE MATRIX

data processing system, we ran it in a cluster of four machines
with standardized software. The other systems were run on a
single machine. Each machine has 8 GB memory and 4 Intel
i5-2400 CPUs running at 3.10 GHz and ran Ubuntu 14.04 OS.

VIII. BENCHMARK RESULTS AND DISCUSSION

In this section we present our evaluation of the systems with
the benchmark. We introduce the micro benchmark results
first, and then the macro benchmark results.

A. Micro benchmark results

We conducted two different series of experiments to eval-
uate the data systems with the micro benchmark task suites.
The first series of experiments (Section VIII-A1) were run
with dataset scale factor (SF) 1 i.e. 1 million rows per data
table and the goal was to determine relative performance and
feature support. The aim of the second series of experiments
(Section VIII-A2) was to evaluate scalability of the systems
with increased data size. So for these we used all three datasets
with SF 1, 10 and 100.

1) Performance and functionality: As can be seen in Fig-
ure 2, there is no system that is the best across-the-board in
all tasks. On the basic file I/O, R is the slowest at reading,
however it is competitive in writing, while PySpark is the
fastest at both. In the data wrangling suite, Anaconda is

consistently the fastest and PostgreSQL is the slowest in all
but the group by, and the others vary depending on the task.
In descriptive statistics suite, Anaconda is consistently the
fastest, R is in second in all but one tasks. PostgreSQL, Dask
and PySpark lack some functionalities (shown as ’NA’), and
PostgreSQL outperforms Dask and PySpark in every task it has
functionality. In the distribution and inferential statistics suite
Anaconda and R are the fastest in all cases; Dask, PySpark
and PostgreSQL are slower and lack different functionalities
for certain tasks. In the time series suite, Anaconda is the
fastest. R also has functionality for both time series tasks,
but it is significantly slower. In contrast, Dask only supports
autocorrelation, and PySpark and PostgreSQL do not have
functionality for either task. As for the machine learning task
suite, Anaconda is the fastest in two out of the three tasks,
while PostgreSQL is the slowest in two out of the three.
These results suggest that at dataset scale factor 1, Anaconda’s
performance is the most consistent and it is the best choice for
most tasks. R also supports all the features, but it is slower
than Anaconda in all but two tasks. As for Dask, PySpark
and PostgreSQL, their performance and functionality depend
on specific tasks. Thus at SF 1, whenever the data fits in
memory, Anaconda is the best choice for the combination of
functionality and performance.
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Fig. 2. Execution times of the tasks in the Micro Benchmark suites (scale factor 1: 1 million)
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Fig. 3. Scalability of selected Micro benchmark tasks with dataset scale factors: 1, 10 and 100 (All y-axis are in log scale)
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2) Scalability: Table VI summarizes information about
scalability of the data systems for each task of all the micro
benchmark suites. In Figure 3 the scalability results are
presented for some selected tasks.

In almost all cases all the systems scale up to SF 10 (ten
million rows per data table). The only exceptions are the merge
operation, which joins both data tables. As the memory of the
systems start to run out, R and PostgreSQL throw memory
errors, whereas Anaconda is significantly slower than Dask
and PySpark. Naive Bayes Classification did not scale up on
any of the systems except for R, while hypothesis testing
scaled for all except for PostgreSQL.

For the SF 100 (100 million rows per data table), the R data
loading was taking over two hours to read, PostgreSQL ran
out of memory that caused the machine to restart and there
was a memory error thrown during the read for Anaconda.
As a result, the rest of the tasks for these systems were not
evaluated. It is important to note that if the task failed or took
too long on a lower row count, it was not evaluated again on
a higher SF. For the systems that we were able to run at SF
100, their results mostly stayed consistent with the results at a
lower SF. Some tasks, however, did not scale up from SF 10 to
100. For Dask, it was only with K-means Clustering that did
not scale. Whereas for PySpark, central tendency, measure of
dispersion and K-means Clustering were all unable to scale.
These results suggest that in terms of scalability up to SF 100,
Dask scales better than others with regards to functionality.

B. Macro benchmark results

In Figure 4 the macro benchmark results are presented. As
can be seen, in the Demand Prediction application, there is
no single system that is the best across-the-board. Anaconda
is consistently competitive and is the quickest in the task
reading, linear regression, and prediction. The others vary in
competitiveness and performance depending on the task.

In the sport analytics application, Anaconda has the best
performance in all of the tasks and R consistently has the
second best performance. PostgreSQL is also very competitive
with R but is much slower in the split task. PySpark and Dask
are consistently slower in overall performance than the others.

C. Ranking the systems

Historically, benchmark results were summarized and pre-
sented in several different ways. The authors in [4] discuss
how to correctly summarize benchmark results. In [25] ge-
ometric mean, normalized to a reference system, was used
for ranking. We considered using this approach, but it proved
to be challenging. In our benchmark a number of tasks were
not supported by some of the systems either due to lack of
functionality or because of failure to complete at higher scale
factors. Therefore, we decided not to rank the systems.

IX. CONCLUSIONS AND FUTURE WORK

With the rapid growth in data, the need to efficiently analyze
data has become paramount. As a result, data science is rising
in importance. Data science provides a systematic approach
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Fig. 4. Execution times of the tasks in the Macro Benchmark applications

for processing and analyzing data. Although, a number of
frameworks and data systems have emerged to support the data
science work-flow, there is no standard benchmark to evaluate
them. We have presented Sanzu, a benchmark for data science.
It includes a micro benchmark to test individual operations and
a macro benchmark to represent real-world use cases.

We have presented a performance evaluation of five popular
data science frameworks and systems: R, Anaconda Python,
Dask, PostgreSQL (MADlib) and PySpark. Our evaluation
suggests that some of these systems lack support for specific
data science tasks. Furthermore, we have found that several
systems do not scale with larger data sets (scale factor 10
or 100). We hope that our findings may lead to improved
support for functionality and scalability for the data science
tasks within some of the systems.

For our future work, we plan to test the ability of each
system to process other data models, by incorporating semi-
structured and unstructured datasets. We would like to include
additional macro benchmark applications. We would also like
to evaluate other data science systems, besides the five systems
that we evaluated.
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