
STILT: Unifying Spatial, Temporal and Textual Search using a
Generalized Multi-dimensional Index

Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray
University of New Brunswick, Fredericton, Canada

{yoann.arseneau,sgautam,bgn,sray}@unb.ca

ABSTRACT

The proliferation of location-enabled sensors, smart phones, and

the power of digital messaging combined with social media plat-

forms is producing a deluge of multi-dimensional data. Novel index

structures are needed to efficiently process massive amounts of geo-

tagged data, and to promptly answer queries with textual, spatial,

and temporal components. Existing approaches to spatio-temporal

text indexing lack a unified index supporting efficient range and

top-k search on any combination of location, time, or text.

We introduce a generalized, multi-dimensional index called Spatio-

temporal Textual InterLeaved Trie (STILT), which unifies spatial,

textual, and temporal components within a single structure. STILT

is a general-purpose index supporting subset searches (e.g. spatio-

textual, spatio-temporal, spatial, textual), as well as full spatio-

temporal textual searches. STILT uses a binary trie-based index

interleaving text, location, and time information in a space-efficient

manner. STILT supports parallel building of the index and con-

current execution of spatio-temporal textual queries, including

top-k and range search queries. With extensive evaluation, we

demonstrate that STILT is significantly faster than state-of-the-art

approaches in terms of index construction time and search latency.

CCS CONCEPTS

· Information systems→ Spatial-temporal systems;Data ac-

cess methods; Information retrieval query processing.

KEYWORDS

spatial, spatio-textual, spatio-temporal, multi-dimensional index

ACM Reference Format:

Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray.

2020. STILT: Unifying Spatial, Temporal and Textual Search using a General-

ized Multi-dimensional Index. In 32nd International Conference on Scientific

and Statistical Database Management (SSDBM 2020), July 7ś9, 2020, Vienna,

Austria.ACM, NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3400903.

3400927

1 Introduction

The big data era is characterized by a rising volume of data gener-

ated from a variety of sources. These data sources include mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM 2020, July 7ś9, 2020, Vienna, Austria

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8814-6/20/07. . . $15.00
https://doi.org/10.1145/3400903.3400927

devices and sensors, web and social media, internet-of-things com-

munication, enterprise applications, digital archives and public

records. A growing number of these mobile devices are geolocation-

enabled. The information produced by these sources often contain

spatial, temporal, and textual components. A notable example of

this is social media data, such as Twitter, Facebook, and Instagram

posts. Blog posts and articles posted online are also rich sources of

data containing time, location, and text. Other datasets may have

explicit location information (e.g. Wikipedia articles), or some spa-

tial components that can be used to derive a location. Invariably,

all data has a time component, whether it be creation time, access

time, or some other data-specific time.

These datasets, involving text, time, and spatial information can

provide valuable insights and offer governments and businesses an

edge. Indexing is a common technique to support efficient query

processing, particularly when the data volume is large and growing

fast. A significant body of research exists on the topic of indexing

temporal data. To index spatial data, tree-based approaches such

as the R-tree, quadtree, and k-d tree are the most widely adopted.

Supporting text search became an important area of research as

search engines like google and yahoo became popular. The inverted

index and its variants are the most popular data structure used for

full text search in information retrieval systems and search engines.

As Location-Based Services (LBS) became widespread in the last

decade, the research community focused on developing combined

spatio-temporal indexes. Consequently, a number of systems were

proposed, such as the Bx-tree [9], ST2B-tree [3], STR-tree [21] and

MV3R-tree [25]. The rise of social media provided an impetus to

invent indexes that can combine spatial and textual search. Indexing

approaches such as the IR-tree [13] and the DIR-tree [6] are the

outcome of this line of research. These indexes normally integrate

an inverted index with a tree based approach, primarily an R-tree

or quadtree, and take either a spatial-first or text-first approach in

applying the search constraints. Additional optimizations provided

by S2I [23] and I3 [30] take advantage of the fact that some keywords

appear far more frequently than others.

As more and more data sets include text, time, and location

components in the same document object, it is becoming increas-

ingly important to support queries that specify search criteria based

on all 3 components. An example query is łRetrieve the 10 most

relevant documents that contain the keywords ‘midterm’ and ‘elec-

tion’ that were posted between November 6, 2018 and November 30,

2018 within 50 km of Washington, DCž. To answer such a query, a

spatio-temporal index can be used to apply the location and time

criteria and an inverted index can be used to search based on the

text. Then an intersection of these two resulting sets would yield

the result set satisfying all 3 constraints. Another way to process

1

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Table 1: Some STILT index variants and their corresponding path schedules.

STILT variants Description 𝑏 𝐿 Path schedule

STILTstx Spatio-temporal textual 16 64 𝑦1𝑥1𝑤1𝑡1𝑦2𝑥2𝑤2𝑡2 . . . 𝑦𝑏𝑥𝑏𝑤𝑏𝑡𝑏
STILTsx Spatio-textual 21 63 𝑦1𝑥1𝑤1𝑦2𝑥2𝑤2 . . . 𝑦𝑏𝑥𝑏𝑤𝑏

STILTst Spatio-temporal 21 63 𝑦1𝑥1𝑡1𝑦2𝑥2𝑡2 . . . 𝑦𝑏𝑥𝑏𝑡𝑏

these queries would require using a spatio-textual index first, fol-

lowed by a temporal index to filter out results that do not match the

query time range. These methods, however, necessitate employing

more than one index and hence can be costly to process spatio-

temporal keyword queries. The research community, however, did

not pay much attention to this problem. ST2I [8] is the first index we

are aware of that provides a unified index and integrated ranking

scheme that handles space, time, and text in a single data structure.

ST2I, however, has some limitations, including support for a limited

character-set, lack of support for parallel operations to take advan-

tage of modern multi-core processors, and the need for rebuilding

the index when new data needs to be inserted. Note that a few other

systems exist that support queries on data involving the spatial,

temporal, and keyword attributes; however, they do not use an

integrated data structure or a unified spatio-temporal textual rank-

ing scheme like ST2I. For instance, Taghreed [15] supports a few

types of queries such as spatio-temporal boolean range keyword

search, and top-k frequent keyword query, but it does not support

a ranking scheme that considers both spatial and textual relevance.

Mercury [16] is designed to support top-k spatio-temporal textual

queries. Its ranking mechanism, however, only incorporates spatial

and temporal relevance, not textual relevance.

While it is important to efficiently support spatio-temporal tex-

tual queries using a single unified index, it could be argued that

such queries are not common and hence they do not warrant a

specialized index. The same argument can be made for queries

involving a subset of multiple dimensions (eg. temporal-textual

or spatio-textual). Therefore, it is necessary to develop a gener-

alized index that can support queries with any combination of

dimensions involving location, time and text. To address the issues

with existing approaches, we introduce a generalized, integrated,

multi-dimensional index that we call Spatio-temporal Textual In-

terleaved Trie (STILT). It is based on a multi-dimensional binary

Patricia trie [18]. Tries are highly efficient on modern hardware

for in-memory indexing [12]. Other researchers [2] have found

that well-designed tries can outperform comparison based indexes

(e.g. B-tree or R-tree, and their variants), particularly with string

data. STILT converts indexable components (e.g. spatial, textual,

temporal) to integers via a mapping function for each dimension.

These integers are then bit-interleaved according to a schedule that

dictates the order in which the bits are concatenated to produce an

interleaved bit-string that we call a path schedule. Depending on

the dimension(s) being indexed, a different path schedule is utilized

by the STILT index, as shown in Table 1. Each letter in the suffix in

each variant indicates the supported dimension, where letters s, t

and x stand for spatial, temporal and textual dimensions, respec-

tively. For instance, STILTsx supports indexing spatial and textual

dimensions. Here, 𝑦1, 𝑥1,𝑤1, 𝑡1 refer to the first bit of the latitude,

longitude, word, and time, respectively, and 𝑏 is the number of bits

for each of the dimensions. 𝐿 represents the length of the path

schedule which is the maximum height of the Patricia trie. STILTstx
is effectively a four-dimensional Z-order curve. In Section 4.2 we

discuss our index and path schedule in depth. Figure 4 shows an

example STILTstx index for the documents in Table 2 (with 𝑏 = 8

and 𝐿 = 32).

To our knowledge, STILT is the first generalized, single-structure

index that supports fully integrated spatio-temporal textual searches,

as well as subset dimensional searches involving any combina-

tion of dimensions (e.g. spatio-temporal, spatio-textual, spatial, tex-

tual). Note that unlike STILT, ST2I only supports integrated spatio-

temporal textual searches, but not subset dimensional searches. We

conducted a comprehensive experimental evaluation of STILT with

3 real-world datasets (Spaten, Tw20mi and Wikipedia: see Table 4

for details). To demonstrate that STILT is capable of efficiently

supporting full spatio-temporal textual and subset dimensional

searches, we evaluated STILT against several different indexes. To

compare spatio-textual query performance, we evaluated STILT

(STILTsx) against a fast spatio-textual index I
3. Our results demon-

strate that STILTsx is one order of magnitude faster than I3 with

spatio-textual top-k search. To compare spatio-temporal query per-

formance, we conducted experiments with a Bx-tree index, which

was reported to be one of the fastest spatio-temporal index in [4].

STILTst significantly outperforms Bx-tree on spatio-temporal range

queries. To compare STILT (STILTstx) on integrated spatio-temporal

textual features, we chose ST2I, which is the state-of-the-art inte-

grated spatio-temporal textual index. Experimental results suggest

that STILTstx is significantly faster than ST2I in terms of index con-

struction and query (range and top-k search) execution times. For

instance, with the Wikipedia dataset, the index construction time of

STILT is 3.3× faster than ST2I. Furthermore, range search execution

time of STILT is up to 18.2× faster, and top-k search execution time

is up to 11.6× faster than ST2I. The key contributions of this paper

are as follows:

• Wedeveloped a novel, generalized in-memory spatio-temporal

textual index STILT, based on a multi-dimensional binary

trie, which incorporates a number of optimizations to attain

space and query efficiency.

• Our system supports parallel index building and concurrent

query execution, exploiting modern multi-core machines.

• In our experimental evaluation involving 3 real-world datasets,

STILT (variants) performed significantly better than ST2I, I3

and Bx-tree indexes.

The rest of the paper is organized as follows. In Section 2 we

present relatedwork. Problem definitions for range and top-k search

are presented in Section 3. We introduce our index and present an

illustration in Section 4. The index algorithms, including index

construction and search, are discussed in Section 5. In Section 6 we

present analyses of storage and algorithm costs. An experimental

evaluation is presented in Section 7 and finally, we draw conclusions

in Section 8.

2

STILT: Unifying Spatial, Temporal and Textual Search using a Generalized Multi-dimensional Index SSDBM 2020, July 7–9, 2020, Vienna, Austria

2 Related Work

First, we present related work on trie-based indexes. Then, we

discuss prior research pertaining to spatio-temporal and spatio-

textual indexes followed by previous work on integrated spatio-

temporal textual indexes.

Note that STILT supports ranked ad hoc (snapshot) query process-

ing in a modern server class machine. Therefore, distributed spatio-

textual indexing approaches, such as Tornado [17], or publish-

subscribe indexing approaches for continuous queries like AP-

Tree [27] are beyond the scope of our paper.

2.1 Trie-based Index

Tries are data structures in which all the children of a node share a

common prefix and the search process involves determining which

child to proceed with depending on the remaining components

of a search key. In recent times trie-based main memory indexes

have received renewed attention, particularly with the popularity

of in-memory databases. The Adaptive Radix Trie (ART) [12] is a

recently proposed index that dynamically adapts the node struc-

ture by selecting more compact representations. A follow-up work,

Height Optimized Trie (HOT) [2], attempts to optimize the tree

height by combining multiple nodes of a binary trie into compound

nodes.

Like ART and HOT, our STILT index is also a trie-based approach.

STILT, however, is based on a binary Patricia trie [18], where in-

terior nodes contain a sequence of bits common to all the interior

node’s children called the skip bit list. For tries indexing random

keys, it has been shown [11] that search of Patricia tries visits fewer

nodes than two other types of multi-dimensional tries. STILT is a

multi-dimensional binary Patricia trie that adaptively chooses the

most compact node representation. This approach provides a highly

compact representation generalizable to any number of required

dimensions.

2.2 Spatio-temporal Index

Due to the rising popularity of Location-Based Services (LBS),

a number of spatio-temporal indexes were proposed. The BBx-

index [14] is a technique that keeps a forest of Bx-trees [9], each

tree for a different time interval. A Bx-tree [9] exploits a B-tree to

index the object locations converted into space filling curve (SFC)

codes. The ST2B-tree [3] is another B-tree based technique.

Several R-tree based approaches have also been proposed. The

STR-tree [21] uses an R-tree to index moving object trajectories and

hence can perform poorly for long trajectories. The MV3R-tree [25]

uses multiple versions of R-trees.

2.3 Spatio-textual Index

Spatio-textual indexes can be classified into three groups based

on their structure: R-tree based, grid-based and space filling curve

based. The R-tree based approaches generally combine an R-tree

with an inverted file. The IR-tree [6] is a classic example of this.

To deal with frequent terms and infrequent terms, the S2I [23]

index uses different approaches. The I3 index [30] utilizes a textual

partitioning approach similar to S2I. However, their spatial data

structure differs from that of S2I, as they use a quadtree instead of an

R-tree. SFC-QUAD [5] is a space filling curve approach that orders

documents on their position in a Z-order curve and stores them in

an inverted list. The grid-based indexes normally integrate a grid

index with a textual index. These include ST & TS [26] and SKIF [10].

Researchers have attempted to incorporate time as part of spatio-

textual query processing. These are not unified spatio-temporal

textual indexes, in the sense that the temporal dimension is not

integrated in the indexing structure as in a spatio-temporal index,

but rather it is used as a filter for temporal pruning. The authors

in [22] proposed a hybrid index that integrates a grid with an STR

R-tree. It supports spatio-textually ranked top-k search that returns

the most recent documents. Recently, Almaslukh et al. [1] evaluated

ten main-memory index structures. Their temporal boolean range

query (TBRQ) used a ranking scheme based on spatial and temporal

components, but without a textual component.

2.4 Unified Spatio-temporal Textual Index

According to the authors [8], ST2I is the first index that integrates

spatial, temporal and textual components in a single structure. How-

ever, ST2I has several limitations that include lack of support for

non-Latin character sets, the need for complete index reconstruc-

tion in order to insert new data, and a lack of support for concurrent

index building and query execution. ST2I uses a k-d tree as the basis

for its index, which requires median finding during insertion to

guarantee a balanced tree supporting efficient search. This limits

the use of ST2I to relatively static environments where new data ar-

rives slowly, such as historical archives. In contrast, STILT supports

concurrent insertion and search, and is ideal for highly dynamic

environments where new documents are arriving continuously.

Other than ST2I, a few indexes were designed to support queries

with spatial, temporal, and textual attributes. They include Taghreed

[15] and Mercury [16]. Unlike ST2I, they neither integrate space,

time and text in a unified structure, nor support combined spatio-

temporal textual ranking.

3 Definitions

In this section we define range and top-k search for combined

spatio-temporal textual queries. Queries involving a subset of these

dimensions can be defined similarly, but are omitted due to space

constraints.

Definition 3.1. Given a set of documents 𝑂 , spatio-temporal tex-

tual range search finds and reports the set𝐶 of document identifiers

matching a query 𝑞 as follows:

𝐶 ≡ docindex({∀𝑐 ∈ 𝐶 : |𝑞.𝑊 ∩ 𝑐.𝑊 | > 0,

𝑞.L .𝑦𝐿 ≤ 𝑜.ℓ .𝑦 ≤ 𝑞.L .𝑦𝑈 , 𝑞.L .𝑥𝐿 ≤ 𝑜.ℓ .𝑥 ≤ 𝑞.L .𝑥𝑈 ,

𝑞.T𝐿 ≤ 𝑜.𝑡 ≤ 𝑞.T𝑈 })

(1)

Each document 𝑜 = (𝑖𝑑, ℓ,𝑊 , 𝑡) in the set 𝑂 of indexed docu-

ments to be searched has an 𝑖𝑑 , a location ℓ = {ℓ .𝑦, ℓ .𝑥}, a set of

words𝑊 describing the document, and a document time 𝑡 (e.g. the

time and date the document was inserted into the database). Further,

𝑞 = (L,𝑊 ,T), where L = {[𝑦𝐿, 𝑦𝑈], [𝑥𝐿, 𝑥𝑈]} is the set of two

dimensional spatial range intervals defining a search rectangle,𝑊

is the set of words being searched for, and T = [T𝐿,T𝑈] is the time

range of the query. docindex() returns the document identifiers of

the search results.

3

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Search

Algorithm

Insert

Algorithm

STILT

Index

Persistent

Storage

New

Documents

New Queries
Search

Results

Figure 1: System architecture.

The above definition corresponds to a Boolean łORž search for

queries with |𝑞.𝑊 | > 1; i.e. only one of the keywords in 𝑞.𝑊 needs

to be present in documents matching the query. A Boolean łANDž

query (where documents in the range search results must include all

keywords in𝑞.𝑊) is also supported by STILT. STILT supports partial

range search, meaning that any of the query bounds (including

query keywords) can be ignored. For example, a range search to

find all documents matching a query with 𝑜.𝑡 ≥ ł2019-10-30 00:00ž

can specify the time range as T = [ł2019-10-30 00:00ž, ∗], where

the ∗ symbol means to ignore the upper bound, and search for all

documents with 𝑜.𝑡 ≥ 𝑞.T𝐿 .

Definition 3.2. A spatio-temporal textual top-k search reports the

set 𝐷 of the 𝑘 highest ranked documents matching a query 𝑞. A

ranking scheme is used to assign scores and order the documents

in 𝐷 . The query 𝑞 = (ℓ,𝑊 , 𝑡, 𝑘) defines a query point 𝑞.ℓ , a query

keyword set 𝑞.𝑊 , a query time 𝑞.𝑡 , and a parameter 𝑘 where 𝑘 is

the number of ranked documents to return.

𝐷 ≡ sort({𝑆 (𝑞, 𝑑) : ∀𝑑 ∈ 𝐸, |𝐷 | ≤ 𝑘}) (2)

Here, 𝑆 (𝑞, 𝑑) is the combined spatio-temporal textual score calcu-

lated with Equation 7, which is based on a unified ranking scheme,

explained in Section 5.4. This ranking scheme combines spatial,

temporal and textual components into a single score ∈ [0, 1]. 𝐷 is

a sorted set of size 𝑘 or less (if fewer than 𝑘 documents match the

query) consisting of the (up to) 𝑘 highest scoring documents match-

ing Equation 2. We use a priority queue to maintain the sorted set

𝐷 of the (up to) 𝑘 highest ranked documents while searching, as de-

scribed in Algorithm 7. 𝐸 is the result of a partial search with query

𝑞 = (∗,𝑊 , ∗, 𝑘) which searches all documents in 𝑂 with keywords

matching𝑊 to find the top-k matches based on the score 𝑆 (𝑞, 𝑑).

4 System Organization

We present our Spatio-temporal Textual Interleaved Trie (STILT)

index and describe the system organization in this section.

STILT is a generalized multi-dimensional index designed to sup-

port efficient insertion and search. STILT utilizes an adaptive node

allocation strategy to minimize memory usage (see Section 5 for

further details). STILT exploits multi-threading to support efficient

insertion and search with modern multi-core architecture machines.

4.1 System Organization

Our overall system is composed of an in-memory index, STILT and

a persistent storage based on the LSM-tree [20] to store documents,

as shown in Figure 1. Every document is assigned a unique 𝑖𝑑 upon

insertion into the system. The LSM-tree maps 𝑖𝑑s to documents,

while the index maps keys to 𝑖𝑑s. A document is defined as 𝑜 =

(𝑖𝑑, ℓ,𝑊 , 𝑡), where 𝑖𝑑 is the document identifier, ℓ = (𝑦, 𝑥) is its

spatial location,𝑊 is the ordered list of words for the document,

and 𝑡 is the document’s timestamp. A document has |𝑊 | keys,

defined as (𝑜.𝑖𝑑, 𝑜 .ℓ,𝑤, 𝑜.𝑡, extra(𝑜,𝑤)),∀𝑤 ∈ unique(𝑜.𝑊). The

unique function returns a set of unique words in the sequence,

after converting them to lower case. The extra function returns

anymetadata required by the index. To support top-k queries, extra

returns |𝑤 ∩ 𝑜.𝑊 | ÷ |𝑜.𝑊 | for efficient textual-relevance scoring.

4.2 Index Structure

The STILT index is essentially an in-memory data structure based

on binary Patricia trie [18], which maps 𝑁 -dimensional keys to

document ids. It requires a predetermined maximum length 𝐿 ∈ Z+,

a number of dimensions 𝑁 ∈ Z+, a mapping function for each

dimension, and a path schedule. We discretize the space into 2𝐿

cells, each of which corresponds to a leaf node of the trie. To map

a key to a cell, we map each of its components to an integer, then

we combine these integers into a single string of 𝐿 bits we call

a path. The combining process interleaves the bits according to

a path schedule (see Table 1), which dictates the order in which

the bits are concatenated to produce a path. The schedule also

implicitly dictates how many significant bits are needed for each

integer. A path maps to a cell by interpreting its bits as left or right

choices (i.e. 0 = go left, 1 = go right) as we descend from the root

node. Multiple keys share the same leaf if their paths are identical.

The notion of a path schedule enables STILT to be a generalized

multi-dimensional index, as different index variants (as shown in

Table 1) can utilize different path schedules. Our index can thus

support subset dimensional searches involving any combination

of dimensions. For instance, index variant STILTstx enables unified

spatio-temporal textual searches, whereas STILTsx supports spatio-

textual search and STILTst supports spatio-temporal search. For the

sake of simplicity, we primarily discuss the most general variant

STILTstx in this and the next section.

In all of our implementations of STILT, we use the same mapping

functions. For spatial and temporal dimensions, we use a simple

linear mapping based on a bounding range, which includes all

data points. For example, the Twitter and Spaten datasets’ spatial

bounding rectangle includes the Contiguous United States, while

the Wikipedia dataset’s includes the entire globe. For keywords, we

use a case-insensitive hash function which converts the characters

of the keyword into 5-bit strings as described in Algorithm 1. Notice

that latin-alphabet characters map to [1 . . 27], null characters

(padding for short words) map to 0, and undefined characters map

to 31. The remaining range of [28 . . 30] was arbitrarily assigned to

common characters in the datasets.

As illustrated in Figure 2, the STILT index is implemented using

two base types: Node and Key. The Node type represents non-leaf

nodes in the tree. We do not have a direct representation for leaf

nodes; we simply refer directly to the leaf data, which is either a

Key object or an array of Key objects. The Key type generalizes the

concept of keys as described in Section 4.1. Keys can be of type

FlatKey or SlimKey, depending on which is more space efficient.

4.3 Data Ingestion

The insertion of a document 𝑜 has three steps. First, we atomically

generate a unique positive integer 𝑖𝑑 ∈ Z+. Second, we insert the

4

STILT: Unifying Spatial, Temporal and Textual Search using a Generalized Multi-dimensional Index SSDBM 2020, July 7–9, 2020, Vienna, Austria

Key

<<interface>>

id() : int

latitude() : ✁oat

longitude() : ✁oat

keyword() : String

timestamp() : long

keywordFrequency() : int

totalWordFrequency() : int

FlatKey

id : int

latitude : �oat

longitude : �oat

keyword : String

timestamp : long

keywordFrequency : int

totalWordFrequency : int

Node

leftChild : Object

rightChild : Object

leftLength() : int

leftPath() : long

rightLength() : int

rightPath() : long

Node0

Node16

leftLength : byte

leftPath : short

rightLength : byte

rightPath : short

Node32

leftLength : byte

leftPath : int

rightLength : byte

rightPath : int

Node64

leftLength : byte

leftPath : long

rightLength : byte

rightPath : long

Node8

leftLength : byte

leftPath : byte

rightLength : byte

rightPath : byte

SlimCommon

id : int

latitude : �oat

longitude : �oat

timestamp : long

totalWordFrequency : int

SlimKey

common : SlimCommon

keyword : String

keywordFrequency : int

Figure 2: Node and Key class hierarchies.

Algorithm 1: Convert a character to a bit string.

Input :A string 𝑠 and a number of bits 𝑏.

1 Function keywordToBits(s, b) : int

2 if length(s) * 5 < b then make string long enough

3 𝑠 ← pad_with_null(𝑠, 𝑏/5 + 1)

4 𝑏𝑖𝑡𝑠 ← 0

5 for 𝑖 ← 0 to 𝑏/5 do append full characters

6 𝑏𝑖𝑡𝑠 ← (𝑏𝑖𝑡𝑠 << 5) + charToBits(𝑠 [𝑖])

7 𝑟𝑒𝑚 ← 𝑏 mod 5

8 if 𝑟𝑒𝑚 ≠ 0 then append partial character

9 𝑏𝑖𝑡𝑠 ← 𝑏𝑖𝑡𝑠 << 𝑟𝑒𝑚

10 𝑏𝑖𝑡𝑠 ← 𝑏𝑖𝑡𝑠 + (charToBits(𝑠 [𝑏/5+ 1]) >> (5−𝑟𝑒𝑚))

11 return 𝑏𝑖𝑡𝑠 << (bit_length(𝑖𝑛𝑡) − 𝑏)

12 Function charToBits(c) : int

13 if 𝑐 ≥ 'a' and 𝑐 ≤ 'z' then return 𝑐 − 'a' + 1

14 else if 𝑐 ≥ 'A' and 𝑐 ≤ 'Z' then return 𝑐 − 'A' + 1

15 else

16 switch c do

17 case '\0' do return 0

18 case '?' do return 27

19 case '“' do return 28

20 case '"' do return 29

21 case '°' do return 30

22 otherwise do return 31

mapping (𝑖𝑑 → 𝑜) into the persistent storage. Third, for each of

the |𝑊 | 4-dimensional keys ∈ 𝑜 , we insert the mapping (key→ 𝑖𝑑)

into the index (line 5). The second and third operations must happen

in-order to prevent the index from ever referring to a non-existent

document.

4.4 Query Processing

STILT supports efficient spatio-temporal textual range search (Defi-

nition 3.1) and top-k search (Definition 3.2). Range search (explained

Algorithm 2: Insert a document into the system.

Input :A persistent storage LSM, an index index, and a

document doc.

Result :Generates a unique id for the document, adds the

id→ doc mapping to the backing store, and

indexes the id.

1 Function insert_system(LSM, index, doc) : void

2 id← new_id()

3 insert(LSM, id→ doc)

4 foreach key in doc do

5 insert(index, key→ id)

in section 5.3) is implemented by performing a range search on the

STILT index to get the 𝑖𝑑 of all matching keys, then fetching all

unique 𝑖𝑑s from the persistent storage. Top-k search is implemented

by fetching all matching keys, grouping them by document 𝑖𝑑 , and

calculating a score for each 𝑖𝑑 , as explained in section 5.4. As a re-

sult, we only need to fetch at most 𝑘 documents from the persistent

storage, drastically reducing the number of I/O operations.

Note that our implementation supports concurrent insertion and

concurrent searching. It also supports searching while inserting,

but in this case the search is not fully isolated. A search is guar-

anteed to find anything inserted before the search is initiated, but

may also include any document whose indexing began before the

search terminated. For streaming data applications this is largely

inconsequential. If necessary, synchronizing search and insert op-

erations can be achieved by adding a master read/write lock to the

index.

4.5 Illustration

Table 2 shows three example documents containing six keys (aris-

ing from the two words in each document) along with the binary

representation of the first eight bits of each dimension of the key.

Colours red, green, blue and purple are used to indicate the latitude,

longitude, text and time elements, respectively, of the 4-dimensional

key. For this illustrative example, the maximum depth of the Patri-

cia trie is restricted to 32 bits. This provides eight bits for each of the

5

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Algorithm 3: insert a key into the STILT index.

1 Function stilt_insert(node, key, 𝑖𝑑)

2 path← path_of(key)

3 repeat

4 acquire_lock(node)

5 edge← pick_edge(node, path)

6 if edge does not exist then create it

7 nodenext ← new LeafNode

8 put_edge(node, path, nodenext)

9 node← nodenext

10 break

11 if edge matches path then continue search

12 node← edge.child

13 else split the edge

14 node← split(edge, path)

15 edge← pick_edge(node, path)

16 path← path − edge.path

17 release_lock(node)

18 until path is empty

19 insert(node, (key→ 𝑖𝑑))

four dimensions of a key. Our actual implementation of STILTstx,

as mentioned in Section 4.2, has a maximum path length 𝐿 of 64,

providing 16 bits for each of the four dimensions.

Figure 3 illustrates building a spatio-temporal textual STILTstx
index by inserting the keys in Table 2. The key elements are con-

verted to positive integers via a linear mapping, as explained in

section 4.2, with 𝑏 = 8, 𝐿 = 32, 𝑡𝑚𝑖𝑛 = 00:00:00, 𝑡𝑚𝑎𝑥 = 23:59:59,

and spatial coordinates ∈ [0, 100].

Figure 3 also shows the node types Node32 and Node8 created

as the keys in Table 2 are inserted in the order shown in Table 2. As

indicated in sections 4.2 and 5, non-leaf nodes are created with paths

of varying length depending on the number of bits required to hold

the path to a leaf at the time of creation. This adaptive approach

saves space as the STILT index grows, and a larger number of deeper

nodes are created. Figure 4 shows the final STILTstx index with all

edge labels for this example after a compression step that replaces

nodes created as type Node32 with Node16 and Node8 node types.

5 Index Algorithms

In this section we discuss the index construction algorithm first.

Then we present query processing algorithms.

5.1 Index Construction

STILT is built by iterative insertion of (key→ 𝑖𝑑) mappings. The

process has three steps, as described in Algorithm 3. We first calcu-

late the path for the key (line 2) by combining the hashes according

to the schedule. Then, we iteratively descend (line 3) the trie until

we either find (line 12) or create (line 7) the desired leaf node. Finally,

we append the (key→ 𝑖𝑑) mapping to the leaf node (line 19).

Algorithm 4 describes the process of splitting an edge. It involves

two steps. First, we create a common node at the depth at which

the existing node and the new path diverge (line 3). Then, we create

an edge on the common node to which we attach the preexisting

Algorithm 4: Split an edge by inserting a new node along

its length. Mutates its first argument.

1 Function split (edge, path) : LeafNode

2 (node𝑜 , length𝑜 , path𝑜) ← edge

// create a common node

3 length𝑐 ← clz(xor(path, edge.𝑝𝑎𝑡ℎ))

4 node𝑐 ← new Node

5 edge.𝑛𝑜𝑑𝑒 ← node𝑐

6 edge.𝑙𝑒𝑛𝑔𝑡ℎ ← length𝑐
// re-link original node

7 edge𝑜 ← new Edge

8 edge𝑜 .𝑛𝑜𝑑𝑒 ← node𝑜

9 edge𝑜 .𝑙𝑒𝑛𝑔𝑡ℎ ← length𝑜 − length𝑐 − 1

10 edge𝑜 .𝑝𝑎𝑡ℎ ← path𝑜 << (length𝑐 + 1)

11 set_edge(node𝑐 , not msb(path), node𝑜)

12 return node𝑐

node such that its path remains unchanged (line 7). We return the

common node (line 12) so stilt_insert (Algorithm 3) can populate

its empty edge.

5.2 Deduplication

Achieving storage efficiency is an important consideration for our

index. To reduce storage requirements, we developed a deduplica-

tion strategy for keys. As can be seen in Table 2, each document

has a single id, spatial coordinates, timestamp, and a single list of

words𝑊 . As such, the id, latitude, longitude, timestamp, and total

word frequency fields are identical in each key of a document that

has multiple unique words. Instead of storing all the fields in every

key using the FlatKey node structure (see Figure 2), we create

one common object (SlimCommon) to store the repeating fields. We

then create one unique object (SlimKey) to store the keyword and

keyword frequency fields, and a reference to the SlimCommon object.

In our Java-based implementation, given a number of documents 𝑛

= |𝑂 |, each with an average number𝑚 of unique words, the total

bytes of memory usage using FlatKey objects only versus using

SlimCommon objects only can be expressed as 48𝑚𝑛 and 40𝑚𝑛+24𝑚,

respectively as shown in Table 3. The memory saving can therefore

be expressed as 𝑚(8𝑛 − 24) bytes. For the datasets we used for

evaluation (see Table 4), the storage savings from deduplication

amounted to 447.5, 909.7, and 1,656.2 MiB for the Spaten, Tw20mi,

and Wikipedia datasets, respectively.

In addition to the deduplication of document keys in the index,

we use other storage saving strategies. For instance, we utilize

string interning [24] to reduce memory usage, which stores only

one copy of each distinct string value.

5.3 Range Search

Our spatio-temporal textual range search algorithm is presented

in Algorithm 5. The query is defined by a 2-dimensional spatial

range L, a set of words𝑊 , and a time range T (Definition 3.1). The

search query (L,𝑊 ,T) is applied to each keyword in the query

i.e. ∀𝑤 ∈𝑊 (line 3). Searching the system for documents matching

(L,𝑊 ,T) consists of three steps. First, we find every leaf node 𝑁

which intersects the rectangle defined byL andmay contain at least

6

STILT: Unifying Spatial, Temporal and Textual Search using a Generalized Multi-dimensional Index SSDBM 2020, July 7–9, 2020, Vienna, Austria

Table 2: Three example documents and their binary representation.
Id Document Keys Binary representation

0 (42,96) {desserts,bakery} 18:30:48
(42, 96, desserts, 18:30:48)

(42, 96, bakery, 18:30:48)

(01101011,11110101,00100001,11100101)

(01101011,11110101,00010111,11100101)

1 (39,72) {alcohol,bar} 18:35:24
(39,72,alcohol,18:35:24)

(39,72,bar,18:35:24)

(01100011,10111000,00001011,11100110)

(01100011,10111000,00010000,11100110)

2 (41,69) {desserts,diner} 18:35:42
(41,69,desserts,18:35:42)

(41,69,diner,18:35:42)

(01101000,10110000,00100001,11100110)

(01101000,10110000,00100010,11100110)

Figure 3: Progression of inserting the six keys of the three documents shown in Table 2 into a STILTstx index with 𝐿 = 32.

Red nodes and edges indicate where each new key is inserted. (a) Initial empty trie. (b) After inserting the first keyword from

document 0. (c) After inserting the second keyword from document 0. Both keywords share the first 10 bits, introducing a new

Node32 to store the path to each key. (d) The first keyword of document 1 introduces a new Node32 at depth 1 as the existing

depth 1 Node32 from step (c) shares only the first five bits. (e) The second keyword of document 1 has the same first 14 bits as

document 1’s first keyword. (f) Keyword 1 of document 2 is inserted. (g) A new Node8 is created as both the left and right paths

to the keys of document 2 require less than 8 bits each. Note that unchanged long edge paths already shown in a previous

subfigure are omitted in later subfigures.

Node32

Node8
01011

Node16

00111

Node32

10111

Node32

0101

Node8

1101001000000100

0(bakery)

0101101000010110001101

0(desserts)

1101001000010110001111

1(alcohol)

000110000110111010

1(bar)

100100000110011000

2(desserts)

010010

2(diner)

110000

alcohol,1

bakery,1

diner,1desserts,1bar,1

desserts,1

1,(39,72),18:35:24,2 2,(41,69),18:35:42,2

0,(42,96),18:30:48,2

Figure 4: The final STILT index, showing all edge paths resulting from indexing the three documents in Table 2. Magenta

colored nodes are compressed from Node32 (as seen in Figure 3, step (g)). Leaf nodes reflect their content as defined in Figure 2,

where the SlimKey class points to common attributes shared by all keywords in a document.

7

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Table 3: Bytes of Key object memory usage in Java. Total size

includes the JVM 12 byte header, and padding to an 8 byte

boundary.
Type int float long ref total size

FlatKey 3 2 1 1 48

SlimKey 1 0 0 2 24

SlimCommon 2 2 1 0 40

Algorithm 5: Range search using STILT.

Input :A persistent storage LSM, a root node root, and a

query query.

Output :All the documents matching the search criteria.

1 Function range_search_stilt(LSM, root, query) : List

2 entries← ∅

3 foreach𝑤 in𝑊 do

4 entries← entries ∪ search_node(root, query, 0,

FULL_RANGE)

5 𝑑𝑜𝑐𝑠 ← ∅

6 foreach unique 𝑖𝑑 in entries do

𝑑𝑜𝑐𝑠 ← 𝑑𝑜𝑐𝑠 ∪ get(LSM, id)

7 return 𝑑𝑜𝑐𝑠

one word in𝑊 . Second, for each mapping𝑚 = ((ℓ ′,𝑤 ′, 𝑡 ′) → 𝑖𝑑)

in each 𝑁 , we add 𝑖𝑑 to a result set 𝑅 if ℓ ′ is within the rectangle

defined by L, 𝑤 ′ is in𝑊 , and 𝑡 ′ is in T . Finally, we retrieve all

documents from the persistent store whose id is in 𝑅; the collection

of these documents is the result. In our implementation, we perform

the first and second steps simultaneously (line 4) to reduce memory

usage, which we describe in Algorithm 6. The process of retrieving

data from a LSM-tree in the third step is explained in [20].

The steps to search for query-matching leaf nodes is defined in

Algorithm 6. It defines two functions (lines 1 and 30), which are

collectively recursive (they call each other). The functions carry

a 4-dimensional search range with them, which shrinks as they

approach leaf nodes; this range determines if a node or its children

may be within the search criteria. The search_node function has

two main behaviors. If it is passed a leaf node, it gathers all relevant

ids (line 27) contained in the leaf and returns them (line 29). If

it is passed a non-leaf node, it determines which edges are worth

searching (lines 13 and 18) and initiates search_edgewith the mod-

ified range as appropriate. The search_edge function processes

the edge’s path (line 32) to determine range at the node. If the node

is within the range (line 39), search_node is initiated with the

modified range (line 41).

5.4 Top-k Search

Algorithm 7 describes spatio-temporal textual top-k search. It takes

the same parameters as range search, but adds an integer parameter

𝑘 (Definition 3.2).

Line 2 finds all documents matching any of the query keywords

in𝑊 . Lines 4 through 6 compute the spatial score 𝑆𝑠 (𝑞, 𝑜) (Equa-

tion 3), temporal score 𝑆𝑡 (𝑞, 𝑜) (Equation 4), and the term frequency

part of the word (textual) score (Equation 6). The spatial score

𝑆𝑠 (𝑞, 𝑜) is based on the distance 𝑑 (𝑞.ℓ, 𝑜 .ℓ) from the query rectan-

gle center location 𝑞.ℓ = (L .𝑦𝐿+(L .𝑦𝑈 −L .𝑦𝐿)/2, (L .𝑥𝐿+(L .𝑥𝑈 −

L .𝑥𝐿)/2) to the document location 𝑜.ℓ . The term 𝑅 in (Equation 3)

Algorithm 6: Search for query-matching leaf nodes.

1 Function search_node (node, query, depth, range) : List

2 if depth < 64 then not a leaf

3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← depth mod 4

4 depth← depth + 1

5 synchronized (node)

6 edge𝑙 ← node.𝑙𝑒 𝑓 𝑡𝐸𝑑𝑔𝑒

7 edge𝑟 ← node.𝑟𝑖𝑔ℎ𝑡𝐸𝑑𝑔𝑒

8 𝑣 ← get(range, dimension)

9 if 𝑣 is * then dimension is ignored

10 𝑙 ← search_edge(edge𝑙 , query, depth, range)

11 𝑢 ← search_edge(edge𝑟 , query, depth, range)

12 else dimension is not ignored

13 if query intersects lower_half(𝑣) then

14 range′ ← clone(range)

15 set(range′, dimension, lower_half(𝑣))

16 𝑙 ← search_edge(edge𝑙 , query, depth,

range′)

17 else 𝑙 ← ∅

18 if query intersects upper_half(𝑣) then

19 range′ ← clone(range)

20 set(range′, dimension, upper_half(𝑣))

21 𝑢 ← search_edge(edge𝑟 , query, depth,

range′)

22 else 𝑢 ← ∅

23 return 𝑙 ∪ 𝑢

24 else is a leaf

25 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← ∅

26 foreach 𝑒𝑛𝑡𝑟𝑦 in node.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 do

27 if 𝑒𝑛𝑡𝑟𝑦.𝑘𝑒𝑦 matches query then

28 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∪ {𝑒𝑛𝑡𝑟𝑦}

29 return entries

30 Function search_edge (edge, query, depth, range) : List

31 𝑝𝑎𝑡ℎ ← edge.𝑝𝑎𝑡ℎ

32 foreach 𝑖 in [0 .. edge.𝑙𝑒𝑛𝑔𝑡ℎ) do adjust range

33 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← (depth + 𝑖) mod 4

34 𝑣 ← get(range, dimension)

35 if 𝑣 is not * then

36 if msb(𝑝𝑎𝑡ℎ << 𝑖) then 𝑣 ← upper_half(v)

37 else 𝑣 ← lower_half(v)

38 set(range, dimension, 𝑣)

39 if range matches query then

40 depth← depth + edge.𝑙𝑒𝑛𝑔𝑡ℎ

41 search_node(edge.𝑛𝑜𝑑𝑒 , query, depth, range)

normalizes the spatial score to be in the range [0,1]. The temporal

score 𝑆𝑡 (𝑞, 𝑜) is based on recency of the document time 𝑜.𝑡 within

the query time range (Equation 4). The final word score 𝑆𝑤 (𝑞, 𝑜)

using cosine similarity (Equation 5) is combined with the spatial

and textual scores using weights (Equation 7) at line 9.

8

STILT: Unifying Spatial, Temporal and Textual Search using a Generalized Multi-dimensional Index SSDBM 2020, July 7–9, 2020, Vienna, Austria

Algorithm 7: Top-K search.

Output :A list of at most 𝑘 (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 → 𝑠𝑐𝑜𝑟𝑒) mappings.

1 Function topk_search(LSM, root, query, k) : List

2 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← range_search_stilt(LSM, root,

(∗, query.𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠, ∗))

3 𝑠𝑐𝑜𝑟𝑖𝑛𝑔_𝑚𝑎𝑝 ← new IncrementalScoringMap(query)

4 foreach 𝑒𝑛𝑡𝑟𝑦 in 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 do

5 𝑠𝑐𝑜𝑟𝑒𝑟 = 𝑠𝑐𝑜𝑟𝑖𝑛𝑔_𝑚𝑎𝑝.𝑔𝑒𝑡𝑠𝑒𝑟𝑡_𝑠𝑐𝑜𝑟𝑒𝑟_𝑓 𝑜𝑟 (𝑒𝑛𝑡𝑟𝑦)

6 𝑠𝑐𝑜𝑟𝑒𝑟 .𝑎𝑐𝑐𝑒𝑝𝑡 (𝑒𝑛𝑡𝑟𝑦.𝑤𝑜𝑟𝑑, 𝑒𝑛𝑡𝑟𝑦.𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

7 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← new BoundedPriorityQueue(k)

8 foreach (𝑖𝑑, 𝑠𝑐𝑜𝑟𝑒𝑟) in 𝑠𝑐𝑜𝑟𝑖𝑛𝑔_𝑚𝑎𝑝 do

9 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 .𝑎𝑑𝑑 ((𝑖𝑑 → 𝑠𝑐𝑜𝑟𝑒𝑟 .𝑓 𝑖𝑛𝑎𝑙𝑖𝑧𝑒_𝑠𝑐𝑜𝑟𝑒 (query)))

10 return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑆𝑠 (𝑞, 𝑜) = 1 −
𝑑 (𝑞.ℓ, 𝑜 .ℓ)

𝑅
(3)

𝑆𝑡 (𝑞, 𝑜) = 1 −
𝑜.𝑡 − T𝐿

T𝑈 − T𝐿
(4)

𝑆𝑤 (𝑞, 𝑜) =

∑

𝑤∈𝑞.𝑊
tf-idf(𝑤,𝑜)tf-idf(𝑤,𝑞)

√

∑

𝑤∈𝑞.𝑊
tf-idf(𝑤,𝑜)2

√

∑

𝑤∈𝑞.𝑊
tf-idf(𝑤,𝑞)2

(5)

tf-idf(𝜏, 𝑝) =
|𝜏 ∩ 𝑝.𝑊 |

|𝑝.𝑊 |
∗ log

|𝑂 |

|∀𝑜 ∈ 𝑂 : 𝜏 ∈ 𝑜.𝑊 |
(6)

Given weights 𝛼, 𝛽,𝛾 ∈ [0 .. 1] : 𝛼 + 𝛽 + 𝛾 = 1

𝑆 (𝑞, 𝑜) = 𝛼𝑆𝑠 (𝑞, 𝑜) + 𝛽𝑆𝑡 (𝑞, 𝑜) + 𝛾𝑆𝑤 (𝑞, 𝑜)
(7)

6 Analysis

As described in Table 1, the maximum height 𝐿 of the binary Patricia

trie defining a STILT index is either 63 or 64. Section 4 describes the

STILT index structure. Interior nodes store the common prefixes

of interleaved bits of the unique words in the set 𝑂 of documents

being indexed, and require up to 24 bytes each. Leaf nodes store the

document keys 𝑜 = (𝑖𝑑, ℓ,𝑤, 𝑡), where 𝑖𝑑 is the document identifier,

ℓ = (𝑦, 𝑥) is its spatial location, 𝑤 ∈ 𝑊 is one of the set𝑊 of

unique words for the document, and 𝑡 is the document’s timestamp.

With deduplication (see section 5.2), leaf nodes require a total of

40𝑚𝑛 + 24𝑚 bytes, where 𝑛 is the number of documents stored in

the index, and𝑚 is the average number of unique words in each

document (column 3 in Table 4). Keys with the same binary key (of

length 𝐿) all reside in the same leaf bucket. The space required by

a STILT index is therefore dominated by the leaf nodes, leading to

the following theorem:

Theorem 6.1. The main memory storage cost 𝑆 (𝑛,𝑚) of a STILT

index is Θ(𝑚𝑛), where 𝑛 = |𝑂 |, and 𝑚 is the average number of

unique words per document in the set 𝑂 of documents stored in the

index.

Lemma 6.2. Under the pointer machine model 1, the expected cost

𝐼 (𝑜) to insert a single document 𝑜 into a STILT index is Θ(𝑚).
1https://en.wikipedia.org/wiki/Pointer_machine

Proof. The cost 𝐼 (𝑜) to insert a single document 𝑜 into a STILT

index is the cost of inserting |𝑜.𝑊 | binary keys, where 𝑜.𝑊 is the set

of unique words in document 𝑜 . As shown in Algorithm 3, inserting

a single binary key 𝐵 requires the traversal of existing nodes until a

non-matching bit or a leaf node is encountered. A non-matching bit

in 𝐵 causes a new interior node to be created (line 14), costing𝑂 (1)

time. Encountering a leaf node results in the key’s attributes being

inserted into a new or existing leaf node, as described in Figure

2. In both of these cases, the cost of insertion is 𝑂 (1) time under

the pointer machine model. In the worst case, 𝐿 interior nodes are

traversed on the way to a new or existing leaf node, costing 𝐿 time.

Here, 𝐿 is a constant, so the cost to insert a single binary key 𝐵 is

𝑂 (1) under the pointer machine model. The expected number of

unique words |𝑜.𝑊 | in a document 𝑜 is𝑚. □

The entire STILT index contains 𝑛 documents, with an average

of𝑚 unique words in each, which leads to the following theorem:

Theorem 6.3. Under the pointer machine model, the expected

cost to insert 𝑛 documents having an average of𝑚 unique words per

document into a STILT index residing in main memory is Θ(𝑚𝑛).

The cost for range search in a main memory STILT index is

determined by Algorithms 5 and 6. Under the pointer machine

model, the cost to perform a range search on a STILT index is

the number of nodes visited during the search. We assume the 𝑛

documents 𝑜 = (𝑖𝑑, ℓ,𝑊 , 𝑡) are each defined by a 3-dimensional

point (ℓ𝑦, ℓ𝑥 , 𝑡) distributed in a uniform random fashion in space.

Theorem 6.4. Given a STILTstx index built from a set of 𝑛 docu-

ments having an average of𝑚 unique words per document defined

by points uniformly distributed on [0, 1]3, and with a 3-dimensional

query hyperrectangle with centre 𝑧 ∈ [0, 1]3 having side lengths

{Δ𝑦,Δ𝑥 ,Δ𝑡 } ∈ [0, 1], the expected cost to perform a range search is

𝑂 (𝑚𝑎 |𝑞.𝑊 | 𝑛 Δ𝑦Δ𝑥Δ𝑡), where 𝑎 is the number of text buckets and

|𝑞.𝑊 | is the number of words in the query.

Proof. We adapt Theorem 3.4 of [19] to range search as defined

in Definition 3.1. The query components 𝑞.L and 𝑞.T define a 3-

dimensional query hyperrectangle Δ of side length𝑞.L .𝑦𝑈 −𝑞.L .𝑦𝐿 ,

𝑞.L .𝑥𝑈 − 𝑞.L .𝑥𝐿 , and 𝑞.T𝑈 − 𝑞.T𝐿 . In addition, we search for a

set of query keywords 𝑞.𝑊 matching document keywords stored

in the STILTstx index. Without loss of generality, we normalize

the three side lengths by dividing by the size of the space being

indexed in each dimension. As range search proceeds down the

binary Patricia trie (see Algorithm 6), an edge is followed only if the

interior node 𝑁 ’s hyperrectangle intersects Δ, and if the text bits

found when following edges up to 𝑁 match the query keyword𝑤

being searched for (line 3 in Algorithm 5). The normalized volume of

the indexed space [0, 1]3 visited is Δ𝑦Δ𝑥Δ𝑡 , and 𝑛Δ𝑦Δ𝑥Δ𝑡 defines

the fraction of the 3-dimensional space visited. Assuming equal

probability of words falling into one of 𝑎 text buckets in a STILTstx
index containing 𝑛 documents, the expected number of documents

containing a given word is defined by the following:

recurrence: 𝑓 (1) = 1/𝑎, 𝑓 (𝑛) = 𝑎−𝑛 + 𝑓 (𝑛 − 1) (8)

solution: 𝑓 (𝑛) =
1 − 𝑎−𝑛

𝑎 − 1
(9)

The second term 𝑎−𝑛/(𝑎 − 1) of the solution in Equation 9 can

be ignored as as it is extremely small compared to the first term

9

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Table 4: Datasets. Keys and words per document.
Dataset Num. of Mean Max Mean

name docs. keys keys words

Spaten 1,523,849 21.75 62 23.26

Tw20mi 20,000,000 5.48 38 5.70

Wikipedia 280,000 390.14 7,770 1,018.39

Table 5: Parameter setting.
Parameter Setting

Datasets Tw20mi, Spaten, Wikipedia

Number of queries 1000

k 5, 10, 15, 20, 25

Num. query keywords 1, 2, 3, 4, 5

Number of threads 1, 2, 4, 8, 16

1/(𝑎−1). Each document contains an average of𝑚 unique words, so

Algorithm 6 visits up to𝑚 buckets for each document intersecting

the 3-dimensional query hyperrectangle Δ. □

The number 𝑎 of text buckets is determined by howmany bits are

used to represent characters in the alphabet representing words in

the index. In this paper, Algorithm 1 is used to map each character

in a word to 5 bits, with 𝑏 = 16 bits in total used for indexing text in

a STILTstx index, providing buckets for up to 216 text prefixes. Five

bits are used to represent each character, giving three complete

characters, and one bit of the fourth character as a prefix. For

example, all words startingwith letters łchež followed by characters

with a first bit of ł0ž will fall into the bucket with text bits 00100

01001 00110 0. The number of English words in common use is

approximately 170,000 [29]. Many English words have common

prefixes, resulting in fewer than 2
16 text buckets.

For top-k search, Algorithm 7 visits many more nodes due to the

cost of visiting all nodes in the 3-dimensional indexed space.

7 Evaluation

The following sections describe our experimental setup, datasets,

query sets, and performance evaluation involving index construc-

tion and query execution. The parameter settings are shown in

Table 5, with the default parameters in bold font.

7.1 Experimental setup

7.1.1 Datasets We used three real world datasets, Twitter

(Tw20mi), Wikipedia [28], and Spaten [7]; the details can be found

in Table 4. The documents in all datasets include geo-location and

timestamp information.

7.1.2 Query sets Our query sets consist of 1,000 queries. The

query set was formed by randomly selecting documents from the

datasets in 25% of the queries, forcing at least 25% of searches to

return non-empty results. The rest of the queries consisted of ran-

dom values generated from a global dictionary, which was formed

by combining tokens from the datasets. Each set of 1,000 queries

was run three times (after one warm-up run).

7.1.3 Environment setup The experiments were conducted

on a machine with 16 AMD Opteron cores and 128 GB RAM. All

our code is written in Java 9 and we ran our experiments on on

Ubuntu 16.04 OS. We implemented our own version of ST2I based

on its definition in [8]. We obtained Bx-tree [9] and I3 [30] from

Figure 5: Index construction time.

Table 6: Query experiments setting.

Category Query
STILT

variants

Compared

against

Spatio-temporal textual
Top-k STILTstx ST2I

Range STILTstx ST2I

Spatio-textual Top-k STILTsx I3

Spatio-temporal Range STILTst Bx-tree

their respective authors. For the persistent storage, which is based

on the LSM-tree, we used LevelDB’s implementation.

7.2 Index construction

Although STILT does support simultaneous insertion and search,

we separate our experiments into a build (index construction) and

a query phase. This is because none of our comparison indexes

support simultaneous data insertion and query execution.

7.2.1 Index construction cost Figure 5 shows the index build-

ing time for STILT, ST2I and I3, for all three datasets. STILT is by

far the fastest, being up to 3.3× faster than ST2I and 5.0× faster

than I3. We attribute STILT’s speed advantage to the fact that it

resides entirely in memory, combined with its ability to be built

progressively. Together, these features enable significant scaling

with the number of processors available. By contrast, both ST2I and

I3 have components written to disk, and they both need to be built

all at once. This means that while STILT can be built as the data is

being read, the other two indexes need to load the entire dataset in

memory before they can begin indexing. We omitted the Bx-tree

from this figure because it took more than two hours to construct.

7.2.2 Index storage usage Figure 6 shows the storage usage

of STILT, ST2I, and I3 during index construction. The lower bars

(dark) show the Java-reported heap size, while the lighter bars show

disk usage. Note that STILT only has a single dark bar, because

it does not use disk storage. I3 is competitive for Spaten, but is

significantly outclassed for Tw20mi and Wikipedia. STILT and ST2I

are competitive with each other’s total memory usage for all three

datasets. While it is true that ST2I requires less main memory than

STILT, it uses a memory-mapped file for its disk storage. This

means that to perform optimally, some or all of its disk storage will

be duplicated in main memory, making its main memory usage

comparable to STILT’s. This is the case in our experiments since

our machine has abundant memory for the datasets used here.

7.3 Query performance

We evaluated the performance of both top-k search and range search

with the indexes. A summary of the query experiments setting is

10

STILT: Unifying Spatial, Temporal and Textual Search using a Generalized Multi-dimensional Index SSDBM 2020, July 7–9, 2020, Vienna, Austria

Figure 6: Index storage usage (I3extends beyond y axis).

Figure 7: Top-k search (spatio-temporal textual): vary

datasets.

shown in Table 6. Except for experiments involving Figures 7 and 8

(where the datasets were varied), all experiments mentioned in

the following sections were conducted with the dataset Wikipedia.

Except for experimental results shown in Figures 9 and 10, all

experiments are performed using spatio-temporal textual queries.

As reported for ST2I [8], our average query runtimes include the

time to search the index, and return the unique document 𝑖𝑑s, but

not the time to retrieve documents from persistent storage.

7.3.1 Vary datasets We compare STILTstx with ST2I in spatio-

temporal-textual top-k (Figure 7) and range (Figure 8) search.

STILTstx performs up to 11.6× faster than ST2I in top-k search

and up to 18.2× faster in range search, bothwith the Tw20mi dataset.

STILT’s lead is due to its efficient pruning and the fact that its index

structure is stored in memory, allowing parallel index look-ups

with virtually no contention between threads. All other indexes

are single-threaded and rely on some form of disk storage for their

index, which significantly slows them down.

7.3.2 Subset dimensional search We compare STILTst against

Bx-tree for spatio-temporal range search (Figure 9), and STILTsx
with I3 for spatio-textual top-k search (Figure 10). STILTst per-

forms four orders of magnitude faster than Bx-tree, while STILTsx
is one order of magnitude faster than I3. Note that the Bx-tree was

designed as a spatio-temporal index for moving objects, whereas

the documents in our datasets are static. Hence, we adapted our

dataset to work with Bx-tree by setting the velocity of objects to

zero and generating unique timestamps, which were compatible

with Bx-tree.

7.3.3 Top-k search: vary k We evaluate top-k search by vary-

ing k (Figure 11). Neither index is significantly affected by varying

k. STILTstx is an average of 11.6× faster than ST2I.

Figure 8: Range search (spatio-temporal textual): vary

datasets.

Figure 9: Range search (spatio-temporal).

Figure 10: Top-k search (spatio-textual).

Figure 11: Top-k search (spatio-temporal textual): vary k.

7.3.4 Top-k search: vary number of keywords For these

experiments, we vary the number of query keywords as 1, 3, and

5 (Figure 12). This variable is a good predictor for performance as

both STILTstx and ST2I scale similarly, as expected since they both

process keywords sequentially. STILTstx is 8.9× faster than ST2I

on average.

7.3.5 Top-k and range search: varynumber of threads We

evaluate STILT’s ability to scale across processors by varying the

11

SSDBM 2020, July 7–9, 2020, Vienna, Austria Yoann Arseneau, Saransh Gautam, Bradford G. Nickerson and Suprio Ray

Figure 12: Top-k search (spatio-temporal textual): vary num-

ber of keywords.

number of threads (Figure 13). Scaling is nearly linear from 1 to 8

threads with a parallel efficiency of 0.96. The scaling drops slightly

as we saturate our machine’s processors with 16 threads, achieving

a parallel efficiency of 0.82.

Figure 13: Top-k search (spatio-temporal textual): vary

threads

7.4 Discussion

STILT is very efficient for both range and top-k search due to its

novel use of a binary PATRICIA trie to discretize the space being

indexed. The STILT trie is similar to a quadtree in its partitioning

of 2-dimensional space, but is much smaller in size due to its re-

moval of one-child nodes, unified space partitioning across all four

dimensions, and adaptive node size. With its multi-threading capa-

bility, STILT is able to achieve an average of an order of magnitude

speedup in both top-k and range search compared to other state-of-

the-art indexing techniques. Index construction time is between 2×

and 5× faster for all three datasets compared to ST2I and I3. Speed

of construction is enhanced by STILT’s static partitioning of space,

which is ideally suited for multi-threaded insertion. The storage

usage for a STILTstx index is very comparable to ST2I, and about

4× smaller than an I3 index.

8 Conclusion

With the continuous growth of data that includes text, time, and

location components, it is important to develop efficient indexes

to support spatial, temporal and textual search. We introduced a

generalized multi-dimensional index called STILT, which supports

efficient spatio-temporal textual range search and top-k search

using a combined ranking scheme. STILT also supports subset

dimensional searches (e.g. spatio-textual, spatio-temporal, spatial,

textual) in a unified manner. STILT is a multi-dimensional binary

trie index suitable for modern multi-core machines that support

multi-threading, and that uses an adaptive node structure to achieve

memory efficiency. With extensive experimental evaluation, we

demonstrated that STILT significantly outperforms other state-of-

the-art indexes.

Acknowledgments

This research was supported in part by Natural Sciences and En-

gineering Research (NSERC) Discovery Grants 36866-2011-RGPIN

(Nickerson) and RGPIN-2016-03787 (Ray) and NBIF Start-Up Grant

(Ray).

References

[1] Abdulaziz Almaslukh and AmrMagdy. 2018. Evaluating Spatial-keyword Queries
on Streaming Data. In ACM SIGSPATIAL. 209ś218.

[2] Robert Binna et al. 2018. HOT: A Height Optimized Trie Index for Main-Memory
Database Systems. In SIGMOD.

[3] Su Chen et al. 2008. ST2B-tree: A Self-tunable Spatio-temporal B+-tree Index for
Moving Objects. In SIGMOD.

[4] Su Chen, Christian S. Jensen, and Dan Lin. 2008. A Benchmark for Evaluating
Moving Object Indexes. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1574ś1585.

[5] Maria Christoforaki, Jinru He, C. Dimopoulos, AlexanderMarkowetz, and Torsten
Suel. 2011. Text vs. Space: Efficient Geo-search Query Processing. In CIKM.

[6] Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. Efficient Retrieval of
the Top-k Most Relevant Spatial Web Objects. Proc. VLDB Endow. (2009).

[7] Thaleia Dimitra Doudali, Ioannis Konstantinou, and Nectarios Koziris. 2017.
Spaten: A spatio-temporal and textual big data generator. In IEEE BigData.

[8] Tuan-Anh Hoang-Vu, Huy T. Vo, and Juliana Freire. 2016. A Unified Index for
Spatio-Temporal Keyword Queries. In CIKM.

[9] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and update efficient
B+-tree based indexing of moving objects. In VLDB. 768ś779.

[10] Ali Khodaei, Cyrus Shahabi, and Chen Li. 2010. Hybrid Indexing and Seamless
Ranking of Spatial and Textual Features of Web Documents. In DEXA.

[11] Peter Kirschenhofer and Helmut Prodinger. 1994. Multidimensional Digital
Searching-Alternative Data Structures. Random Struct. Algorithms 5, 1 (1994).

[12] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-memory Databases. In ICDE.

[13] Z. Li, K. C. K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang. 2011. IR-Tree: An
Efficient Index for Geographic Document Search. TKDE (2011).

[14] Dan Lin et al. 2005. Efficient indexing of the historical, present, and future
positions of moving objects. In MDM.

[15] Amr Magdy et al. 2014. Taghreed: A System for Querying, Analyzing, and
Visualizing Geotagged Microblogs. In ACM SIGSPATIAL. 163ś172.

[16] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman Nath, and Yuxiong
He. 2014. Mercury: A memory-constrained spatio-temporal real-time search on
microblogs. In ICDE.

[17] Ahmed R. Mahmood et al. 2015. Tornado: A Distributed Spatio-textual Stream
Processing System. Proc. VLDB Endow. 8, 12 (2015), 2020ś2023.

[18] Donald R. Morrison. 1968. PATRICIAśPractical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric. J. ACM (1968).

[19] Bradford G. Nickerson and Qingxiu Shi. 2008. On k-d Range Search with Patricia
Tries. SIAM J. Comput. (2008).

[20] O’Neil, P. and others. 1996. The Log-structured Merge-tree (LSM-tree). Acta Inf.
(1996).

[21] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. 2000. Novel Ap-
proaches in Query Processing for Moving Object Trajectories. In VLDB.

[22] Suprio Ray and Bradford G. Nickerson. 2016. Dynamically ranked top-k spatial
keyword search. In ACM SIGMOD Workshop on Managing and Mining Enriched
Geo-Spatial Data (GeoRich). 6:1ś6:6.

[23] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nùrvåg. 2011.
Efficient Processing of Top-k Spatial Keyword Queries. In SSTD.

[24] String interning 2019. String interning.
https://en.wikipedia.org/wiki/String_interning.

[25] Yufei Tao and Dimitris Papadias. 2001. MV3R-Tree: A Spatio-Temporal Access
Method for Timestamp and Interval Queries. In VLDB.

[26] Subodh Vaid, Christopher B. Jones, Hideo Joho, andMark Sanderson. 2005. Spatio-
textual Indexing for Geographical Search on the Web. In SSTD.

[27] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015.
AP-Tree: efficiently support location-aware Publish/Subscribe. VLDBJ (2015).

[28] Wikipedia Dump 2018. https://dumps.wikimedia.org/enwiki/latest/.
[29] Word Count 2020. List of dictionaries by number of words.

https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words.
[30] D. Zhang et al. 2013. Scalable Top-k Spatial Keyword Search. In EDBT.

12

	Abstract
	1 Introduction
	2 Related Work
	2.1 Trie-based Index
	2.2 Spatio-temporal Index
	2.3 Spatio-textual Index
	2.4 Unified Spatio-temporal Textual Index

	3 Definitions
	4 System Organization
	4.1 System Organization
	4.2 Index Structure
	4.3 Data Ingestion
	4.4 Query Processing
	4.5 Illustration

	5 Index Algorithms
	5.1 Index Construction
	5.2 Deduplication
	5.3 Range Search
	5.4 Top-k Search

	6 Analysis
	7 Evaluation
	7.1 Experimental setup
	7.2 Index construction
	7.3 Query performance
	7.4 Discussion

	8 Conclusion
	Acknowledgments
	References

