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Abstract— The volume of spatial data generated and consumed
is rising exponentially and new applications are emerging as
the costs of storage, processing power and network bandwidth
continue to decline. Database support for spatial operations is
fast becoming a necessity rather than a niche feature provided
by a few products. However, the spatial functionality offered by
current commercial and open-source relational databases differs
significantly in terms of available features, true geodetic support,
spatial functions and indexing. Benchmarks play a crucial role
in evaluating the functionality and performance of a particular
database, both for application users and developers, and for
the database developers themselves. In contrast to transaction
processing, however, there is no standard, widely used benchmark
for spatial database operations.

In this paper, we present a spatial database benchmark
called Jackpine. Our benchmark is portable (it can support any
database with a JDBC driver implementation) and includes both
micro benchmarks and macro workload scenarios. The micro
benchmark component tests basic spatial operations in isolation;
it consists of queries based on the Dimensionally Extended 9-
intersection model of topological relations and queries based on
spatial analysis functions. Each macro workload includes a series
of queries that are based on a common spatial data application.
These macro scenarios include map search and browsing, geocod-
ing, reverse geocoding, flood risk analysis, land information
management and toxic spill analysis. We use Jackpine to evaluate
the spatial features in 2 open source databases and 1 commercial
offering.

I. INTRODUCTION

Spatial data is everywhere. Geospatial Web services such
as Google Maps, in-vehicle GPS navigation systems, GPS-
enabled mobile phones, and a host of accompanying location-
based services have become part of our daily experience. Enor-
mous quantities of spatial data is constantly being generated
from various sources such as satellites, sensors and mobile
devices. NASA’s Earth Observing System (EOS), for instance,
generates 1 terabyte of data every day [1]. A decade ago, it
was estimated that 80% of all business data stored in existing
databases had spatial attributes [2]. The percentage today is
probably even higher, as the ability to track customers and
inventory has become cheaper and easier.

The deluge of spatial data and increasingly sophisticated
end-user demand is changing the landscape for Geographic
Information Systems (GIS). A GIS is concerned with orga-
nizing spatial data into real-world geographical features such
as landmarks, roads and rivers. Spatial queries then can be
used to extract useful information related to features of interest

with any location criteria. The term “spatial database” refers
to relational database management systems that support spatial
data types in the same way as any other data in the database.
Although spatial support was once a niche feature provided by
high-end systems for a small set of customers, or found only in
research systems, it is now widely used with new applications
appearing regularly.

The degree to which spatial functions are supported in tradi-
tional relational database systems (RDBMS) varies widely. For
example, true geodetic support (i.e., support for true measure-
ment along a spherical coordinate) is offered in Oracle, DB2
and SQL Server, but not by MySQL, or Ingres. PostgreSQL
has true geodetic support only for point-to-point non-indexed
distance functions. Informix provides both a no-cost Spatial
module (which lacks geodetic support) and a Geodetic module
(which is not free). In terms of spatial functions, SQL Server,
Oracle, DB2, Informix and PostgreSQL support spatial pred-
icate functions defined by the Open Geospatial Consortium
(OGC) [3], as well as custom geodetic functions. MySQL only
supports OGC functions using minimum bounding rectangles
(MBRs). Support for spatial indexing also varies, with most of
the spatially enabled databases offering the R-tree index [4],
except for SQL Server which provides a Grid. PostgreSQL
supports a generalized R-tree index called GiST [5]. Finally,
the cost of these different options also varies widely.

The diversity of offerings in this rapidly growing domain
naturally gives rise to performance questions from multiple
stakeholders. Developers or organizations deploying spatially
enabled applications want to evaluate which spatial database
will support their needs in the most cost-effective manner.
Database researchers and developers want to know which
features or operations limit performance in real use, to focus
the design and implementation of new algorithms. Finally,
systems researchers and architects want to understand the
stresses imposed on processor, memory, and storage resources
by spatial database workloads.

These types of questions are the purview of benchmarking.
Unfortunately, there is no widely used, industry standard
spatial benchmark. The Transaction Processing Performance
Council (TPC) [6], which is devoted to defining transaction
processing and database benchmarks for diverse workloads,
has not yet addressed spatial workloads. Although a number
of research papers have proposed spatial benchmarks, these are
typically limited in scope and/or are designed to test a specific
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feature or application. None of these have gained widespread
acceptance or adoption.

Jackpine is a spatial database benchmark intended to fill this
gap. Sim et al., in a study on the value of benchmarking, noted
that the adoption of a benchmark fosters both community
building and technical advances in a research area [7]. Our aim
is to provide the basis of such a benchmark, providing both
micro benchmark coverage of basic spatial operations as well
as modeling a number of real-world applications for spatial
databases. As systems researchers, we stand as outsiders to
the database and GIS communities. Our ultimate aim is to
see how low-level systems software is exercised by spatial
database workloads. We believe this affords some advantages
in the design of a benchmark, as we have no bias toward (or
against) any particular implementation or application. On the
other hand, the application scenarios we have modeled are
not as realistic as they could be since we may lack detailed
knowledge of how these systems are used in practice. Our hope
is that Jackpine will provide the basis for ongoing discussion
and refinement within the community, leading to a benchmark
that will be widely used.

The rest of this paper is organized as follows. We review
related work in Section II. In Section III we describe the
micro and macro query scenarios included in Jackpine, the
datasets used, and the implementation details. Sections IV
and V present the experimental setup and the results from
a comparative study of three databases with Jackpine. We
end with a discussion of the strengths and limitations of this
benchmark in Section VI.

II. RELATED WORK

The objective of benchmarking is to evaluate a system
against a reference system in order to compare performance
based on various criteria. Database benchmarks can be used to
compare different hardware configurations, different database
vendor software and different software releases. They play a
key role in supporting business decisions on what database
to use, as well as database research and development. In this
section we review general database benchmarks as well as
spatial database benchmarks.

A. Non-spatial database benchmarks

There are many commercial and free database bench-
marks. They differ in their approaches to quantify system
performance, workloads and features; we focus here on the
most well-known ones. Although the goal of the database
benchmarks is to simulate real-world workloads as closely as
possible, they may not reflect an organization’s actual work-
load. For this reason, many of the benchmarks choose a few
specific business process scenarios and evaluate the databases
against synthetic workloads. The TPC benchmarks [6] and
DBT [8] are prime instances of this. Others use variations of
generic database operations - select, project, join and update
to generate the workloads. The Wisconsin Benchmark [9] and
Bristlecone [10] are in this category.

The Wisconsin Benchmark is one of the first attempts to
develop a scientific methodology for performance evaluation
of databases. The benchmark consists of a standard set of
queries which measure the cost of different relational oper-
ations. Bristlecone is a recent database performance testing
utility that is similar in spirit to the Wisconsin Benchmark.
Bristlecone provides the ability to create flexible test scenarios
by varying the database operations, number of threads, number
of tables, number of rows per table etc. Since it is implemented
in Java, Bristlecone offers the possibility to support many
different databases that have a JDBC driver implementation
available. Although it is designed to evaluate database clusters,
Bristlecone can also be used on single database instances.
Because of its flexibility, we have used Bristlecone as the basis
for Jackpine.

The Transaction Processing Performance Council (TPC) is
a non-profit organization devoted to defining database related
benchmarks. TPC has developed several benchmarks, each
suited to a different workload domain, which are generally
considered the industry standard by many enterprises. For
example, TPC-C is an On-line Transaction Processing (OLTP)
benchmark that simulates an order-entry environment. The
transactions involved in this benchmark include entering and
delivering orders, recording payments, checking the status of
the orders, and monitoring the level of stocks at the warehouse.
TPC-E is another benchmark that models the OLTP workload
after a brokerage firm. TPC-H is a decision support benchmark
that is characterized by the execution of queries with high de-
gree of complexity and concurrent data modifications. Notably,
the TPC reports price/performance metrics, highlighting the
cost of achieving a particular performance level. None of the
existing TPC benchmarks address spatial database workloads.

The popularity of the TPC benchmarks has spawned a
number of open source clones. The Open Source Development
Labs Database Test Suite [8], known as DBT, is modeled after
the TPC benchmarks, but differs in a few areas and is not certi-
fied. DBT is among the most comprehensive of all open source
benchmark suites. jTPCC [11] and BenchmarkSQL [12] are
open source Java implementations that resemble TPC-C. How-
ever, they are not fully compliant. TPCC-UVa [13] is an
open source implementation that includes the functionalities
specified by TPC-C. However, the focus of TPCC-UVa is
to compare the performance of different Linux file systems.
It also attempts to evaluate relative system performance in
multicore CPU systems as opposed to a single core system.

In addition, there are several open source benchmarks that
are not modeled after the TPC. PolePosition [14] is a bench-
mark suite that was developed to compare database engines
and object-relational mapping technology. OSDB [15] is an
open source database test suite that is based on the ANSI SQL
Scalable and Portable Benchmark (AS3AP), as documented by
Grey [16].

SPECweb2009 [17] is a benchmark to evaluate the perfor-
mance of web servers when serving both static and dynamic
pages. The benchmark itself does not include or specify
any of the web server software. However, a common web
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server archicture uses a multi-tier environment with a back-
end database server. Thus, although SPECweb2009 is not
a database benchmark, it provides indirect evidence of the
underlying database performance.

There are several other benchmarking tools available but
they are not as commonly used. None of the database bench-
marks discussed so far assess the performance of spatial
features.

B. Spatial Database Benchmarks

Objects in a geographic information system (GIS) are stored
in a two-dimensional space and the queries asked of such
a system are different from regular SQL queries. Typical
geospatial queries [18] include partial matching queries, range
queries, nearest-neighbor queries and where-am-I queries.
However, as an emerging application domain, novel business
scenarios and bleeding edge Web applications are being de-
veloped with GIS. Moreover, spatial data features arise in
non-geographic applications as well, although GIS is still the
largest application area. As a result, one of the key challenges
in the development of a spatial benchmark is defining the
workloads. Moreover, many spatial functions provided by
different relational database vendors are still work-in-progress
and the available features across different databases are not
always standard offerings. Thanks to the work of the Open
Geospatial Consortium (OGC) [3], however, standards for
spatial functions have been defined and are being adopted by
many databases. These developments make this a promising
time to revisit the design of a spatial benchamrk.

There have been only a handful of research projects that
attempted to benchmark spatial database systems. The best
known existing benchmark for spatial databases is SEQUOIA
2000 [19], which was specifically designed to be an earth
sciences benchmark and focused on raster data. In contrast,
many of today’s emerging GIS applications, and the spatial
database extensions, operate on vector data. In addition, while
the queries specified by SEQUOIA 2000 are all relevant to
Earth Sciences, they are all isolated queries rather than a
sample Earth Sciences workload. Also, there is no indication
that they represent a complete set of queries that would be used
in this domain. Finally, SEQUOIA 2000 specifies only the
queries, and rules for reporting price/performance. It includes
no implementation and no test or timing harness, making it
difficult for others to adopt.

VESPA [20] is a vector based spatial database benchmark
that includes a range of query and update tasks that could
be executed over synthetic data sets. It was used to com-
pare PostgreSQL with the Rock & Roll deductive object
oriented database [21]. VESPA includes a large number of
“tasks” (essentially, individual queries) that test update, set
union, containment, overlap, intersect, adjacent, search inside,
measurement, and analysis operations. Although there are
a large number of operations, it is difficult to assess how
comprehensively these operations cover the available spatial
functions. The use of synthetic data solves problems with
scaling, but raises issues of how well it represents real-world

data, which can have an impact on measured performance.
Finally, VESPA does not include any attempt to model real
spatial workloads and is not publicly available.

In recent years there have been very few reports of spatial
benchmarking efforts. The few that exist were conducted on an
ad hoc basis, simply by executing a few spatial queries against
one or two databases and comparing the latency and through-
put. Power [22] compared MySQL and PostgreSQL/PostGIS
using a small dataset and contrived queries. The author sug-
gested that the study used a dataset that is almost trivial
and used rather simple spatial queries. Dynamark [23] and
BASIS [24] are benchmarks that are geared towards evaluating
spatial index structures, rather than full database systems.

In the following section we describe the design of Jackpine,
the benchmark we have developed for vector spatial databases.
We include both micro benchmark operations, to assess the
performance of individual spatial functions, and macro work-
load scenarios to assess the expected performance with real
workloads.

III. THE BENCHMARK

One of our goals in developing Jackpine is to be able to
support as many different databases as possible, with minimal
effort. We believe this is a key feature if the benchmark
is to achieve widespread adoption by other users. Another
objective of Jackpine is to include a comprehensive set of
workloads, that would include basic spatial operations on one
hand, and representative real-world applications on the other.
To this end, Jackpine consists of two different parts: a micro
benchmark and a macro benchmark. The micro benchmark is
comprised of a number of spatial join queries with topological
relationships, several queries with spatial analysis functions,
and data loading queries. The macro benchmark includes
queries that are modeled on 6 different real-world spatial
applications.

A. Implementation Overview

To leverage the development effort of existing database
benchmarks, we evaluated a number of open source options.
Our motivation was to reuse the test harness or part of the
implementation of the chosen benchmark. In our evaluation,
Bristlecone [10] fared better than the others, in terms of
support for open-source databases, available features and ex-
tensibility. Bristlecone allows running test cases with systemat-
ically varying parameters. Also, Bristlecone is written in Java,
allowing it to be used with any database that provides a JDBC
driver implementation. We thus chose to use the test harness
of Bristlecone as the basis of our own implementation.1

A key concept in our benchmark is the spatial scenario,
which is an extension of a scenario in Bristlecone. A spatial
scenario is essentially a test case that includes SQL queries
and the specification of various parameters. A Java class
implements the functionalities relevant to a particular spatial
scenario. The run-time parameters such as the number of

1This is reflected in the name Jackpine.
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Fig. 1. Benchmark output report

TABLE I
DATABASE TABLES USED FOR MICRO AND MACRO BENCHMARK

Database table Geometry Cardinality Data file Index file Scenario
size (KB) size (KB)

edges merge line 5895060 1651629 416972 Micro benchmark, Reverse Geocoding, Map Search and
Browsing and Toxic Spill

pointlm merge point 13441 920 985 Micro benchmark, Map Search and Browsing
arealm merge polygon 5963 28490 1644 Micro benchmark, Map Search and Browsing
areawater merge polygon 374053 200734 26144 Micro benchmark, Map Search and Browsing
gnis names09 point 103413 10225 10562 Map Search and Browsing
s fld haz ar polygon 3403 70339 267 Flood Risk Analysis
s gen struct line 938 93 71 Flood Risk Analysis
land use 2006 polygon 404599 162400 36327 Flood Risk Analysis and Land Information Management
parcels2008 polygon 321578 131808 25179 Land Information Management
hospitals point 48 7 5 Land Information Management
s wtr ar polygon 3 2813 4 Land Information Management
frontyard parking restrictions polygon 76 321 7 Land Information Management
landfills point 79 30 9 Land Information Management
geocoder address 2587672 214835 8653 Geocoding
cityinfo point 41660 5836 2974 Reverse Geocoding

warmup runs, number of iterations, number of threads, width
and length of data selected, databases to run against, etc.
are specified in a properties file. Database-specific support
for a particular scenario is provided by specifying the SQL
query in the corresponding SQL dialect of that database. A
Java class implements the SQL dialect for each supported
database. The benchmark is packaged as a set of libraries,
configuration properties files and scenario properties files. A
Unix shell script invokes the scenarios and executes them. The
script can take additional parameters (such as the databases to
run against), which is useful if a user wishes to override the
parameters specified in the scenario properties files.

After the end of the execution of each scenario, an output
report is generated. For each database, the output report
includes information about the scenario execution, such as,
the number of iterations, average duration of the iterations,
average operations per second, total duration of the iterations,
number of records returned by the scenario queries, number of
warmup runs and total warmup duration. A screenshot of the
output report from a micro benchmark scenario run is shown
in Figure 1.

Like Bristlecone, Jackpine can support any database with
a JDBC driver implementation. For the purpose of conduct-
ing the evaluation study, we have implemented support for
three databases: PostgreSQL, MySQL and Informix. Although
Jackpine is a complete spatial benchmark, a user of Jackpine

may decide to include additional spatial scenarios. Due to its
extensible nature, such a new scenario can be incorporated by
implementing a new spatial scenario class, creating a proper-
ties file and including the SQL queries in the corresponding
SQL dialect class. Support for a new database requires only
implementing the SQL dialect class for that database.

B. Data Model

Although there is no lack of large spatial data sets, the
challenge is to find a suitable data set that can be used to build
compelling applications representative of real-world use cases.
To this end, we looked for data sets that are large enough to be
interesting while also containing the labeled features necessary
to construct the micro and macro scenarios.

The TIGER R© (Topologically Integrated Geographic En-
coding and Referencing) system [25] is produced by the US
Census Bureau to support its mapping needs. It is a public
domain data source available for each US state. We obtained
the TIGER dataset for the state of Texas as a collection of
shapefiles and imported them into the databases. We chose
this dataset because Texas is the largest state in the contiguous
United States, and it contains many interesting and diverse
spatial features. Also, we were able to find sophisticated GIS
data sets developed by the City of Austin and Travis County
that we used to develop a number of macro scenarios. These
are both located in the state of Texas, and several of our
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scenarios combine tables from the TIGER data set with the
Austin and Travis County data.

Table I shows the database tables with their geometry,
cardinality, data file size (KB) and index file size (KB). The
largest table in terms of cardinality and size is the edges merge
(lines) table. The information regarding data file size and
index file size corresponds to the MySQL database. The micro
benchmark queries (described in the next subsection) use
4 tables from the TIGER data set. The macro benchmark
scenarios (described in Section III-D, also use the database
tables from the TIGER data set, as well as the remaining
tables which are based on shapefiles obtained from the GIS
data sets developed by the City of Austin and Travis County.
Depending on the scenario, different combinations of these
tables are used.

C. Micro Benchmark

The goal of the micro benchmark is to test the basic
topological relationships and spatial analysis functions. The
topological relationships describe how two spatial objects
relate to each other in terms of topological constraints. Spatial
analysis functions are analytic operations to determine the
spatial properties of interest.

Ideally, the queries included in the micro benchmark should
provide complete, yet minimal, coverage of topological rela-
tions. To this end, we explored several formal models. The
four-intersection model, proposed by Egenhofer [26], is based
on the comparison of the intersections of the boundaries and
interiors of simple regions. By also taking into account of
the intersections with the exteriors, Egenhofer extended this
model to a nine-intersection model [27], which is based on
the comparison of the nine intersections between the interiors,
boundaries, and exteriors of two geometric objects. The ge-
ometric objects could be point, line or polygon. The model
specifies a total of 60 basic topological relations between
two objects. However, many of these relations are not easy
for humans to conceptualize, and are difficult to embed in a
DBMS query language. In response to these issues, Clementini
and Di Felice proposed a method that derives a subset of
the relationships in the nine-intersection model by considering
the maximum dimension of the intersection of two geomet-
ric objects [28]. This model, known as the Dimensionally
Extended Nine-Intersection Model (DE-9IM) proposes the
relationships: Equals, Disjoint, Intersects, Touches, Crosses,
Within, Contains and Overlaps. The DE-9IM has been adopted
by the Open Geospatial Consortium. Hence, we also use it as
the basis for defining our topological relation queries.

The possible pairwise topological relationships among poly-
gon, line and points according to the DE-9IM are outlined
in Table II. The relationships that are not applicable are
marked with “NA” (for example, a line object cannot be
equal to a polygon object). The relationships that are included
in the benchmark are marked with “Y” and each row and
each column is covered at least once. Looking across a row,
different pairs of geometric objects will have different costs for
computing the specified relationship. Looking down a column,

TABLE II
TOPOLOGICAL RELATIONS IN DIMENSIONALLY EXTENDED

9-INTERSECTION MODEL INCLUDED IN BENCHMARK

Polygon Line Line Point Point Point
and and and and and and
Polygon Line Polygon Polygon Line Point

Equals Y NA NA NA Y
Disjoint Y
Intersects Y Y Y
Touches Y Y NA
Crosses NA Y Y NA NA NA
Overlaps Y NA NA NA NA
Within Y Y Y NA
Contains Y NA

the same database tables will be involved, but the computa-
tional cost of the different relationships can differ greatly. The
micro benchmark queries pertaining to the selected topological
relationships involve all-pair spatial join between the geometry
columns of two tables. By using all entries in the tables, we
avoid issues that may arise from selecting a particular object
that may not be representative.

In addition to the all-pair spatial join queries, the micro
benchmark includes four additional spatial join queries, each
entails performing a spatial join with a given spatial object.

Besides the queries based on topological relations, we have
also identified a number of queries that are related to spatial
analysis. The focus of spatial analysis is to study spatial
attributes of interest using formal techniques [29]. Finally,
in addition to the read queries, the benchmark includes a
workload that inserts a number of records with spatial attribute
into the database tables. Depending on the table in which the
record is inserted, the geometry of the spatial attribute could
be point, line or polygon. Table III summarizes all the queries
that are included in the micro benchmark.

D. Macro Benchmark

With the emergence of popular geospatial Web services such
as Google Maps, the application of the spatial features of
the relational databases have become widespread. The macro
benchmark scenarios attempt to model some of these common
use cases. Each scenario consists of a series of queries that
are executed in sequence. Most of these queries involve spatial
join or spatial analysis operations. The total time to execute
all the queries in a scenario is considered to be its execution
time. Table IV summarizes all the queries that make up each
of the scenarios. Here, we briefly describe each scenario.

1) Geocoding: Geocoding is the process of determining the
geographic coordinates (expressed as latitude and longitude)
of a terrestrial surface location based on other geographic data,
such as street addresses, or postal codes. The geographic coor-
dinate of an entity can be used to accurately place it in the map
and to display in a mapping application. A common use case
of geocoding is to locate addresses of people, organizations
and businesses.

The scenario query involves finding the matching street
segment given street number, name and postal code. The
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TABLE III
MICRO BENCHMARK QUERIES

Operation Description Query
Topological relations, all pair joins
Equals Polygon equals polygon Find the polygons that are spatially equal to other polygons in arealm merge table
Equals Point equals point Find the points that are spatially equal to other points in pointlm merge table
Disjoint Polygon disjoint polygon Find the polygons that are spatially disjoint from other polygons in arealm merge table
Intersects Line intersects polygon Find the lines in edges merge table that intersect polygons in arealm merge table
Intersects Point intersects polygon Find the points in point merge table that intersect polygons in arealm merge table
Intersects Point intersects line Find the points in point merge table that intersect lines in edges merge table
Touches Polygon touches polygon Find the polygons that touch polygons in arealm merge table
Touches Line touches polygon Find the lines in edges merge table that touch polygons in arealm merge table
Crosses Line crosses line Find first 5 lines that crosses other lines in edges merge table
Crosses Line crosses polygon Find the lines in edges merge table that cross polygons in arealm merge table
Overlaps Polygon overlaps polygon Find the polygons that overlap other polygons in arealm merge table
Within Polygon within polygon Find the polygons that are within other polygons in arealm merge table
Within Line within polygon Find the lines in edges merge table that are inside the polygons in arealm merge table
Within Point within polygon Find the points in pointlm merge table that are inside the polygons in arealm merge table
Contains Polygon contains polygon Find the polygons that contain other polygons in arealm merge table
Topological relations, given object
Intersects Longest line intersects Given the longest line in edges merge table, find all polygons in areawater merge table intersected by it
Intersects Largest polygon intersects Given the largest polygon in arealm merge table, find all lines in edges merge table that intersect it
Overlaps Largest polygon overlaps Given the largest polygon in arealm merge table, find all polygons in areawater merge table that overlap it
Contains Largest polygon contains Given the largest polygon in the areawater merge table, find all points in pointlm merge table contained by it
Spatial analysis
Distance Distance search Find all polygons in arealm merge table that are within 1000 distance units from a given point.
Within Bounding box search Find all lines in edges merge table that are inside the bounding box of a given specification.
Dimension Dimension of polygons Find the dimension of all polygons in arealm merge table
Envelope Envelope of lines Find the envelopes of the first 1000 lines in edges merge table
Length Longest line Find the longest line in edges merge table
Area Largest area Find the largest polygon in areawater merge table
Length Total line length Determine the total length of all lines in edges merge table
Area Total area Determine the total area of all polygons in areawater merge table
Buffer Buffer of polygons Construct the buffer regions around one mile radius of all polygons in arealm merge table
ConvexHull Convex hull of polygons Construct the convex hulls of all polygons in arealm merge table
Insertions
Insert record Load points Insert 1000 records in the pointlm merge table
Insert record Load lines Insert 1000 records in the edges merge table
Insert record Load polygons Insert 1000 records in the arealm merge table

TABLE IV
MACRO BENCHMARK QUERIES

Description Query Macro Scenario
Geocode address Find the street segment that best matches with the given street number, name and postal

code
Geocoding

Closest city Find the city that is closest to the given latitude and longitude Reverse Geocoding
Closest street Find the street name that is closest to the given latitude and longitude Reverse Geocoding
Best place of interest Find the location of the place of interest that best matches the search criteria (by name

or type)
Map Search and Browsing

Retrieve landmarks Find all the points from gnis names09 table that intersect a bounding box Map Search and Browsing
Retrieve points Find all the points from pointlm merge table that intersect a bounding box Map Search and Browsing
Retrieve lines Find all the lines from edges merge table that intersect a bounding box Map Search and Browsing
Retrieve land polygons Find all the polygons from arealm merge table that intersect a bounding box Map Search and Browsing
Retrieve water polygons Find all the polygons from areawater merge table that intersect a bounding box Map Search and Browsing
Protected by dams Find the flood risk areas that are protected by one or more dams Flood Risk Analysis
Risk area categories Determine the total flood risk area in acres grouped by risk area category Flood Risk Analysis
Flood insurance required Which residential property owners are required to carry flood insurance Flood Risk Analysis
High risk industrial Which industrial complexes are in high risk flood areas Flood Risk Analysis
Residential properties Determine the average property value per sq foot for Single-Family Residential properties Land Information Management
Number of nearby hospitals How many residential properties have a hospital within one mile Land Information Management
Properties near hospitals Determine the average property values within a one mile radius of all hospitals Land Information Management
Lake properties Find any 10 properties within 100 feet of the three major lakes Land Information Management
Parking restrictions Which office buildings have front yard parking restrictions Land Information Management
Un-permitted properties Find all the commercial properties that are built on un-permitted landfills Land Information Management
Segment on spill point Determine if the toxic spill point is on any segment of any waterway Toxic Spill
Downstream segments Find all segments of any waterway that are within 20 mile downstream of the spill point Toxic Spill

Published in ICDE c© 2011 IEEE. This is the authors’ version of the work. Not for redistribution.



latitude and longitude of the location can be calculated from
the latitudes and longitudes of the street segment. In the macro
scenario, we geocode a total of 50 addresses in sequence, to
emulate an application receiving a series of requests.

2) Reverse Geocoding: Reverse geocoding is the opposite
process of geocoding - obtaining an associated textual address
such as a street address or postal code from geographic coor-
dinates. Location Based-Services (LBS) use reverse geocoding
to convert coordinates obtained by mobile GPS devices into
addresses that are more easily understandable by the end users.
Such readable addresses can be displayed in Web-based GIS
applications such as Activity reporting. An Activity Report
shows various information about a GPS-enabled mobile user
such as the timestamp, textual address, speed, direction etc. of
that device at various moments in time during an interval.

There are two queries in this scenario to determine the
complete textual address from the given latitude and longitude.
The first query returns the closest city name and the second
query finds the closest street name.

3) Map Search and Browsing: Searching for a point of
interest and displaying it on a map is a common use case
in Web-based mapping applications. Usually, during such a
search process a user performs several successive searches
that are relevant to her interest. A tourist visiting a new city
may look for nearby airport, hotel, bar, and popular sites. A
student visiting a University campus during a Graduate Visit
Day maybe interested in the nearby airport, hotel, library and
student hostel facility.

In the scenario, we model these two different visit cases:
student visit and tourist visit. During a benchmark run one of
them is randomly picked. Then a search for a place of interest
is performed. Once the most suitable match is returned, a series
of 5 queries are executed that fetch the spatial objects inside a
bounding box centered around the found place of interest. This
is synonymous with the queries that retrieve spatial objects to
be displayed in a map. The sequence of search for a nearby
place of interest and 5 map display queries are repeated a
number of times. This reflects a typical pattern of searching
for several nearby points of interest.

4) Flood Risk Analysis: Flooding is the most common
natural disaster in many countries including the United States.
Identifying the flood-prone areas, known as floodplains, is
crucial to mitigate flood damages. The Federal Emergency
Management Agency (FEMA) in the United States publishes
the Flood Insurance Rate Map (FIRM) that depicts Special
Flood Hazard Areas (SFHAs) and the risk premium zones.
FIRM is used by emergency managers to administer floodplain
management regulations, by builders and potential buyers to
determine flood risks associated with buildings and properties
and by the insurance agencies to assess whether flood insur-
ance is required when offering loans. FEMA developed the
DFIRM Database, which is the digital version of the Flood
Insurance Rate Map, and is intended to be used with digital
mapping and analysis software. The primary risk classifica-
tions used by the DFIRM Database are the High-risk areas
(areas with 1% annual chance of flooding), the Moderate-to-

low risk areas (areas with 0.2% annual chance flooding), and
Undetermined-risk areas.

The DFIRM data set used in the benchmark is based on the
Travis County Digital Flood Insurance Ratemap Database [30].
The scenario consists of a sequence of four queries that are
relevant to flood risk analysis.

5) Land Information Management: The objective of land
information management is to secure property rights for
the land owners and to enable land administrators to make
fundamental policy decisions about the nature and extent of
investments in the land. Key to this process is the registration
and maintenance of land ownership information, documenting
the boundaries and precise location of parcels of land. Parcel-
based digital land use information management systems are
useful in land appraisal tasks such as property conveyancing,
property tax assessment, property valuation and mortgage. It
also deals with various issues in the management of utilities,
the maintenance of land resources such as forestry, the en-
forcement of land use regulations and environmental impact
assessments [31].

The land information data set used in the benchmark was
obtained from the City of Austin GIS data sets [32]. Several
queries, each related to land information management, are
executed in sequence during the benchmark run.

6) Toxic Spill: Accidents involving toxic chemicals can
cause significant hazard to human health and wreck havoc to
the ecosystem. If the toxic substance is spilled into waterways,
its detrimental impact may spread to a wider region, even
to places many miles away. For example, in 2010 Hungary
declared a state of emergency in three counties after a torrent
of toxic red sludge from an aluminum plant tore through
nearby villages, killing several people.

The toxic spill scenario in Jackpine is modeled after the
Dunsmuir spill query from SEQUOIA 2000 benchmark. The
scenario first detects the waterway segment on which the
spill point is located. Then all segments of any waterway
that are within 20 miles downstream of the initial spill point
are recursively determined. The data set is based on the
edges merge table obtained from the TIGER data set. The
initial spill point was chosen within the Trinity river in Texas.

IV. EXPERIMENTAL SETUP

In Section V we use Jackpine to assess the spatial features
in three databases. In this section, we first describe the
experimental setup. Table V summarizes the characteristics of
each database instance.

The machine used to run the benchmark was an Intel
Pentium 4 CPU (2.4 GHz) with 512 MB memory and 240
GB disk, running Ubuntu 10.04 Lucid 32-bit with kernel
version 2.6.32. The purpose of using a machine with relatively
little (512 MB) memory was to prevent the entire dataset
from being memory resident. The database systems evaluated
were PostgreSQL, MySQL and Informix without the Geodetic
module. The databases were installed “as is” and “out of
the box”. No tuning was performed on any of the databases.
Query result caching in MySQL was disabled. Note that the
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TABLE V
DATABASES USED IN EVALUATION

Database Version Total data set Buffer pool Disk block
size (GB) size (MB) size (KB)

PostgreSQL 8.4.2 6.1 12 8
MySQL 5.0.91 4.6 16 1
Informix 11.50 6.1 2 2

buffer pool size with Informix is calculated by multiplying the
number of buffers (1000) and the native page size (2KB). The
buffer pool size reported for MySQL is the key buffer size.

All the tables, except the geocoder address, have a spa-
tial column (called “shape” in MySQL and Informix, and
“the geom” in PostgreSQL). For these tables, 2 indexes were
created on each of them: a) a spatial index on the spa-
tial column and b) a regular (B-Tree) index on the spa-
tial id column (the column is called “ogr fid” in MySQL,
“gid” in PostgreSQL, and “se row id” in Informix). For
the geocoder address table, a composite index (B-Tree) was
created. Additional indexes (B-Tree) were created on the
“roadflg” and “hydroflg” columns of the edges merge table.

The benchmark uses JDBC connection pool and creates
the connections before the actual execution of the queries.
This ensures that the overhead of establishing a connection
to the database is not accounted for in the metrics (elapsed
time). Since the benchmark uses JDBC to connect to databases
and execute queries, the test harness could be run in a
different machine than the actual databases. However, to avoid
taking network delays into consideration, the test harness was
run in the same machine as the database server. Only one
database was run at any time. During each benchmark scenario
execution, a warmup run was first performed, followed by
three successive iterations. The average of the total elapsed
times of the three runs are plotted in the graphs.

V. BENCHMARK RESULTS

The results of the benchmark runs comparing PostgreSQL,
MySQL and Informix are presented in this section. We mea-
sured the average elapsed time to execute the benchmark
queries. All time measurements are reported on log scales,
since the results differ widely across queries and databases.

While analyzing the results, some of differences between
the 3 databases in terms of spatial indexing and spatial
query processing must be taken into account. The indexing
method used in MySQL is the R-tree with quadratic splitting.
PostgreSQL supports GiST indexing, whereas R-tree is the
preferred indexing approach in Informix.

Since spatial query processing is compute intensive, a key
technique used in spatial indexing is the use of “approxima-
tions”. Instead of indexing the exact geometry, an approxi-
mation of the feature is indexed. Common approximations
are the Minimum Bounding Rectangle (MBR) and multiple
bounding rectangles/boxes [33]. The first step, based on the
approximations, is a filtering step that retrieves a set of
candidates that is a superset of the objects matching a criteria.
The main purpose of the filter step with approximations is
to eliminate as many false spatial objects as possible. The

TABLE VI
LOAD TIME (IMPORTING SHAPEFILES, INDEX CREATION, UPDATE STATS)

Dataset MySQL PostgreSQL Informix
pointlm merge 5.786s 1.648s 31.9s
arealm merge 9.099s 2.355s 19.1s
areawater merge 4min 56.061s 1min 48.983s 20min 2.1s
edges merge 74min 25.482s 34min 42.839s 436min 53s
Total 80 min 37 min 7.5 hrs

second is a refinement step, in which for each candidate (or
pair of candidates in case of spatial join) the exact geometry is
checked. Because all the filtered primitives must be checked,
the second step is the most time-consuming procedure. The
MySQL query execution mechanism only conducts the filter
step and does not execute the refinement step. The result is
faster performance for many queries, but the inaccuracy due
to omitting the refinement may make it unsuitable for many
applications.

A. Data Loading

The first step in the evaluation was to measure the ramp-up
time for our experimental testbed. We measured the time it
takes to load all the datasets in the three databases (MySQL,
PostgreSQL and Informix), create the necessary indexes (both
spatial and non-spatial) and update the statistics used by the
query optimizer (e.g. ”vacuum full analyze” in PostgreSQL,
or ”update statistics” for Informix). We report these loading
times in Table VI.

We used both generic and dedicated loading tools for
importing shapefiles into our database tables. Since MySQL
lacks a dedicated loading tool for shapefiles, we used GDAL’s
ogr2ogr tool. For PostgreSQL we used its dedicated shp2pgsql
import tool, while for Informix we used its dedicated loadshp
tool. Each of the loading tools performs similar operations:
retrieve the records from a given shapefile, insert them in a
specified database table and create two indexes, a non-spatial
primary index which uniquely identifies each record and a
spatial index on the geometry column.

We noticed that in general, dedicated bulk loading tools
achieve much faster performance than generic ones. For ex-
ample, we attempted to load the data into PostgreSQL using
ogr2ogr before using its dedicated tool shp2pgsql. Although
ogr2ogr is able to operate with several DBMSes and convert
several types of spatial formats, we found that it performs
several orders of magnitude worse with PostgreSQL compared
to the bulk loading tool shp2pgsql.

With Informix unfortunately, the loadshp tool has signif-
icantly higher loading time because the server by default
performs checkpoints every 1000 records, which introduces
a significant overhead. While this chunksize can be changed
to a larger number (thus resulting in less checkpointing), we
decided to stick to the out-of-the-box setting. Furthermore, the
speed of loadshp can be improved by using an insert cursor,
which basically buffers rows before writing them to database
tables. However, this limits the ability to handle errors, because
if an error is encountered during loading, all buffered rows
since the last successful write will be lost.
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Fig. 2. Pairwise spatial joins involving polygons, lines and points
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Fig. 3. Pairwise spatial joins involving Polygons (Areas) only

B. Micro Benchmark

The micro benchmark consists of several different sets
of workload scenarios. In the scenario names, “area” and
“polygon” have been used synonymously. The first category
of scenarios is comprised of 15 pairwise spatial join queries
among polygon, line and point objects. Due to the number of
queries, the results are split into Figures 2 and 3.

Figure 2 shows the elapsed times of the pairwise spatial
join queries between polygon and line, line and line, point
and line, point and polygon, and point and point objects.
Note that the result set to be returned by the LineCrossesLine
scenario query was limited to 5 records. Without this limit,
PostgreSQL ran this query for a number of days. The two
other databases also took many hours to complete. This is due
to the data size of the line table (edges merge), as can be seen
in Table I. Interestingly, when the query returns a limited result
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Fig. 4. Spatial join with a given object

set, as shown in LineCrossesLine scenario results, PostgreSQL
performs better than MySQL. PostgreSQL does better than
both MySQL and Informix in PointIntersectsLine scenario.
MySQL is the best in LineCrossesArea, PointIntersectsArea
and PointWithinArea scenarios. In the remaining 4 scenarios
Informix is the fastest.

Figure 3 shows the elapsed times of the pairwise spatial join
queries between polygon and polygon. Except for the AreaDis-
jointArea scenario, Informix performs better over PostgreSQL
and MySQL. In fact, the performance of Informix is several
orders of magnitude better than that of PostgreSQL in most
of the scenarios and several times faster than that of MySQL.
PostgreSQL performs the worst in those cases. Surprisingly,
in the AreaDisjointArea scenario Informix is about 6 times
slower than PostgreSQL and over 5 times slower than MySQL.
This demonstrates the merit of comprehensively covering all
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Fig. 5. Spatial analysis (N/S = scenario not supported due to unsupported operations)

the topological relationships as specified in Table III, rather
than an ad hoc selection. An application with many Disjoint
operations involving polygons may not benefit from Informix’s
superior performance with other operations.

For the queries involving spatial join with a given object, the
identifier of the given object (for instance, the largest polygon)
was first determined offline. Then, the queries involving spatial
joins of the polygon, line, and point tables with this given
object were executed. Figure 4 shows the elapsed times of
these queries. Informix performs best in 3 out of 4 scenarios,
however it has the worst performance for the LineIntersects-
LargestArea scenario.

The spatial analysis scenarios are comprised of queries with
analytic functions and aggregation operations. Figure 5 shows
the 10 spatial analysis scenario results. Note that MySQL does
not support a few of these spatial functions such as Distance,
Buffer and Convex hull. Consequently, no results were re-
ported with MySQL for Buffer and ConvexHull. However,
finding all the spatial objects of interest, such as restaurants,
within a certain distance from a point is a common application.
Hence, we decided to simulate the Distance function for
MySQL by determining if the lengths of the lines constructed
between the point origin and other neighboring points are
less than or equal to the distance offset. Informix reported a
runtime issue with the Buffer function, so no result is reported
for that scenario.

Overall, MySQL is faster than PostgreSQL and Informix
in 7 out of the 8 scenarios supported by MySQL. Informix
performs the worst in 6 of these scenarios. However, Informix
has surprisingly good performance for the Envelope and
Convex Hull operations.

In many spatial applications such as Location Based Ser-
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Fig. 6. Data insertion

vices, GPS-enabled mobile devices continuously generate lo-
cation records. These records need to be loaded into the
database in a real-time manner in order to serve up-to-the-
minute status and activity reports. In other applications large
shape files with different spatial attributes may be uploaded
into the database. But they are not time critical.

The data insertion scenarios consist of inserting 1000
records consecutively into the database. Figure 6 shows the
elapsed times to load database tables with point, line and
polygon geometries. In all of the scenarios MySQL performed
the best and Informix performed the worst.

C. Macro Benchmark

The performance of the 3 databases in the macro scenarios
are shown in Figure 7. The query in the Geocoding scenario
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Fig. 7. Macro Benchmark (N/S = scenario not supported)

does not involve any spatial attributes and the performance
of all three databases are quite comparable. The Reverse
Geocoding scenario queries find the closest city and street
from a Geographic location. The queries make use of the
Distance function (simulated in MySQL as described earlier).
Informix performs the worst in this scenario and MySQL
performs the best. Map Search and Browsing scenario queries
involve the Distance function and the Intersects relation. Once
again, the performance of MySQL is better than PostgreSQL
and Informix and PostgreSQL was faster than Informix.

The Flood Risk Analysis scenario executes a set of 4
queries involving spatial and non-spatial joins and aggregation
operations. The topological relations Overlaps and Intersects
and spatial analysis function Area feature in these queries.
The performance of MySQL is several times better than that
of Informix and PostgreSQL. PostgreSQL is slightly worse
than Informix.

The Land Information Management scenario is a mix of 6
different queries and entail aggregation operations and spatial
and non-spatial joins. Overlaps and Intersects are the featured
topological relations. The spatial analysis function Dwithin
(the distance within a certain offset) features prominently
in these queries. Dwithin is supported only in PostgreSQL.
Informix does not directly support this, but the Distance
function can be utilized to express similar operations. MySQL,
again, does not support Dwithin function and was simulated
in the same manner described earlier. Another spatial function
used in this scenario is the Area. MySQL performs quite
poorly in this scenario. Informix was the overall winner in
this scenario.

The Toxic Spill scenario consists of two queries, involving
topological relations Intersects and Equals, and spatial analysis
functions StartPoint, EndPoint and Distance. The Distance
function was simulated in MySQL in a manner described ear-
lier. Due to issues with the StartPoint and EndPoint functions,
we were not able to implement this scenario for Informix. As
a result, we only report MySQL and PostgreSQL results, and
MySQL had the upper hand.

As noted earlier, even though MySQL performs better than

Informix and PostgreSQL in many scenarios, MySQL may
return many “false positive” records as result sets because it
does not perform the refinement phase of the spatial query
execution process. As can be been in Figure 1 in the column
“Count Of Resultset”, the number of records returned by a
micro benchmark scenario run is the same for both Post-
greSQL and Informix, whereas MySQL returns more records.
By making this information explicit, Jackpine lets the users be
cognizant of this issue. For some spatial applications, MBR-
based matching of the spatial features offered by MySQL
may be sufficient and no refinement step is needed at the
application level. The users of the database must decide
whether a particular database is suitable for their application
domain based on the supported functions.

The results seen in these experiments are intended to
illustrate the use of Jackpine, and not to draw any conclusions
about the suitability of these databases in any particular
application. To truly assess the relative merits of the databases,
effort should be made to tune each database configuration
appropriately. Nonetheless, the results shown here highlight
the benefits of benchmarking with both a wide range of micro
queries, and testing representative application workloads.

D. Overall score
The previous evaluation sections provide a detailed view

of the performance under different scenarios. Since different
applications may stress different operations, this information
can be valuable to an end user. Nonetheless, providing an
overall performance score for each database is also desirable.
Such a unified metric for evaluating the performance of
spatial database systems is hard to define, however. Given the
various database parameters and categories of spatial queries,
proposing a metric that incorporates all of them is a challenge
in itself.

There has been much previous debate regarding the appro-
priate metric for summarizing overall benchmark results [34],
[35]. Proposed metrics include arithmetic mean, weighted
geometric mean or harmonic mean, each with advantages and
disadvantages. Since our query run times differ by orders of
magnitude within a single database, we prefer a measure that
is insensitive to the influence of a long-running query. Hence,
we decided to use a geometric mean over all queries, where
each time result is normalized to a reference DBMS. Since
only PostgreSQL supports all the queries in the benchmark,
we decided to use it as our baseline DBMS. Ideally, the score
would be computed over all queries in the benchmark, however
a small number of queries are not supported by MySQL
and Informix. We have chosen to keep these queries in the
benchmark, however the overall score is computed for only
those queries that are supported by all 3 databases.

We calculate the overall database score as:

ScoreDBMSX
= N

√√√√ N∏
q=1

Time
DBMSref
q

TimeDBMSX
q

where N is the total number of queries, and the reference
DBMS is PostgreSQL. We calculate separate scores for the
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TABLE VII
OVERALL SCORES

Query Set PostgreSQL MySQL Informix
Microbenchmark 1.00 2.21 5.84
Macrobenchmark 1.00 1.06 0.32

micro and macro benchmarks, reported in Table VII for each
database (higher is better). Although Informix has a much
higher score on the microbenchmark, the particular mix of
queries used in the macro scenarios lead to a lower score.
This is consistent with the results for the Spatial Analysis
microbenchmark queries in Figure 5. We emphasize again that
the databases are untuned.

VI. DISCUSSION

With the growing popularity of Web Mapping and Location
based services, the spatial support in the major relational
databases has become increasingly important. The spatial func-
tionalities across the commercial and open-source databases
differ widely and there is no standard spatial database bench-
mark to compare such diverse offerings. In this paper we have
introduced Jackpine, a database benchmark to evaluate spatial
database performance. Our benchmark is flexible, as it can
support any database with a JDBC driver implementation. It
includes a number of carefully chosen spatial workloads and
is extensible so that new test scenarios can be added. Jackpine
subsumes all the vector query types of the SEQUOIA 2000
benchmark and includes many more.

We have presented a performance evaluation of Informix,
MySQL and PostgreSQL with Jackpine as an example of using
the benchmark. We have attempted to model real application
workloads, however efforts to trace queries seen in actual
usage would help to refine these scenarios. Scaling issues
for the benchmark remain as future work. It is our hope that
Jackpine will be useful on its own, and will serve as a basis
for ongoing discussion and development of a standard spatial
benchmark for the community.

More information on Jackpine, including links to code and
data, can be found at http://sysweb.cs.toronto.edu/jackpine.
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