
Match-Making in Bartering Scenarios

by

Sebastien Mathieu

A Thesis Submitted in Partial Ful�lment of
the Requirements for the Degree of

Master of Computer Science

in the Graduate Academic Unit of Computer Science

Supervisors: Dr. Virendra C. Bhavsar, PhD (IIT/Bombay), Computer Science
Dr. Harold Boley, Ph.D (Hamburg), Computer Science

Examining Board: Prof. John DeDourek, MS (Case Western), Computer Science,
Chair
Dr. Weichang Du, PhD (U of Vic), Computer Science
Dr. Donglei Du, PhD (Dallas), Business Administration

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

December, 2005

c
 Sebastien Mathieu, 2006



Abstract

This thesis extends tree similarity based match-making from the buyer/seller situa-

tion to a scenario of bilateral bartering and multi-agent ring bartering. It is built

on top of the AgentMatcher tree similarity algorithm for node-labelled, arc-labelled,

arc-weighted trees. A representation of these trees in a multi-dimensional space is

developed to allow e�cient indexing and pruning in large tree databases. The con-

cept of risk is introduced to control the process of bartering ring construction. We

have tested our system on the Teclantic.ca portal, where it allows researchers and

companies from Atlantic Canada to share technologies as well as to be contacted by

investors.
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CHAPTER 1

Introduction

Similarity Match-Making is a process that helps buyers and sellers to �nd each other

according to the similarity of what they seek/o�er. In this thesis we extend this

principle to bartering and ring bartering.

1.1 eCommerce

Before going into the details of bartering Match-Making, wewill introduce some

concepts of eCommerce that are useful for our work.

In the last few decades, the importance of the Internet in ourevery day life has

kept increasing. Many basic tasks such as shopping can now beperformed at home in

front of a computer screen. This is the �eld of eCommerce which, broadly conceived,

1



1.1. eCommerce

already has a long history. Indeed the early developments ofeCommerce appeared in

the 1970s and 1980s with the EFT technology (Electronic FundTransfer) and EDI

(Electronic Data Interchange) in 1984 [10, 13]. eCommerce has kept evolving since

this point, going from the stage ofbrochure-ware[13] in the early 1990s, that is to

say static websites that had only an informational purpose,to advanced transactional

devices that have been appearing in the last few years.

1.1.1 Web portals

Web portals are currently the main interface for Internet eCommerce users. Some

portals are company portals, they are windows of what the company is doing/provid-

ing and allow them to reach more customers. For example the store Marks & Spencer

uses this kind of web portal (http://www.marksandspencer.com/ ). Other portals

are maintained by an external entity and are acting as interface between buyers and

sellers from di�erent origins. Generally each is specialized in a particular area. For

instance Kasbah (http://www.kasbah.com/ ) is centered on travels while Telzoo (

http://telezoo.com/ ) is aiming at telecommunication and networking technologies.

1.1.2 Match-Making

According to the dictionary [2], Match-Making is\The act or process of trying to bring

about a marriage for others". In other words it has its origin in helping people to �nd

a suitable partner. Currently many Match-Making Web portals are actually focused

on dating. However, Match-Making has expanded throughout the years to other

areas. Telzoo, a telecommunication and networking technologies centered portal,

2



1.1. eCommerce

is using a Match-Making system to help buyers and seekers to meet. This is one

of the many examples that we can �nd on the Internet. The possibilities given to

the users are varying depending on the portal. For example our own Teclantic (

http://www.teclantic.ca ) gives the user the opportunity to specify the relative

importance of some aspects of his/her query.

1.1.3 Bartering

Bartering: \The practice of exchanging goods or services without usingthe medium

of money." [2]

Bartering has a long history1. It was the only way to do commerce before the

appearance of money. However, bartering has not disappeared and has made some

noticeable comebacks in the last few centuries, especiallyduring recession periods

where money became more and more worthless such as in parts ofEurope of the 1930s.

Bartering is still studied (e.g. [27, 9] for an economic perspective) and used today as

some bartering portals such as T&C Global Barter Exchange (www.tandc-global.

com) can testify and is even required in some particular cases. Also in our own

company merger example of cooperative work, where users arelooking for other

projects to complement their own, it would be very di�cult to use money.

1See [28] for more information on the history of bartering andmoney

3



1.2. Motivation and Approach

1.2 Motivation and Approach

Similarity Match-Making has enhanced eCcommerce in a way sothat users, both

on the seller and the buyer side, can gain a great amount of time and money by

shortening both the search and the negotiation processes. Here, the Match-Making

system presents to a given user only potential partners thatare likely to agree with

him/her. Consequently research in this area, trying to improve either the e�ciency or

the possibilities given to the user, is of great interest. This is the aim of our similarity

Match-Making for bartering scenario system: to give the user another perspective on

Match-Making, while exploit recent techniques in similarity Match-Making to assure

e�ciency.

1.2.1 Representation of Queries

For e�cient product/service comparison, a suitable representation of the data is re-

quired. One of the most popular representations is the key-words/phrases widely used

by search engines, for instance. In order to carry extra information, in some systems

such as ACORN [25] weights have been added to key-words/phrases. However, in

some cases, the relationship between di�erent features of the data is complex and

requires a hierarchical representation. For example, to describe this thesis, we would

have to give information about the university, the supervisors and the topic. The

topic is independent from the rest but the supervisors are dependent on the univer-

sity. A tree representation of queries can handle these complex relationships. To allow

such a nested representation augmented by weights we are going to use node-labelled

arc-labelled weighted trees from the AgentMatcher research group [5, 4, 31, 32] in

this thesis. More details about this representation are given in Section 2.1.2.1.

4



1.2. Motivation and Approach

1.2.2 Match-Making for Bartering Scenarios

The buyers/sellers scenario is the most widely used for the Match-Making systems

(e.g. [15, 8, 4]). The main reason is obviously because it is the most frequent situation

and the one with the easiest-to-see applications. However shifting from this classical

\client/server"-like view to a \peer-to-peer"-like view, where the buyers and sellers

both become bartering agents with something to o�er as well as something they seek

(see Fig 1.1), can extend the possibilities to other areas where money is not easy

to deal with. Indeed if we want to exchange ideas or knowledge, for instance, as in

[20], we cannot use money, as it is very di�cult to quantify its value. With bartered

Match-Making, we have a very natural way of dealing with thiskind of \product" by

simply trading an idea or some knowledge for some other. Similarly, the Web Portal

Teclantic.ca, which is focusing on research projects, was particularly adapted for this

approach.

Figure 1.1: The Bartering Scenario

5



1.3. Objectives

1.2.3 Ring Bartering

The main focus in Match-Making is to �nd the best match between di�erent agents of

the virtual market place [8, 19, 30, 23, 29, 15]. However, limiting the potential deals

to two agents is a strong restriction. It does not matter in the case of buying/selling

scenarios but in the case of bartering it does as it is not always likely that a match

is going to be found for a particular o�er/seek pair. On the contrary, it is very likely

to �nd situations where a strong match will be found for one side of the deal. For

example, an agent is seeking for an apartment in Halifax and another agent is o�ering

one there. But the other part of the trade may not match at all.The �rst agent could

o�er an apartment in Tregun while the second one is seeking one in Toronto. Adding

more agents to the trade can improve the global satisfactionof all the agents. A third

agent could come into the previous trade o�ering an apartment in Toronto and looking

for one in Tregun. Separately paired, none of this agents could match satisfactorily,

but all of them together will, and thus will form a bartering ring.

1.3 Objectives

This thesis aims to develop an advanced similarity Match-Making system centered

on bartering scenarios. The main objectives are as follows:

� To develop techniques for bartered Match-Making.

� To develop techniques for ring bartering.

� To apply these techniques to Teclantic.ca for testing them.

6



1.4. Organization of the Thesis

One of the main concern that has driven our work is the computation time. This thesis

aims at �nding e�cient ways of providing agents with the best potential partners.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents somebackground on similarity

Match-Making and bartering, introducing the arc-labelledweighted tree representa-

tion of queries that is going to be used by our system. The concept of bartering trees

is presented in Chapter 3. Chapter 4 presents an approximaterepresentation of our

trees in a multi-dimensional space. The ring bartering algorithm is given in Chap-

ter 5. Chapter 6 presents an application of our system in the research area. Finally,

Chapter 7 discusses some tests of our system.

7



CHAPTER 2

Match-Making and Bartering

Coincidently with the development of the Internet, eCommerce has become more

and more important in our everyday life. Being more than meredisplay windows,

company websites and web portals are now a standard means of reaching customers

or �nding providers. Virtual market places are emerging allover the world, growing

in number and importance. The necessity of powerful tools tohelp users navigate

through these market places is thus also increasing. It is not possible anymore to just

display lists of o�ers and/or seeks to users, as the number ofpotential partners is

rising drastically.

To help users, multi-agents systems have been developed. These systems repre-

sent the user by a virtual agent who is going to communicate with the other agents

of the e-Marketplace by exchanging their knowledge of theirusers' preferences. The

aim is to �nd the product/service closest (most similar) to auser's desire. Many algo-
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2.1. Match-Making

rithms have been designed for this purpose. Research has also been done on bartering

with applications in various areas.

2.1 Match-Making

Extensive research has been conducted on Match-Making [8, 19, 30, 23, 29]. IBM's

Websphere Matchmaking Environment was one of the �rst to emphasize the match-

making between a demand and a supply, for commercial use. Thematching engine

underneath uses properties and rules which describe the supplies/demands and per-

forms comparisons of the properties and veri�cations of therules.

2.1.1 Agent-Mediated eCommerce System with Decision

Analysis Features

Another more recent approach is in [15] where the purchase and the potential o�ers

are represented in a singleO�er synthesis graph. This graph regroups criteria and

related features as well as preferences with related arguments, as illustrated in Fig 2.1.

From this �gure we can see that this graph is actually a tree.

The graph is built by the purchaser agent and updated for a given time limit.

Then the user interacts with the graph to activate or deactivate nodes of the graph.

The system also checks for con
icts and inconsistencies anddeactivates nodes accord-

ingly in case of constraint violations, or asks the user to make a decision for con
icting

preferences. Then the system gives a score to each o�er usinga weighting schema

based on the user preferences.

9
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Figure 2.1: An O�ers Synthesis Graph [15]

2.1.2 The Weighted Tree Similarity Algorithm

The weighted tree similarity algorithm [5, 4, 31, 32] is a similarity Match-Making

algorithm for the buyer/seller scenario in E-marketplaces. It is built on the arc

labelled weighted tree representation of queries.

2.1.2.1 Arc-labelled Weighted Trees for Query Representat ion

One of the motivations for this representation of queries was to remove the disad-

vantage of 
at query representations, which cannot describe complex relationships

10
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Figure 2.2: An Arc-labelled Weighted Tree

between the features of a query. The tree representation allows a hierarchical repre-

sentation of features. Moreover, semantic information is carried both by nodes and

arcs. Finally, weights are assigned to arcs to express the relative importance between

features of a query. An example is depicted in Fig 2.2. For machine processing the

trees are represented using a weighted extension of Object-Oriented RuleML [6].

2.1.2.2 Description of the Algorithm

Utilizing the particular aspect of these trees, an algorithm was developed to compute

the similarity of a pair of trees. This algorithm traverses the tree recursively top

down and then computes the similarity from the leaves bottomup. Each recursively

computed similarity value is adjusted by an adjustment function A() before proceed-

ing to the next computation to prevent similarity degradation with depth increasing.

Missing subtrees in either of the trees are handled by a simplicity measure over the

present subtree that replaces the similarity value betweenit and the absent subtree.

11
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The formula expressing the similarity at a given level, withthe weightswj i adding

up to 1.0 for a givenj , is the following:

Sim(T1; T2) =
X �

A(si ) �
w1i + w2i

2

�
(2.1)

2.1.2.3 The AgentMatcher Architecture

Figure 2.3: The AgentMatcher Architecture

The tree similarity algorithm is the �rst component of the AgentMatcher Archi-

tecture (see Fig 2.3). The whole architecture is composed oftwo other components,

the Agent Pairing and the Agent Negotiation. The work proposed in this thesis is

not limited to the �rst component as some aspects are alreadypart of the next two

steps:

� First the rings formed by our ring bartering algorithm (see Chapter 5) are a

generalisation of pairing suggestions from 2 ton.

� Then the notion of risk that will be introduced in Section 5.2is a �rst step

toward negotiation.

12



2.2. Bartering

2.2 Bartering

Bartering systems have been proposed using di�erent approaches and restrictions.

The trade balance problem, that is to say trying to make pro�table deals while keeping

the balance of every user close to zero is discussed in [12]. The balance of the user

is arti�cially created by using trade dollars as intermediate in the bartering process.

Instead of trying to perform direct exchanges of goods between users, the system

performs one way deals ( e.g.user1 is buying an amountA of goods for a priceP

in trade dollars from user2 ). Then the system will try to bring back the balance of

user1 and user2 to zero by making other deals with other users. This can be seen

as what we call a ring bartering process but delayed in time. However, one major

requirement of this approach is to be able to quantify and/orevaluate goods in the

\bartering pool". This is not always possible, e.g. when dealing with people and

information as in [20].

In [20], the aim is to improve the global knowledge of agents by sharing/exchang-

ing cases. The decision of making a deal or not is done by checking whether a value

called ICB (Individual Case Bias) is decreasing or not. This approach is not quite

related to eCommerce as in the latter the aim is not to improvea global knowledge

but to satisfy two parties: the seller and the buyer.

2.2.1 Ring Bartering

We did not �nd relevant work done on Ring Bartering for eCommerce. However 3

nodes Bartering Rings for Peer to Peer applications (see Fig2.4) are used in [3]. This

work starts from the same assumptions as ours, namely that itis di�cult to �nd two
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2.2. Bartering

Figure 2.4: A Bartering Ring from [3]

nodes (agents in our case) in need of each other service.
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CHAPTER 3

Bartering Trees

3.1 Bartering Trees

The �rst step to deal with Bartering Scenarios is to shift the \client/server"-like

buyer/seller view to a \peer-to-peer"-like bartering agent view. The former uses a

single tree to represent an agent: a seek tree in the case of a buyer and an o�er tree

for a seller. With bartering agents, we need two trees for each agent (see Fig. 3.1),

one for its o�er and one for its seek, as each bartering agent is at the same time a

potential buyer as well as a potential seller.

This concept of bartering trees can be seen as the generalisation of the usualgoods

for money deal. Indeed it is always possible to represent money as a degenerated tree

and have this tree as the o�er of the �rst bartering agent (seeFig. 3.2), the former
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Figure 3.1: Bartering Tree Pair

buyer, and a similar one as the seek of the second bartering agent, the former seller.

3.2 Aggregate Similarity

When dealing with bartering scenarios, we are faced with twolevels of similarity.

First we have the similarity values between, on one side, theo�er of Agent1 and the

seek ofAgent2 and, on the other side, the seek ofAgent1 and the o�er of Agent2.

The second level of similarity is the aggregate similarity between the two pairs. This

similarity S is to be computed from the two previous oness1 and s2. This process

is to be performed with caution asS is the �nal result that the user will obtain.

Figure 3.3 illustrates the two levels of similarity for two bartering pairs.
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3.2. Aggregate Similarity

Figure 3.2: Money as the O�er Tree

3.2.1 Motivation

The �rst idea for the value of the aggregate similarityS would be to take the arith-

metic mean ofs1 and s2. This is equivalent to considering the two trees (O�er and

Seek) of an agent as the right and left sub-trees of a bigger tree with a 0.5 weight

on both arcs (see Fig. 3.4) and then computing the similarityof two such trees (the

second one having the right and left sub-tree inverted, so the algorithm [5, 4, 31, 32]

would need a \complementary" treatment of the labels Seek and O�er).

However, taking the arithmetic mean is not judicious. Indeed we have to consider

that not all similarity values will have the same impact on the �nal deal. For example,

if we have a very low similarity between the O�er ofAgent1 and the Seek ofAgent2,

Agent2 is not very likely to conclude the deal withAgent1 even if Agent1 is seeking

exactly what Agent2 is o�ering. Consequently, the aggregate similarity shouldrealize

this by being lower than the arithmetic mean here. That re
ects the fact that people
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3.2. Aggregate Similarity

Figure 3.3: Two levels of similarity

try to maximize their Seek similarity (the other's O�er similarity), not their O�er

similarity (the other's Seek similarity). So, the aggregate similarity should not be a

linear combination ofs1 and s2: if any of these two component similarities approaches

0.0, the aggregate similarity should also approach 0.0. If we take the most extreme

case, with the arithmetic mean the aggregate similarity fors1 = 0:0 and s2 = 1:0

would be 1
2(0:0 + 1:0) = 0:5, that is to say the same value as ifs1 = s2 = 0:5 =

1
2(0:5+0:5). This appears not judicious as the agents involved in the potential 0.0/1.0

deal are clearly going to behave di�erently from those in thepotential 0.5/0.5 deal.

3.2.2 Aggregation Function

In the context of discussion in Section 3.2.1 we had to �nd another way of combination

for the aggregate similarity. The �rst idea was to try some non arithmetic means.

When dealing with means that are not linear what comes to mindat �rst are the

harmonic ( 1
1=x+1 =y ) and the geometric (

p
x � y ) means. The former one is not

applicable as we would have a problem when dealing with 0.0. It would still be

possible to make a continuity extension however we would then end up in the same

18



3.2. Aggregate Similarity

Figure 3.4: A Single Bartering Tree

con�guration as with the geometric mean. Indeed, the geometric mean gives too much

importance to the very low values (see Fig. 3.5). The extremecase is when dealing

with 0.0 for one of the two similarities. In that con�guration, no matter the other

similarity, the resulting aggregate similarity would be 0.0. That is not acceptable as

the aggregate similarity has to re
ect di�erences between atrade with �rst-level of

similarities of 0.0 and 1.0, and one with �rst-level similarities of 0.0 and 0.0 as the

potential for a future deal is not the same in both cases.

Thus we studied two families of functions, one polynomial, of the form

Pa(s1; s2) =
�

sa
1 + sa

2

2

� 1=a

(3.1)

and one exponential of the form

Ea(s1; s2) =
1
a

� ln
�

eas1 + eas2

2

�
(3.2)
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3.2. Aggregate Similarity

Figure 3.5: Aggregate Similarity as a Result of the Geometric Mean

The �rst family is the generalisation of the arithmetic and harmonic means and

the second one an extension to the exponential functions. The choice of these func-

tions was driven by four main constraints:

� The function must be symmetric

� The result must be between 0 and 1

� If s1 = s2 then the result must beS = s1 = s2

� Give more importance to the lower value betweens1 and s2

Already from the last constraint we were able to limit the value of the parameter

a to [0; 1] for the �rst family and [ �1 ; 0] for the second one. This results from the

derivatives ofxa and eax, which are decreasing functions on [0; 1] with these values of

a. The next step was to choose good values for parametera. For this we focused on

extreme cases, that is to say whens1 = 0 and s2 = 1. We decided to �x the resulting

similarity to 0.33 for our study. However, a system based on our work can change this
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3.2. Aggregate Similarity

0.0/1.0 trade a for Pa a for Ea

0.1 0.3 -7
0.25 0.5 -2.5
0.33 0.62 -1.5
0.5 1 n/a (or 0 by extension)

Table 3.1: Values ofa for Di�erent 0.0/1.0 Trade Similarity Value

value to match its requirements or let the user be able to change it by him/her-self.

Based on the value 0.33, the correspondinga for the �rst family is 0.62 and -1.5 for

the second (see Table 3.1).

Finally, to choose between these two functions, we looked attheir shapes. As we

can see in Figures 3.7 and 3.8, the �rst one is more sharpened on the edge. The

right graph in Figure 3.6 shows this for a similarity 1 �xed to 1.0. The left graph

has similarity 2 �xed to 0.0. Consequently, the selected function was the second one

which has a smoother progression toward 1.0:

E � 1:5(s1; s2) = �
2
3

� ln

 
e� 3

2 s1 + e� 3
2 s2

2

!

(3.3)

Figure 3.6: Comparison of the Two Functions with One Similarity Fixed
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3.2. Aggregate Similarity

Figure 3.7: Aggregate Similarity withP0:62

Figure 3.8: Aggregate Similarity withE � 1:5

3.2.3 Polynomial Approximation

One problem with the selected function is that the exponential and the logarithm are

not built-in operations in many programming languages and that they are quite slow

to compute. So we tried to �nd a polynomial approximation of it using Taylor series.

The �rst step is to take the Taylor series ofeax at 0. We decided to stop the series at
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3.2. Aggregate Similarity

the eighth order.

1 + ax +
1
2

a2x2 +
1
6

a3x3 +
1
24

a4x4 +
1

120
a5x5 +

1
720

a6x6 +
1

5040
a7x7 + O(x8)

Then we have to take the Taylor series ofln(1 + x) at 0. Here again stopped at

order eight.

x �
1
2

x2 +
1
3

x3 �
1
4

x4 +
1
5

x5 �
1
6

x6 +
1
7

x7 + O(x8)

Finally, substitute the x in the previous formula by the combination of the �rst

one applied to s1 and s2, divided by 2 and -1 ( because it was a development of

ln(1 + x) and not ln(x) ). The resulting two variable polynomial, of degree 49 is

relevant only up to degree seven as the two Taylor series wereat order eight. Of

course this approximation has to be tested because these twoseries are only relevant

around x = 0 and here we have values that are going up to 1.

We have tested with the degree 2 polynomial function:

APa;2(s1; s2) =
1
8

as2
1 +

1
8

as2
2 �

1
4

as1s2 +
1
2

s1 +
1
2

s2 (3.4)

From this function with a = � 1:5 we obtained a maximum deviation from the

original function of 0.02 (4.67%) for only the two extreme values and an average

deviation of 0.35% (See Figure 3.9).

As a variation of 0.02 for a similarity value will not change the interpretation of

the results, this approximation appears acceptable. The next approximation would
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3.2. Aggregate Similarity

Figure 3.9: Approximation of the Aggregate Similarity

require a degree 4 polynomial as there are no degree 3 terms, and so the increased

computation time appears not to be worth the resulting gain (maximum deviation

of 0.69%, average deviation of 0.03% ).

The resulting degree 2 and 4 polynomials fora = � 1:5 are the following:

AP� 1:5;2(s1; s2) = �
3
16

(s2
1 + s2

2) +
3
8

s1s2 +
1
2

(s1 + s2) (3.5)

AP� 1:5;4(s1; s2) =
9

512
(s4

1 + s4
2) �

9
128

(s3
1s2 + s1s3

2) +
27
256

s2
1s

2
2

�
3
16

(s2
1 + s2

2) +
3
8

s1s2 +
1
2

(s1 + s2) (3.6)

Intuitively, note that in both cases, reading these sums from right to left, we

take the arithmetic mean ofs1 and s2, add 3=8th of their product (while the geo-

metric mean is the square root of their product), and subtract a combination of their

squares. While the degree 2 polynomial uses this as the similarity value, the degree 4
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polynomial performs three further corrective additions/subtractions on the arithmetic

mean.

3.3 Summary and Remarks

We have de�ned the concept of bartering trees which constitute a pair of trees, one for

the agent's o�er and one for his/her seek. Then we de�ned the aggregate similarity.

This value, describing the similarity between two bartering pairs, is computed from

the similarity values of the �rst o�er with the second seek and of the �rst seek with

the second o�er. We did not just use the arithmetic mean as we think it is not giving

enough importance to low similarity values, which are more likely to make the future

negotiation steps fail. Instead we found an exponential based function. We �nally

gave a polynomial approximation to prevent computation time losses.

The weighting schema presented in this chapter to combine the two �rst-level

similarity values could also be applied within the similarity algorithm. We are cur-

rently using the arithmetic mean to combine the recursivelycomputed similarities at

every inner node of the tree structure. We could replace thisarithmetic mean by our

aggregation function (or its generalized form - see Section5.1.2) for the same reasons

we stated at the beginning of this chapter.
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CHAPTER 4

Tree Approximation in a
Multi-Dimensional Space

In this chapter we propose a representation approximating arc-labelled node-labelled

weighted trees in a multi-dimensional space. We de�ne a family of representations

with less and less dimensions resulting in more coarse-grained approximations. We

then expose the Order Preserving Linear Hashing data-structure which provides us

with an e�cient way of performing range queries in our multidimensional space.

4.1 Motivation

Many multi-dimensional data-structures and algorithms exist to e�ciently handle

range queries and/or the nearest neighbours problem [26]. In our system we want to
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4.1. Motivation

Figure 4.1: Family of Trees with an Ever Increasing Number ofDimensions

use such algorithms to get the closest o�er trees for a given seek (resp. the closest

seeks for a given o�er) without having to sequentially compute their exact similarities.

As we will see in Chapter 5 this is the �rst step of our algorithm: we want to limit the

similarity computations to trees that are likely to have a high similarity. In order to

use these e�cient data structures and algorithms we need a representation of our trees

in a multi-dimensional space. Indeed this is the �rst and most important requirement

for these data structures to be used. The problem is that, theoretically, a tree has

an in�nite number of dimensions (see Fig. 4.1). Even if we restrict ourselves to a

�nite set of trees, we expect the number of dimensions to be too large to be handled

e�ciently.

Some work has been done on the problem of nearest neighbours in highly multi-

dimensional spaces (e.g. [7]). However, as we are only interested in this representation

for the early phase of our algorithm, an approximate representation (that is to say,

not a bijective representation) with less dimensions, is su�cient here and will improve
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the speed of our system.

4.2 Tree Representation in a Multi-dimensional

Space

We are now going to detail how to represent an arc-labelled node-labelled weighted

tree in a multi-dimensional space. The �rst step is to de�ne the subset of the set of

all possible arc-labelled node-labelled weighted trees towork with. Such subsetting

corresponds to constructing tree instances according to a tree schema, as already

explored in AgentMatcher's eLearning application [11] andin Teclantic.ca. We will

assume that the set of trees we are working with has, for a given set of arcs, a unique

set of corresponding inner nodes. That is to say that a given arc will always come

from the same node, and will always go to the same node, exceptfor the leaf level (see

De�nition 4.2.1 and Figures 4.3, 4.4). The representation would still work without

this restriction, but the number of dimensions would greatly increase. We will present

a solution in section 4.2.3 to deal with trees not from this set without increasing the

number of dimensions. Finally, this restriction may appearvery strict in theory, but

in practice it is very often the case that the structure of thetrees is more or less �xed

with only the number of arcs and the leaves varying (e.g. Figure 4.2).

De�nition 4.2.1 (path-to-node persistant trees) Let T be a set of trees such

that for all trees Ti and Tj 2 T if two arcs A ik 2 Ti and A j l 2 Tj have the same arc

label and are on corresponding paths from their respective roots (in terms of arc labels

and node labels), then either they have the same child node label or they point to a

leaf.
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Figure 4.2: A Fixed Tree Structure for an Apartment Rental Portal

4.2.1 De�nition of the Multi-dimensional Space

We will now de�ne the space, where our trees will be represented by de�ning the

corresponding base.

De�nition 4.2.2 For all possible paths from a root to a leaf in the tree schema of

the set of treesT , we de�ne a unary treeB i . This tree is the restriction of the tree

schema to this path with no value on the leaf and all weights set to 1.0. Let B be the

set of all B i . B is the base for the setT in the k-dimensional spaceS wherek is the

number ofB i .

This is the �rst base of our family. The one with the least approximation. Indeed

we only have an approximation on the leaf level. If we want an exact representation,

we need to keep the information on the leaves. We will see in section 4.2.3 how to deal

with this without increasing the number of dimensions. The other bases are de�ned

as follows:
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Figure 4.3: Two Trees not in our Subset

Figure 4.4: Two Trees in our Subset

De�nition 4.2.3 Let N be the maximum depth of a tree inB. For all n < N we

de�ne Bn as follows:8Bni 2 Bn ; Bni is the restriction of B i 2 B to the n �rst levels.

Sn is the correspondingkn -dimensional space, withkn < k .

It is clear from this de�nition that the number of dimensions is going to decrease

with n as more and moreBni are going to become equal. This will lead to a more

coarse-grained approximation while gaining some computation time. Examples are

illustrated in Figure 4.5.
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Figure 4.5: Examples of Corresponding Bases

Now that we have our bases, we must show how to represent a given tree of the

set T in Sn . That is to say how to compute the coordinates of a tree in the baseBn .

4.2.2 Representation of the Trees

Given our bases of trees for our space, we can now compute the coordinates of any

tree by taking the similarity value of each base tree with thecorresponding subtree in

the original tree. Here, if some levels of the original tree structure have been ignored

(i.e. if n is not equal toN ), two choices are possible. Either we restrict the subtree to

the structure of the corresponding base tree, that is to say we remove any potential

subtrees that would appear beneath the leaf level of the basetree. In this case we are

loosing some information but have more control on the representation. Or we don't

restrict the subtree before passing it to the the similarityengine and we are more

precise but we loose control over the representation.

Indeed, ifn is the depth of a base tree, in the �rst solution we know that whatever

31
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the (n + 1)-th level is, if the �rst n levels of two trees are identical, they will have the

same representation. In the second case, two trees can have di�erent representations

even if the �rst n levels are identical, but it is very di�cult to tell how the re presenta-

tion will evolve. Two totally di�erent trees at the ( n + 1)-th level can have the same

representation and two nearly equal trees can have a di�erent one. The explanation

of this comes from the fact that the information we add here isonly the structure of

the (n + 1)-th level and not the values. So we are more precise but must be cautious

while interpreting the results.

Consequently, if we apply the similarity computation thei -th coordinate for a

given tree will be, in case of a one level tree base withwi being the weight of the

corresponding arc in the original tree,t i the simplicity of a potential missing subtree

(or 1 otherwise) andA() the adjustment function

x i = wi +1
2 � A(t i )

For a two level tree base we would have

x i = wi 1+1
2 � A( wi 2+1

2 � A(t i ))

The formula for recursively computed similaritiessik is

x i = wik +1
2 � A(sik +1 )

4.2.3 Keeping Information on Nodes and Leaves

The �rst restriction made on our trees when computing their coordinates, that is to

say ignoring the node and leaf values, can be worked around without a great loss in
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Figure 4.6: Examples of Coordinates for Di�erent Base Depths

computation time. Indeed we ignored these values because, as the current similarity

algorithm is de�ned, there is no way to distinguish two di�erent values from two

others: the similarity between two leaves is either 0 or 1. Consequently, we need to

have in order to get a unique representation in the space, a base tree for each possible

value. However, recent work on the algorithm [5] showed thatin some cases we could

compute a similarity ranging between 0 and 1 for two leaves byusing a local similarity

measure. For example two price values or two dates. Consequently, every time we

can compute such a local similarity between leaves we can keep the information in

these leaves, without adding any dimension to the base. All we have to do is set the

base tree leaf value to a default value such as the mean value if it exists. This could

also be extended to inner nodes for identical arcs that lead to di�erent node values.

Moreover, we can extend this principle to all �nite sets of values. Indeed, some-
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times it may not be possible to compute easily a similarity between values. For

example, if we take towns, one could take the similarity between their population,

or their distance from one point or many other parameters. None of them would be

really accurate. One solution would be, if the set of possible values is �nite, to create

a table of values, incorporated into the system that will give the \similarity" value

between every pair.

These methods will increase the precision in the computation of the distance

without adding any dimension and thus computation time. Of course we will still

have the computation time of the local similarity.

4.3 Notion of Distance

The aim of this representation of queries is to perform rangesearches to make a �rst

selection among all the possible choices. In other words, wewant to select all the

trees that are within a given distance of the query point. We are now going to de�ne

the distance between two trees in our multi-dimensional space.

4.3.1 De�nition

We de�ne the square of the distance between two trees as follows (n is the dimension

of the space). It is the usual Euclidean distance between twopoints

jjT1; T2jj 2 =
nX

i =1

(x i � x0
i )

2
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Consequently for a one level tree base the expression of the distance between two

trees becomes

jjT1; T2jj 2 =
nX

i =1

�
wi + 1

2
� A(t i ) �

w0
i + 1
2

� A(t0
i )

� 2

:

4.3.2 Behavior

If T1 = T2 then 8i; w i = w0
i and t i = t0

i . Consequently, all the terms in the sum

become null and the distance is 0, which is what we expected insuch a case.

On the other hand, if T1 and T2 are very di�erent, for most values ofi either t i or

t0
i will be null (that is to say that most of the branches existingin the �rst tree will

not exist in the second one and vice versa) and consequently for those values ofi , one

of the terms of the subtraction will be null and the resultingterm will be of greater

importance. So we can see that the more di�erent the two treesare, the greater is

their distance.

Of course when taking a base less deep than the real trees, it is possible to have

a zero distance for trees that are not similar at all because of lower levels that are not

taken into account. However, this does not matter, as such trees will be discarded

very soon in the algorithm (see Chapter 5). The most important fact is that for high

similarity values the distance will be low, no matter the depth of the base.

This con�rms the choice of our de�nition of distance and, most of all, of our

choice of tree representation in a �nite space as this was themain constraint. In

Chapter 7 we will discuss some test results of the distances and the corresponding

similarities supporting our choice.
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4.4 Order Preserving Linear Hashing

Order Preserving Linear Hashing (OPLH) is a variation of theLinear Hashing data

structure from Litwin [18] that handles range queries more e�ciently. We are going

to use this data-structure to retrieve trees in the �rst phase of our algorithm.

4.4.1 Principle

The OPLH is a bucket based data-structure without directory. It grows or shrinks

dynamically while data are being inserted or deleted. Each piece of data is represented

by a key K . This key is generated by the inversed bit interleaving operation (see

Figure 4.7). Then the following hashing function is used to determine which bucket

the data is to be stored in.

8
><

>:

h(K ) = K mod 2n+1 if h(K ) < number of buckets

h(K ) = K mod 2n otherwise
(4.1)

The splitting process is controlled by a storage utilization factor. Over
ow buck-

ets are assigned when a bucket is full.

4.4.2 Range Queries

Range queries are performed by visiting the buckets that intersect with the query.

These buckets are found by splitting recursively the space while checking whether the
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Figure 4.7: Example of Inverse Bit Interleaving

current subspace is outside, inside, or intersecting with the query.

In our algorithm, we de�ne the query by a maximum distance (de�ned as in

Section 4.3.1) above which the trees must not be retrieved.

Then in the last phase of the query, we have to check the pointsin the buckets

to keep only those below the maximum authorized distance. Wecan also decide to

keep all the trees stored in the buckets that intersect with the query. This will speed

up the selection process but will increase the number of trees that will be selected.

Moreover, we loose some control on the selected trees.

4.5 Remarks

� Depending on the system where our algorithm will be implemented, some vari-

ations of Linear Hashing and/or OPLH could be applied. Some variations that

use a key vector instead of a single key are given in [16, 21, 22]. The choice of

the hash function according to the key distribution is discussed in [24]. This
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requires knowledge of the latter but can improve performance by ensuring a

better repartition among the buckets. Finally, the local order preserving prop-

erty of OPLH is extended to global order preserving in [14]. That is to say that

not only points in the same buckets will be close to each other, but also points

in adjacent buckets will not be too far apart.

� This whole chapter is independent of our ring bartering system and contains

results that can be used for other indexing purposes. For example the retrieval

of categories of trees in the database with a single query.
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CHAPTER 5

Ring Bartering

In this chapter we describe our Ring Bartering algorithm. We�rst make some prelim-

inary remarks before describing the notion of risk. Then we proceed to the description

of our algorithm before extending it to bartering tuples.

5.1 Preliminaries

In the rest of this chapter, we are going to assume, without loss of generality, that we

will start from a seek. That is to say that the initial query will be made from a seek.

We will show later that starting from an o�er will give the same results.

Except where mentioned otherwise, the labelling of the agents in this chapter are

relative to a given ring. For example,Agent1 is the �rst agent in the current ring.
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5.1. Preliminaries

5.1.1 De�nition of a Bartering Ring

De�nition 5.1.1 (Bartering Ring) A bartering ring R n of lengthn is a succession

of n > 1 bartering agents, linked by their respective seek and o�er.The seek of an

agent is linked with the o�er of the following one in the ring.The seek ofagentn is

linked with the o�er of agent1.

Figure 5.1: A Bartering Ring

5.1.2 Generalized Aggregate Similarity

We have de�ned in Chapter 3 the aggregate similarity for bartering pairs as Equation

( 3.3). In that chapter we dealt with bilateral bartering which is a special case of a

bartering ring with n = 2. With bartering rings of sizen we now extend this de�nition
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5.2. Notion of Risk

to more than two similarity values in a natural manner. This generalized aggregate

similarity is the value that describes the similarities between all consecutive seeks and

o�ers in the ring:

GAggSim(s1; :::sn ) = �
2
3

� ln

 P n
i =1 e� 3

2 si

n

!

: (5.1)

5.2 Notion of Risk

When speaking about bartering, and making deal in general, there is always a risk

that one participant in a potential deal will not agree with the terms of the deal.

Especially if what he/she would receive does not match very well with what he/she

is seeking. Other reasons could interfere, such as a sudden change of mind and a

�nancial problem. The more participants in a trade, the morelikely such behavior is

going to happen. Consequently, giving risk measures as wellas the similarity values of

potential deals is a valuable information that will allow users to weigh the similarity

values that are given to them. Most importantly, this information will be key to

e�cient pruning during the ring construction process (see Section 5.3).

5.2.1 De�nition

There are two main aspects that can increase the risk of a deal:

� The number of participants in the deal
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5.2. Notion of Risk

� The similarities between the corresponding seeks and o�ersthat are involved in

the deal.

Moreover, very low similarity values should have a great impact on the risk mea-

sure as a very low similarity value between a seek and an o�er in the ring is very

likely to make the whole trade collapse even if the generalized aggregate similarity

is high. A zero valued similarity somewhere in the ring should give the value of one

to the risk value. Consequently, the harmonic mean, which isthe lowest of the usual

means seems a good choice. Of course we will have to make a continuity extension

at 0. Thus we propose the following formula as the risk measure:

Rn () =

8
><

>:

1 if 9i � n; si = 0

1 � � n� 2 �
�

n
P n

i =1
1
si

�
otherwise

The �rst term of the product handles the number of participants and the second

one is the harmonic mean. The symbolssi represent the similarity values involved in

the ring: s1 is the similarity between Seek1 and Offer 2, s2 the one betweenSeek2

and Offer 3, ..., sn the one betweenSeekn and Offer 1.

5.2.2 Requirement for the Ring Bartering Algorithm

One needed property for the risk function in order for our algorithm to be e�cient

is that when adding more than one participant to the current trade, no matter the

similarity values which we are going to have, the risk shouldbe greater than if we had

added only one participant. This allows us to discard rings where, after the addition
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5.2. Notion of Risk

of an agent, the value of the risk is too high. Indeed this property ensures that even

if we can improve the generalized aggregate similarity by adding more agents in the

ring, the risk will still be too high (see Section 5.3). As we always add an agent before

using this property we only needrisk (R n+ k) > risk (R n+1 ) 8k > 1.

Proposition 5.2.1 Given a ring R n with n agents. LetR n+ k be the ringR n with k

more agents. Then8k > 1; risk (R n+ k) > risk (R n+1 ).

Consequently, the following function has to be strictly increasing inp, where p

is number of participants we add to the current deal. We have set their similarity

values to 1 as we know by de�nition that this is the value for which the risk will be

minimal. So if the property is true for these values of the similarities then it will be

true for all values:

Rn (p) =

8
><

>:

1 if 9i � n; si = 0

1 � � n+ p� 2 �
�

n+ p
�

P n � 1
i =1

1
si

�

+ p+1

�
otherwise

Consequently, the derivative inp of this function should be positive fromn = 2

and p = 1 as there will always be at least two participants in a current deal when

trying to add further ones. For the following formulas we simplify the expression by

setting:

� = 
 (n; s1; :::; sn ) =
n� 1X

i =1

1
si
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R0
n (p) = �

� n+ p� 2

(� + p + 1) 2
� [ln(� ) � (n + p) � (� + p + 1) + � + 1 � n] :

Having this expression positive is the same as having the following one positive:

� ln(� ) � (n + p) � (� + p + 1) + � + 1 � n

That is to say if we want a condition on� :

ln(� ) � �
� + 1 � n

(n + p) � (� + p + 1)
:

The problem is that we do not have much control on �, which can go from n � 1

to the in�nity. Hopefully the second term of the previous inequality is a decreasing

function of �. Indeed its derivative ( n is �xed at this point) is:

�
(n + p)2

(n + p)2 � (� + p + 1) 2

Consequently, by taking the limit in � at the in�nity we can se t a condition on

� that would to be true for all values of �. Thus the condition on � becomes:

ln(� ) � �
1

n + p
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5.2. Notion of Risk

As we want our property to be true for at leastn = 2 and p = 1, then the �nal

condition is:

� � e� 1
3 � 0:71:

5.2.3 Remarks

5.2.3.1 Generalized Aggregate Similarity and Risk

It is important to di�erentiate clearly the risk value and th e generalized aggregate

similarity. The generalized aggregate similarity is a value that is computed only from

the consecutive similarity values of the ring. We must not try to give more meaning

to this value than what it actually carries. It only tells that if this value is high, the

o�er(s) and seek(s) in the ring must match each other well, conversely for a low value.

It is a tool that can be used for the subsequent negotiation phase. On the other hand,

the risk value carries di�erent information. It can be seen as the probability for the

deal not to happen. It is a �rst step toward the negotiation process that is done

during the ring construction, as we will see in the next section.

5.2.3.2 Improvement of the Risk Estimate

We have taken into account two parameters for the risk calculation. However, it is

possible to add some extra information such as the reliability of the agents in the

ring. Indeed here we have supposed that every agent has the same impact on the

ring. But some agents might have a reputation of breaking deals more often and thus

should increase the risk when they appear in a ring.
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5.3 Ring Bartering Algorithm

We now describe our algorithm. We start with an overall description before going

further into details by explaining the di�erent steps of the process.

5.3.1 Description of the Algorithm

The aim of our algorithm is to construct rings of agents whereeach one will �nd a

good match for what he/she is seeking. We want to avoid exhaustive search as with

large databases the computation time would increase drastically with the number

of agents in the ring. We use a risk function (see Section 5.2)to perform e�cient

pruning during the construction process. Another pruning is made at the beginning

of each recursion by using the distance de�ned in Chapter 4.

5.3.2 Details of the Algorithm

Our algorithm is a recursive procedure that has three main phases:

� The selection of closest o�ers

� The closure of the ring

� The testing of the risk

Each recursion begins with a seek, the �rst recursion beginning with the querying

seek, and with a 
ag that controls the need for the third step.
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5.3. Ring Bartering Algorithm

5.3.2.1 The Selection of Closest O�ers

The �rst step of the recursion is to select which o�ers the algorithm is going to work

with. It is the �rst pruning step. Indeed, with huge databases, going through all the

possible o�ers would be far too time consuming. Consequently, we restrict ourselves

to a subset of all the possible o�ers. This subset is composedof the closest o�ers

to the current seek according to the distance de�ned in Chapter 4. Two options are

possible here, either we �x a maximum distance beyond which o�ers are rejected, or

we �x a maximum number of o�ers. We have chosen the �rst solution as the second

one does not guarantee symmetry.

Then these o�ers are sorted according to their similarity values (the exact similar-

ity value) with the current seek. This allows the system to skip the third phase when

we have reached the maximum risk. Indeed, the only di�erencein two consecutive

third phases in the same recursion is the value of the similarity between the current

seek and the current o�er. As the risk is a decreasing function of the similarities, if

we lower one similarity value in the calculation, the risk will increase. Consequently,

with sorted similarities we know that when we have reached the maximum risk with

one particular o�er, the risk will be higher with the following o�ers.

With this step, we reduce a great amount of computation time by reducing the

similarity calculations to a small subset of the possible total.

After this selection, the system goes into a loop over all theselected o�ers, per-

forming the next two steps.
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5.3. Ring Bartering Algorithm

Figure 5.2: The Selection of Closest O�ers

5.3.2.2 The Closure of the Ring

The second step of the recursion, the �rst of the loop, is to close the current ring. The

ring currently starts from the original seek and ends with the o�er selected during

the previous step.

Thus to close the ring we need to get the similarity between the seek of the last

added agent and the o�er of the very �rst agent in the ring. However, if we return

the ring like this, we lose the symmetry of the algorithm. Indeed, at every step, we

restrict the o�ers to those within the distanceDmax of the current seek. Consequently,

we must do the same here and test the distance between the lastseek and the o�er

of the �rst agent. If this distance is aboveDmax , the ring must be rejected in order

to keep symmetry.

Finally, as we close the ring, we must compute the generalized aggregate simi-

larity and the �nal risk value to be reported to the user if it is below the maximum

authorized risk.
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5.3. Ring Bartering Algorithm

Figure 5.3: The Closure of the Ring

5.3.2.3 The Testing of the Risk

The last step of the loop is the most important. It tells whether the algorithm should

continue further in the recursion or not. This step is based on the risk function.

We calculate the risk of the current ring where we have added an ideal agent (see

De�nition 5.3.1) and compare this value toRmax .

If the risk is above the maximum value, we know that adding more agents to

the ring will leave the risk above this maximum. This resultsfrom Proposition 5.2.1.

Consequently, we do not need to go further. Moreover, as the o�ers selected in step

one are sorted according to their similarities, we don't need to perform this test again

for this recursion. We thus inform the system by changing thevalue of the 
ag.

If the risk is below Rmax , we can create a ring with another agent that might

improve the generalized aggregate similarity of the whole ring while remaining below

the maximum risk. Consequently, we recursively call the procedure with the seek of

the last added agent.
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De�nition 5.3.1 (Ideal Agent) An agentk in a ring is called ideal if the similarity

value of his/her o�er with agent k-1 seek and the similarity value of his/her seek with

agent k+1 o�er are both equal to 1.

Figure 5.4: An Ideal Agent

Figure 5.5: The Testing of the Risk
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5.3.2.4 Overall Algorithm

Figure 5.6 shows the overall algorithm. The �rst call is madewith the current ring

containing only the querying seek. We can see that the two steps from the loop are

independent.

Figure 5.6: The Ring Bartering Algorithm
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5.3.3 Properties of the Algorithm

De�nition 5.3.2 (acceptable ring) A ring is called Dmax / Rmax acceptable if:

Condition 1. The distance between a seek and the o�er of the next agent is below

Dmax .

Condition 2. The risk is belowRmax .

Our algorithm veri�es the following soundness and completeness properties.

Property 5.3.1 (soundness) All rings reported by the algorithm areDmax / Rmax

acceptable.

The proof of the �rst condition is immediate as we only consider o�ers that are

within a given distance. The second condition in order to beDmax / Rmax acceptable

results directly from the testing during the closure phase.

Property 5.3.2 (completeness) All the rings starting from an Agentj of the agent

database that areDmax / Rmax acceptable will be reported by the algorithm called with

Agentj as argument.

Proof: Let R n be a ring ofn agents that areDmax / Rmax acceptable. From its �rst

condition, we know that if we start a recursion with the �rst k agents ofR n , the

(k + 1)-th agent's o�er will be selected in the �rst step of the recursion.

Now we have to show that the recursion will continue with the (k + 1)-th agent's

seek. The pursuit of the recursion is dictated by the risk function. After having
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selectedOffer k+1 an ideal agent is added to the ring and the risk is calculated.

However by hypothesis we know that the risk ofR n is below the maximum authorized

risk. Thus we know that the risk of a ringR ideal composed of thek + 1 �rst agent of

R n and n � k � 1 ideal agents will be belowRmax , as the risk is a decreasing function

of the similarity values. Finally according to Proposition5.2.1 we know that the risk

of the current ring with an ideal agent will be below the risk of R ideal and thus below

Rmax . Consequently the recursion will continue and the propertyis true.

Based on the two properties above we state the following theorem.

Theorem 5.3.1 A ring starting from an Agentj of the agent database will be reported

by the algorithm, called withAgentj as argument, if and only if it is Dmax / Rmax

acceptable.

Corollary 5.3.1 Suppose a ring is reported by the algorithm when starting with a

given agent. This ring, except for the labelling of the agents, will be also reported if

we start the algorithm with any of the other agents in the ring.

Proof: Let R be a ring reported by the algorithm starting with Agentj and j; k 2

1::m where m is the number of agents in the database. This ring satis�es the two

conditions of Theorem 5.3.1. If we start the algorithm with an Agentk of R, all

rings that satisfy the conditions of Theorem 5.3.1 and whichstart with Agentk will

be reported. The ringR 0 composed of all the agents ofR in the same order but

starting with Agentk obviously shares the same risk value asR and has the same

set of similarity values between the consecutive o�ers and seeks. Consequently,R 0

satis�es the conditions of Theorem 5.3.1 and will be reported.
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5.4 Extended Algorithm for Bartering Tuples

With bartering pairs there is a strong restriction: we have to assign, to each o�er of

a user, one seek. However, a user might have two o�ers and onlyone seek or might

not want to bind his/her seeks and o�ers to each other. This could be handled by

declaring several bartering pairs. Note that, by allowing the algorithm to handle

tuples instead of pairs, we can avoid storing extra information in the database.

Figure 5.7: A Bartering Tuple Replacing 3 Bartering Pairs

5.4.1 The Closure of the Ring

The �rst phase which needs changes is the closure of the ring.Indeed, now we

have many potential seeks that correspond to each selected o�er of the �rst phase.
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Consequently, we have to try every seek in the tuple before proceeding further on.

And for each of these seeks we have to test every o�er of the querying agent.

Figure 5.8: The Modi�ed Closure of the Ring for Bartering Tuples

5.4.2 The Testing of the Risk

The testing by itself does not need any changes. Indeed, whenadding the ideal agent

before computing the risk, we do not care about the last non ideal seek in the ring

because by de�nition of the ideal agent, the similarity withits o�er will be 1.

However, when we have to continue the recursion, we must recurse on every seek

of the tuples.
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Figure 5.9: The Modi�ed Testing of the Risk for Bartering Tuples

5.5 Discussion

5.5.1 Limitations

When returning rings, our algorithm does not take into account previously computed

rings (either by a previous call of the algorithm with another agent or within the

same call). One consequence is that agents can be part of multiple rings which may

not be compatible together. See Section 8.2.1 for more details about this issue.

5.5.2 Case of Small Databases

In the case of small databases, we can improve the accuracy ofthe results by replacing

the distance by the real similarity value as it is possible tocompute every similarity

value before running the algorithm. That is to say that we do not need the OPLH

and the tree representation anymore. We just compute every similarity value with

the current project before running the algorithm, and when selecting the closest o�ers
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(resp. seek) to the current seek (resp. o�er) we take the closest one according to the

similarity.

5.5.3 Storing similarity values

To avoid computing many times the same similarity values, the system has to store

them on the 
y each time a new value is computed. Of course, in case of a modi�cation

of a tree, these values have to be reset.

5.5.4 Bidirectional Search

In all previous sections, we have assumed that the starting point of our algorithm

is a seek. Instead, starting with an o�er will not change the algorithm, we only

need to replace seek by o�er, and conversely, everywhere in the algorithm. To allow

both, the system just has to remember from where the process has started and act

correspondingly. With the same kind of proof as for Theorem 5.3.1 we can show that

going from the o�er direction will not provide di�erent results.

Consequently, a bidirectional search, will not provide better results. One use

of bidirectional search could be to parallelize the computation by starting in both

directions at the same time. However, this would raise a problem as it would be

di�cult to �nd a meeting point. One possible way to paralleli ze the algorithm would

be to wait for the �rst recursions to occur and distribute these recursions among the

processors/computers.
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5.5.5 Multiple calls

In all previous sections, we have always consider that our algorithm was focusing on

one particular agent. In order to get all possibleDmax / Rmax acceptable rings for a

given set of agents, the algorithm must be called with each agent as a starting point.

5.5.6 Complexity

The complexity of our algorithm is discussed in Section 7.3.
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CHAPTER 6

An Application: Teclantic.ca

In order to test our system, we decided to implement it on the Teclantic.ca portal.

In this chapter we describe the portal before explaining some speci�cs and choices of

the implementation. The results of the testing are given in Chapter 7.

6.1 Description of Teclantic.ca

Teclantic.ca is a technology transfer portal for the research area in the Atlantic

Canadian region. The portal is using the AgentMatcher Tree similarity algorithm

[1, 5, 4, 32] to provide the user with the opportunity to contact other users having

similar projects. It is a match-making portal where the negotiation phase is left to

the user by means of an internal message service.
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One key di�erence to most other match-making portals is the weighting scheme

which allows the user to give more or less importance to the di�erent partonomic and

taxonomic branches of his/her project.

Extending this portal to bartering and ring bartering will enhance further the

possibilities given to the user for facilitating collaborative work in the research area.

6.2 Details of Teclantic.ca for the Bartering Sys-

tem

In order to understand fully the next chapter, it is requiredthat we review some

speci�cs of Teclantic.ca that have a direct in
uence on our algorithm.

6.2.1 Bartering Tuples

Teclantic.ca deals with research projects. Bartering pairs in the research area is not

really judicious. Indeed in most cases the following situations are going to occur:

� A user has only project o�ers ( e.g. a research group looking for funding ).

� A user has only projects seeks ( e.g. a venture capitalist seeking for technologies

).

� A user has both o�ers and seeks but not the same number of each.

Consequently, we have to implement a system that will deal with the two �rst

cases as well as the third one. The two �rst cases are easy to take care of. We only
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need to test whether the project has at least a correspondingo�er (resp. seek) or not,

and run the actual similarity algorithm or the ring bartering algorithm accordingly.

The third case requires the use of the Extended Algorithm forBartering Tuples (see

Section 5.4). Moreover, with this extended algorithm, every o�er (resp. seek) of

a user can form a potential bartering pair with any seek (resp. o�er) of this user.

We consequently remove the arti�cial binding between a user's o�ers and seeks that

would be required with bartering pairs and which does not appear very meaningful

in the research area.

Finally, some projects may have an o�er and a seek at the same time. Indeed

a research group may be willing to start a collaborative workwith another group

working in the same area.

6.2.2 Tree Representation

In Teclantic.ca, the trees are separated in two parts. The �rst part has �xed arcs,

nodes and weights. Only the leaves are varying. It describesthe general information

about the project. The weight of this subtree is 0.3. The second part is the description

of the areas of the project. The nodes and leaves are empty andthe possible arc-labels

are from a given set. This subtree is a two-level tree, each level corresponding to a

level of the taxonomy (see Figure 6.1).

To represent these trees in a multi-dimensional space we areonly going to focus

on the taxonomy part of the tree as we would need to go to the leaf level to get some

information on the general information part. Also we will restrict the base of trees

to one-level trees. As the taxonomy is quite important we would have far too many

dimensions with two-level trees. With one-level trees we already have 29 possible
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Figure 6.1: The Taxonomy Part of a Project Tree in Teclantic.ca
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arc-labels and consequently 29 dimensions in our space. Figure 6.2 shows the values

of the corresponding 29 coordinates (x1 to x29) for a sample tree.

Figure 6.2: An example of Tree with its Representation

As we can see in the previous example, most of the coordinatesare 0. This is

why we must not have too many dimensions in our space, as the splitting process

of linear hashing will never reach the last coordinates if the number of dimensions is

too high. Already with 29 it is not likely that a split on the last dimension will ever

occur. We are going to further explain this problem in the next section.

6.2.3 Order Preserving Linear Hashing

One peculiarity of the Teclantic.ca trees is that many of thecoordinates of a tree in

the multi-dimensional space are going to be 0. Indeed it is not likely that a project

will be classi�ed under more than two or three main taxonomy category items. With

such a small amount of data the division of space is only on the�rst few coordinates.

Consequently, many projects are going to be in the same bucket because these �rst
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Figure 6.3: The Repartitioning of the Trees in the Buckets

few coordinates are going to be null (see Figure 6.3). This will slow down the range

query process as the system will have to check many trees after retrieving them from

the buckets. In a worst case scenario, all the projects are going to be in the same

bucket and the range query function will have to check all of them to see if they are

within the querying distance. Nonetheless, this will stillbe faster than computing

every similarity value.

However, it is possible to arti�cially work around this problem by increasing the

number of buckets. Indeed we can start with an OPLH of high level which will allow

a better repartition in the buckets. Or, we can decrease the size of the buckets to

speed up the splitting process. Still, it will also slow downthe range querying process

by forcing more and more intersection checks between subspaces and the query and

also more bucket retrievals.

Another solution, would be to perform a multiple OPLH. That is to say that,

instead of storing all points in bucket 0 as they are, we couldre-hash them, starting
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6.2. Details of Teclantic.ca for the Bartering System

from another coordinate, and store them in another OPLH. Forexample we have 29

dimensions in Teclantic: we could have 2 level 10 and one level 9 OPLH. It would

only increase the number of buckets by a factor of 3 instead ofhaving 229 buckets if

we wanted to retain a single level 29 OPLH.

However, as long as Teclantic is not dealing with a great amount of data, we can

replace the distance by the real similarity value, as exposed in Section 5.5.2.
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CHAPTER 7

Computational Results

We now present computational test results of our system. Onemust keep in mind

that the results are dependant on the kind of data we are dealing with. We will

�rst present some results on the in
uence of the distance, then we will discuss the

in
uence of the risk before showing the outcomes of computation time testings.

All the tests, except when mentioned otherwise, are done with 2- and 3-agent

rings.

7.1 In
uence of the Distance

Two main aspects must be tested for the distance. First, the behavior of the distance

against the similarity. This is to justify our choice of distance. And secondly, the
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7.1. In
uence of the Distance

resulting pruning in order to check whether we only loose rings with low aggregate

similarity when lowering the maximum distance.

7.1.1 Distance Behavior

Figure 7.1: Behavior of the distance against the similarity

We have computed 195 distance and similarity value pairs of real Teclantic.ca

data. The results show that the distance behaves in the inverse way as the similarity,

as we expected. The most important observation is that for high similarities the

distance is low. Because if we had some high similarities with high distances, this

would mean that we would miss some potential trees that couldbe acceptable for a
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uence of the Distance

ring computation. The opposite phenomenon is of less importance, as a low distance

with low similarity is going to be discarded very fast in the algorithm. We cannot

help this to happen as we restrict ourselves to one-level base trees to represent our

trees. Indeed two trees can be totally similar on the �rst level and di�er completely

underneath, consequently resulting in a low similarity value (see Figure 7.2).

Figure 7.2: Two Trees with Low Similarity and Zero Distance

7.1.2 Distance In
uence on the Resulting Rings

The data set used here was real Teclantic.ca data, chosen to represent every case.

That is to say that we have some very close projects as well as some completely

di�erent ones. We used 25 projects that were o�ers and seeks at the same time. That

corresponds to a maximum of 625 rings.

The values used for the distances are to be taken with caution. They are strongly

dependent on the system. Indeed, the more dimensions there are in a space, the

greater the maximum distance can be. Moreover, depending onthe depth of the

base, the values that the coordinates can take will change slightly. That is to say
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uence of the Distance

Dmax Minimum
Aggregate
Similarity

Maximum
Aggregate
Similarity

Number of
Rings Re-
ported

Highest
Missing
Ring

Number
of High-
est non
Missing
Rings

1 0.34 0.86 625 0 625
2.5 0.35 0.86 407 0,62 29
2 0.42 0.86 84 0.62 28

1.5 0.42 0.86 44 0.67 18
1 0.72 0.86 9 0.72 8

Table 7.1: In
uence of the Distance

that coordinates will not always go from 0 to 1. Consequentlyit is mandatory to

test the system in its earlier phases of development in orderto choose the right

distance parameter. One approach is to �rst implement the system without using

the distance, as with small databases (see. Section 5.5.2) while gathering information

on the distance values. And then, when the database becomes bigger, one will have

enough information on the distance to choose the parameter wisely.

Finally, for the entire sequence of tests,Rmax was set to 1 so that it would not

in
uence the results.

From Table 7.1 we can see that by lowering the distance, we improve the results

by pruning most of the rings with a low aggregate similarity. In the meantime, we

keep most of the high similarity rings. In the last test, we can see that on the 9 rings

reported, we have kept the 8 best ones.
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7.2. Risk In
uence on the Resulting Rings

Rmax Minimum
Aggregate
Similarity

Maximum
Aggregate
Similarity

Number of
Rings Re-
ported

Highest
Missing
Ring

Number
of High-
est non
Missing
Rings

1 0.34 0.86 625 0 625
0.9 0.34 0.86 625 0 625
0.8 0.34 0.86 625 0 625
0.7 0.34 0.86 501 0.44 397
0.6 0.4 0.86 93 0.57 74
0.5 0.52 0.86 18 0.69 13
0.4 0.65 0.86 6 0.78 4
0.3 0.72 0.85 3 0.86 0
0.2 0.84 0.85 2 0.86 0
0.1 0 0 0 0.86 0
0 0 0 0 0.86 0

Table 7.2: In
uence of the Risk on Teclantic.ca Data

7.2 Risk In
uence on the Resulting Rings

We performed here two series of tests. One with the same data set as in the previous

section. The other with random similarity values. It was notrelevant to perform the

previous tests on the distance with random similarity values. Indeed, the distance

is linked with the similarity but is not the result of a computation implying the

similarity values. If we had used random similarity values in the previous section,

we would have lost the correlation between the distance and the similarity. On the

contrary, the risk is directly computed from the similarity values and having random

data will not change the correlation. For both tests,Dmax was set to1 so that it

would not interfere with the results.

Most of the results in Tables 7.2 and 7.3 are satisfactory. The pruning is mostly

done on the bottom aggregate similarity values and we keep most of the top rings,

even with low risk values. In both cases, from a risk of 0.3 we loose the best ring

70



7.3. Computation Times

Rmax Minimum
Aggregate
Similarity

Maximum
Aggregate
Similarity

Number of
Rings Re-
ported

Highest
Missing
Ring

Number
of High-
est non
Missing
Rings

1 0.02 0.89 625 0 625
0.9 0.11 0.89 499 0.47 248
0.8 0.21 0.89 372 0.5 216
0.7 0.38 0.89 225 0.55 164
0.6 0.43 0.89 134 0.62 104
0.5 0.51 0.89 42 0.7 34
0.4 0.61 0.89 11 0.81 7
0.3 0.71 0.89 6 0.88 2
0.2 0.82 0.89 5 0.88 2
0.1 0 0 0 0.89 0
0 0 0 0 0.89 0

Table 7.3: In
uence of the Risk with Random Similarity Values

(according to the aggregate similarity). This is not alarming. Indeed the risk value

re
ects more the low similarities in the ring than the aggregate similarity. That is

to say that if a similarity value is low and the others high, the risk will be more

in
uenced than the aggregate similarity.

7.3 Computation Times

7.3.1 Theoretical Results

Giving an exact time complexity for our algorithm is not an easy task. Indeed as the

computation time depends on the repartition of the data (i.e. the di�erent similarity

values), Dmax and Rmax it is hardly possible to provide a general formula. However

we can still give some information on the algorithm's behavior.
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7.3. Computation Times

For one recursion step, the time complexity is the following:

TCi = TCsel + p � [TCcl + TCrisk + � i +1 TCi +1 ] (7.1)

TCsel is the time for the selection of the closest o�ers. As we are using OPLH, this

time is in O(p)

TCcl is the time for the closure of the ring.

TCrisk is the time for the testing of the risk without the recursion if any.

p is the number of o�ers selected in the selection step. It is dependent ofDmax . For

all of the following we will assume thatp is constant (i.e. that the data is uniformly

distributed in the space)

� i +1 is the number of rings we will perform recursion on. It is dependent on Rmax .

As TCcl and TCrisk are constant we will set� = 1 + TCcl + TCrisk . We are now

going to detail three cases.

� First is the worst case scenario. In this case, it is like if nopruning was done

at all and the algorithm performs an exhaustive search. Thiscase should never

happen if Dmax and Rmax are set correctly. In this case the time complexity

would be, if we force the algorithm to stop after 4 agents rings with N being

the number of records in the database:

TCworse = O

 
4X

i =1

N 2i

!

(7.2)

� The second scenario is the ideal scenario in terms of time complexity. The

algorithm will not select any o�er tree in the �rst step and will exit. The time
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7.3. Computation Times

complexity is obviously inO(1).

� Finally for a more general scenario we will start from Equation ( 7.1) with i = 0

and will �nd a global formula by induction.

TC0 = TCsel + p � [TCcl + TCrisk + � 1TC1]

= O (p + p � [� � 1 + � 1TC1])

= O (p � � + p � � 1TC1)

= O (p � � + p � � 1 � [p � � + p � � 2TC2])

= O (p � � + p2 � � 1� + p2 � � 1� 2TC2)

= O (p � � + p2 � � 1� + p2 � � 1� 2 � [p � � + p � � 3TC3])

= O (p � � + p2 � � 1� + p3 � � 1� 2� + p3 � � 1� 2� 3TC3)

= :::

(7.3)

From this we can show by induction that the general result is the following, � 1

being equal to 0:

TC = O

 
1X

i =1

�
pi � � i � 1

k=1 � k

�
!

(7.4)

Of course in practise, as shown in Table 7.5, fromi = 7 all � i will be null. With

well parameterizedRmax it will probably be from i = 5.

If we want a formula depending onN , we have to expressp as a percentage of

N and make some hypothesis on the� i . We will assume that p is 1% of N .

Then we will assume that� 1 is 90% ofp and that we divide the amount by 2

every time we increasei . And from i = 5 we will assume that the algorithm

will not perform any more recursion.
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7.3. Computation Times

TC = O

 
4X

i =1

�
(N � 0:01)i � � i � 1

k=1
N � 0:009

2k� 1

� !

(7.5)

7.3.2 Experimental Results

We now show some results on the computation time for our algorithm. The tests

have been done with randomly generated data, not with real Teclantic.ca data, as we

wanted to have 1000 projects. One consequence is that project trees are more spread

in the multi-dimensional space and consequently it is not likely that two projects will

be very close to each other as the space is very big (29 dimensions). This is why the

Dmax values used di�ers from the ones of Section 7.1.

As the database was not on the same computer as the Tomcat server, the com-

puters were linked by a WiFi connection: the durations reported are thus slightly

higher than what they should be.

The amount of time gained by lowering both parameters is really important. As

the two parameters have a di�erent in
uence on the algorithm, the amount of time

gained by lowering one or the other parameter is not regular.Indeed by lowering the

risk without lowering the distance for example, we discard many rings and thus have

less rings to report, but we still try many trees which takes alot of time. An extreme

case would be, if we don't limit the number of agents in the ring, a very low Dmax

but with a Rmax of 1. In this con�guration, no matter the distance (except when

coming very close to zero so that no tree will be in range), thealgorithm will keep

adding agents to the ring as long as there is an agent in the database within range

and not already in the ring. With huge databases this could reach the system limits.
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Rmax Dmax Computation time (ms) Number of Rings Reported
1 2.69 41226 116

2.53 17997 45
2.42 16435 30
2.31 6589 7
2.20 1138 2

0.8 2.69 33970 59
2.53 15626 33
2.42 13135 21
2.31 6606 7
2.20 1306 2

0.6 2.69 23851 43
2.53 15853 24
2.42 14681 19
2.31 6508 7
2.20 1174 2

0.4 2.69 16027 14
2.53 10208 11
2.42 9549 11
2.31 2768 7
2.20 1359 2

Table 7.4: Computation Times

In this sequence of tests, the ring was limited to 3 agents: now we are going to test

our system without any limit to the number of agents, with a �xed Dmax of 2.42 and

a varying Rmax to show its action on the computation time by limiting the number

of agents in the rings.

As expected, the size of the ring and, in parallel, the computation time, decrease

with the risk. The biggest rings are six-agent rings. This could be raised by lowering

the parameter� in the risk computation. However it is not judicious as 4-agent rings

are a realistic limit above which it would be di�cult to actua lly perform the deal.

Finally, we did a last test without any pruning, that is to say we performed

exhaustive search, to show how bad the situation would be without our work on the
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Rmax Computation time
(ms)

Number of Rings
Reported

Biggest Ring

0.9 54972 67 6
0.8 38887 42 5
0.7 33601 32 4
0.6 22311 21 4
0.5 15540 15 3
0.4 9064 11 3
0.3 1576 5 2

Table 7.5: Computation Times and Size of the Rings

Maximum authorized size of the
Ring

Computation time (ms)

2 538
3 3252
4 41520
5 249973

Table 7.6: Computation Times without Pruning

risk and the distance. We worked with only 10 projects (whichwere o�ers and seeks

at the same time). Table 7.6 shows the results. When the size of the ring is increased,

the computation time becomes really bad very fast, and this with very few projects

to work with. This gives us the con�rmation of what we had stated at the beginning

and justi�es our work on this problem.
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CHAPTER 8

Conclusion

8.1 Contributions

We have presented an algorithm to extend the usual buyer/seller scenario to, �rst,

bartering and, then, to ring bartering allowing several agents to take part in the same

trade. By representing the weighted trees in a multi-dimensional space, we allowed

an e�cient pruning to be done in the early phase of our algorithm by using the notion

of distance instead of the similarity. Then we introduced the risk to limit the ring

construction process and to restrain the results to viable rings.

� The buyer/seller scenario, even if widespread among web portals, �nds its limits

when dealing, for example, with knowledge that is di�cult to quantify with

money. Bilateral bartering allows to handle naturally and easily any kind of
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\goods". To rate a potential deal, we introduced the aggregate similarity value

of two pairs of trees. By using the weighted tree similarity algorithm we allow

user to specify detailed queries both on the o�ering and the seeking side.

� By de�nition the buyer/seller scenario is a two sided deal. Shifting to barter-

ing allows more sides to be part of the same trade thus increasing the global

satisfaction of each party. We developed a ring bartering algorithm which gives

the user 2- to n-agent deals. These rings are rated according to a naturally

generalized aggregate similarity value.

� As we allow n-agents deals, we developed two pruning techniques to avoid ex-

haustive search which would cause drastic performance losses.

We �rst used an approximate representation of the weighted trees in a multi-

dimensional space and de�ned the distance between two treesin this space.

Thanks to certain e�cient data-structures such as the OPLH we can perform

e�cient pruning in the �rst phase of our algorithm by testing only the trees

closest to the current one.

Then, we introduced the risk of a ring which is a measure of howlikely the deal

is not going to happen. This value based on the number of agents as well as

the similarity values of the ring allows a second pruning phase and prevents the

algorithm from adding agents in�nitely.

Finally, we proved Theorem 5.3.1 and its Corollary to verifythe correctness of

our algorithm.
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8.2 Future Work

8.2.1 Pairing

One major area in continuation of our work is the pairing problem. Currently our

algorithm returns rings regardless of the availability of the agents involved. That is to

say that an agent can be involved in many rings. Of course thisagent will not be able

to perform all the deals where his/her name appears. Consequently, the natural next

step to our system would be a pairing algorithm that would tryto create the best

combination of rings implying every agent in the virtual market place so that everyone

would be part of exactly one deal. For this another measure would be needed, an

equivalent to the aggregate similarity but for the entire market place. And the system

would have to maximize this value. As this problem is close tothe traveling salesman

problem, the time complexity for an exact solution will probably be very high and an

approximate algorithm would probably be needed to make it practical.

8.2.2 Local Similarity

As mentioned in section 4.2.3, the use of local similarity measures on nodes and leaves,

as developed in [4], can greatly improve our tree representation in a multi-dimensional

space. For example, in our Teclantic.ca portal we could add the general information

part of the tree without adding too much dimensions.
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APPENDIX A

Teclantic Data Sample

The following XML tree is a RuleML Object Oriented representation of the Agent-

Matcher project in the Teclantic.ca portal.

<cterm >
<_opc >

<ctor >Project </ctor >
</_opc >
<_slot name= " t i t le " weight = "0.05 " >

< ind >AgentMatcher</ ind >
</_slot >
<_slot name= "bSeek " weight = "0.0" >

< ind >2</ ind >
</_slot >
<_slot name= " numpeople" weight = " 0.05 " >

< ind >6</ ind >
</_slot >
<_slot name= " namepeople" weight = " 0.0" >

< ind />
</_slot >
<_slot name= " websi te" weight = " 0.05 " >

< ind >http: // agentmatcher . cs .unb .ca </ ind >
</_slot >
<_slot name= " copyr ight" weight = "0.0" >

<ind />
</_slot >
<_slot name= " descr ipt ion" weight = "0.05 " >

< ind >The AgentMatcher project is a project to develop a set o f tools
used in creating systems used for comparison . The main sub
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projects are the * LomGen * tool , which is used to automat ical ly
generate a LOM tree , which is used for comparison , and the *
Weighted Tree Similarity * algorithm used to calculate the
similarity of two trees .</ ind >

</_slot >
<_slot name= " locat ion_country " weight = " 0.05 " >

<cterm >
<_opc >

<ctor >Canada </ctor >
</ _opc >

<_slot name= " province" weight = " 1.0" >
<cterm >

<_opc >
<ctor >New Brunswic </ctor >

</_opc >
<_slot name= "city " weight = "1.0" >

< ind >Fredericton </ ind >
</ _slot >

</ cterm >
</ _slot >
</ cterm >

</_slot >
<_slot name= " star t_date" weight = " 0.05 " >

< ind handler = "date " >Jan 1, 2003 </ ind >
</_slot >
<_slot name= " end_date" weight = "0.05 " >

< ind handler = "date " >Dec 31, 2004 </ ind >
</_slot >
<_slot name= " c lass i f icat ion " weight = "0.7" >

<cterm >
<_opc >

<ctor >DC</ctor >
</_opc >
<_slot name= " 100200 " weight = " 0.6923077" >

<cterm >
<_opc >

<ctor >DC </ctor >
</_opc >
<_slot name= " 100202 " weight = " 0.4375 " >

< ind >DC </ ind >
</_slot >
<_slot name= " 100207 " weight = " 0.4375 " >

< ind >DC </ ind >
</_slot >
<_slot name= " 100201 " weight = " 0.125 " >

< ind >DC </ ind >
</_slot >

</cterm >
</ _slot >
<_slot name= " 100600 " weight = " 0.15384616" >

<cterm >
<_opc >

<ctor >DC </ctor >
</_opc >
<_slot name= " 100602 " weight = "1.0" >

< ind >DC </ ind >
</_slot >

</cterm >
</ _slot >
<_slot name= " 100100 " weight = " 0.15384616" >

<cterm >
<_opc >

<ctor >DC </ctor >
</_opc >
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<_slot name= " 100108 " weight = "1.0" >
< ind >DC </ ind >

</_slot >
</cterm >

</ _slot >
</ cterm >

</_slot >
</cterm >
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