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Abstract

This thesis extends tree similarity based match-making fro the buyer/seller situa-
tion to a scenario of bilateral bartering and multi-agent nng bartering. It is built
on top of the AgentMatcher tree similarity algorithm for noce-labelled, arc-labelled,
arc-weighted trees. A representation of these trees in a riudimensional space is
developed to allow e cient indexing and pruning in large tree databases. The con-
cept of risk is introduced to control the process of bartergp ring construction. We
have tested our system on the Teclantic.ca portal, where itllaws researchers and
companies from Atlantic Canada to share technologies as Wat to be contacted by

investors.
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CHAPTER 1

Introduction

Similarity Match-Making is a process that helps buyers andedlers to nd each other
according to the similarity of what they seek/o er. In this thesis we extend this

principle to bartering and ring bartering.

1.1 eCommerce

Before going into the details of bartering Match-Making, wewill introduce some

concepts of eCommerce that are useful for our work.

In the last few decades, the importance of the Internet in ouevery day life has
kept increasing. Many basic tasks such as shopping can nowgsformed at home in

front of a computer screen. This is the eld of eCommerce wthi¢ broadly conceived,



1.1. eCommerce

already has a long history. Indeed the early developments @€ommerce appeared in
the 1970s and 1980s with the EFT technology (Electronic Fundransfer) and EDI

(Electronic Data Interchange) in 1984 [10, 13]. eCommercas kept evolving since
this point, going from the stage ofbrochure-ware[13] in the early 1990s, that is to
say static websites that had only an informational purposep advanced transactional

devices that have been appearing in the last few years.

1.1.1 Web portals

Web portals are currently the main interface for Internet e@mmerce users. Some
portals are company portals, they are windows of what the cqmany is doing/provid-
ing and allow them to reach more customers. For example theosé Marks & Spencer
uses this kind of web portal (http://www.marksandspencer.com/ ). Other portals
are maintained by an external entity and are acting as intedce between buyers and
sellers from di erent origins. Generally each is speciaéd in a particular area. For
instance Kasbah (http://www.kasbah.com/ ) is centered on travels while Telzoo (

http://telezoo.com/ ) is aiming at telecommunication and networking technologs.

1.1.2 Match-Making

According to the dictionary [2], Match-Making is\The act or process of trying to bring
about a marriage for others! In other words it has its origin in helping people to nd
a suitable partner. Currently many Match-Making Web portak are actually focused
on dating. However, Match-Making has expanded throughouthe years to other

areas. Telzoo, a telecommunication and networking techmgies centered portal,
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is using a Match-Making system to help buyers and seekers toeet. This is one
of the many examples that we can nd on the Internet. The poshilities given to
the users are varying depending on the portal. For example oown Teclantic (
http://www.teclantic.ca ) gives the user the opportunity to specify the relative

importance of some aspects of his/her query.

1.1.3 Bartering

Bartering: \The practice of exchanging goods or services without usitige medium

of money." [2]

Bartering has a long history!. It was the only way to do commerce before the
appearance of money. However, bartering has not disappedrand has made some
noticeable comebacks in the last few centuries, especiatlyring recession periods
where money became more and more worthless such as in partSufope of the 1930s.
Bartering is still studied (e.g. [27, 9] for an economic pegpsctive) and used today as
some bartering portals such as T&C Global Barter Exchange ww.tandc-global.
com) can testify and is even required in some particular cases. Is& in our own
company merger example of cooperative work, where users dweking for other

projects to complement their own, it would be very di cult to use money.

1See [28] for more information on the history of bartering andmoney



1.2. Motivation and Approach

1.2 Motivation and Approach

Similarity Match-Making has enhanced eCcommerce in a way gbat users, both
on the seller and the buyer side, can gain a great amount of tenand money by
shortening both the search and the negotiation processes.end, the Match-Making
system presents to a given user only potential partners thatre likely to agree with
him/her. Consequently research in this area, trying to impove either the e ciency or
the possibilities given to the user, is of great interest. Tik is the aim of our similarity
Match-Making for bartering scenario system: to give the us@nother perspective on
Match-Making, while exploit recent techniques in similaty Match-Making to assure

e ciency.

1.2.1 Representation of Queries

For e cient product/service comparison, a suitable repreentation of the data is re-
quired. One of the most popular representations is the keyends/phrases widely used
by search engines, for instance. In order to carry extra infmation, in some systems
such as ACORN [25] weights have been added to key-words/pkes. However, in
some cases, the relationship between di erent features dig data is complex and
requires a hierarchical representation. For example, to seribe this thesis, we would
have to give information about the university, the superviers and the topic. The
topic is independent from the rest but the supervisors are gendent on the univer-
sity. A tree representation of queries can handle these colap relationships. To allow
such a nested representation augmented by weights we aremgpio use node-labelled
arc-labelled weighted trees from the AgentMatcher resedrqgroup [5, 4, 31, 32] in

this thesis. More details about this representation are gan in Section 2.1.2.1.

4



1.2. Motivation and Approach

1.2.2 Match-Making for Bartering Scenarios

The buyers/sellers scenario is the most widely used for the dith-Making systems
(e.q. [15, 8, 4]). The main reason is obviously because it leetmost frequent situation
and the one with the easiest-to-see applications. Howevéifting from this classical
\client/server"-like view to a \peer-to-peer"-like view, where the buyers and sellers
both become bartering agents with something to o er as wellsasomething they seek
(see Fig 1.1), can extend the possibilities to other areas aie money is not easy
to deal with. Indeed if we want to exchange ideas or knowledgir instance, as in
[20], we cannot use money, as it is very di cult to quantify its value. With bartered
Match-Making, we have a very natural way of dealing with thikind of \product” by
simply trading an idea or some knowledge for some other. Slarly, the Web Portal
Teclantic.ca, which is focusing on research projects, waarpicularly adapted for this

approach.

Agent 1 System Agent 2

Offer 1 <«—— Similarity Match [¢——» Seek 2

Seek1 » Similarity Match [« » Offer 2

L J Y

Aggregate Similarity

Figure 1.1: The Bartering Scenario
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1.2.3 Ring Bartering

The main focus in Match-Making is to nd the best match betwea di erent agents of
the virtual market place [8, 19, 30, 23, 29, 15]. However, litmg the potential deals
to two agents is a strong restriction. It does not matter in tle case of buying/selling
scenarios but in the case of bartering it does as it is not alys likely that a match
is going to be found for a particular o er/seek pair. On the catrary, it is very likely
to nd situations where a strong match will be found for one sle of the deal. For
example, an agent is seeking for an apartment in Halifax andhather agent is o ering
one there. But the other part of the trade may not match at all. The rst agent could
0 er an apartment in Tregun while the second one is seeking enn Toronto. Adding
more agents to the trade can improve the global satisfactiaof all the agents. A third
agent could come into the previous trade o ering an apartmenn Toronto and looking
for one in Tregun. Separately paired, none of this agents ddumatch satisfactorily,

but all of them together will, and thus will form a bartering ring.

1.3 Objectives

This thesis aims to develop an advanced similarity Match-Mang system centered

on bartering scenarios. The main objectives are as follows:

To develop techniques for bartered Match-Making.
To develop techniques for ring bartering.

To apply these techniques to Teclantic.ca for testing them.



1.4. Organization of the Thesis

One of the main concern that has driven our work is the computi@n time. This thesis

aims at nding e cient ways of providing agents with the best potential partners.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents sobaekground on similarity
Match-Making and bartering, introducing the arc-labelledweighted tree representa-
tion of queries that is going to be used by our system. The coeqat of bartering trees
is presented in Chapter 3. Chapter 4 presents an approximatepresentation of our
trees in a multi-dimensional space. The ring bartering algithm is given in Chap-
ter 5. Chapter 6 presents an application of our system in theesearch area. Finally,

Chapter 7 discusses some tests of our system.



CHAPTER 2

Match-Making and Bartering

Coincidently with the development of the Internet, eCommere has become more
and more important in our everyday life. Being more than merelisplay windows,
company websites and web portals are now a standard means e&ching customers
or nding providers. Virtual market places are emerging allover the world, growing
in number and importance. The necessity of powerful tools thelp users navigate
through these market places is thus also increasing. It is hpossible anymore to just
display lists of o ers and/or seeks to users, as the number @iotential partners is

rising drastically.

To help users, multi-agents systems have been developed.e$a systems repre-
sent the user by a virtual agent who is going to communicate thi the other agents
of the e-Marketplace by exchanging their knowledge of theusers' preferences. The

aim is to nd the product/service closest (most similar) to auser's desire. Many algo-

8



2.1. Match-Making

rithms have been designed for this purpose. Research ha®dieen done on bartering

with applications in various areas.

2.1 Match-Making

Extensive research has been conducted on Match-Making [&, B0, 23, 29]. IBM's
Websphere Matchmaking Environment was one of the rst to entpasize the match-
making between a demand and a supply, for commercial use. Thmatching engine
underneath uses properties and rules which describe the plips/demands and per-

forms comparisons of the properties and veri cations of theules.

2.1.1 Agent-Mediated eCommerce System with Decision

Analysis Features

Another more recent approach is in [15] where the purchasedthe potential o ers
are represented in a singl® er synthesis graph This graph regroups criteria and
related features as well as preferences with related arguntee as illustrated in Fig 2.1.

From this gure we can see that this graph is actually a tree.

The graph is built by the purchaser agent and updated for a gén time limit.
Then the user interacts with the graph to activate or deactiate nodes of the graph.
The system also checks for con icts and inconsistencies adéactivates nodes accord-
ingly in case of constraint violations, or asks the user to nka a decision for con icting
preferences. Then the system gives a score to each o er usegveighting schema

based on the user preferences.
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=

|Java Applet Window T

L- purchase-6.1: new car, iniialed by purchaserdgent-22

— k0 offer-12: car-6.1, submitted by sellerdgent-33
I criterion-22.5: safety
—(1> feature-22.5.3: (airbag, 2)
—(I® feature-33.4.2: (sidebars, double)
—(@ criterion-22.8: cost
—{D feature-22.8.1: {purchase_price, 25000)
— & offer-29: car-A25, submitted by sellerdgent-12
= criterion-22.3: performance
¥ feature-22.3.1: (maximum_speed, 230}
—{I® feature-22.3.3: {acceleration, 10.3)
—{& criterion-12.8: image
—{(® feature-12.8.1: (firm_reputation, high)
@80 offer-16: car-XY-34, submitted by seflerdgent-3

. criterion-22.8: cost
P feature-22.8.1: {purchase_price, 29500)
feature-3.6.4: (annual_service_cost, low)
%nonaz.s: performance
feature-22.3.7: {consumption, low)

— preference-22,13: (performance, more_important, safety), submitted by purchaserigent-22

argument-33.11: (if {(maximum_speed > 200) then (accident_risk, high))

- preference-33,3: (safety, more_important, performance), submitted by sellerdgent-33

Gav argument-33.12: (if (maximum_speed > 200) then (accident_risk, high))

{a® argument-33.13: (reportl2: “safety was the big issue in 1998 car sales”)

—G[r) preference-12.13: (purchase_price, less_|important, firm_reputation), submitted by sellerdgent-12
—@® argument-12.21: (if (firm_reputation = high) then ({robustness, high) and (life_cydle, long))

o) constraint-22.1: (purchase_price, less_than, 30000), submitted by purchaserAgent-22

vis

Figure 2.1. An O ers Synthesis Graph [15]

2.1.2 The Weighted Tree Similarity Algorithm

The weighted tree similarity algorithm [5, 4, 31, 32] is a siifarity Match-Making

algorithm for the buyer/seller scenario in E-marketplaces It is built on the arc

labelled weighted tree representation of queries.

2.1.2.1 Arc-labelled Weighted Trees for Query Representat

One of the motivations for this representation of queries vgato remove the disad-

vantage of at query representations, which cannot descréd complex relationships

10
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2.1. Match-Making

Apartment

Capacity Location
0.5

Rooms Halifax

Kitchens  Dist_stores

0.1 0.5 Dist_beach
0.5

Figure 2.2: An Arc-labelled Weighted Tree

between the features of a query. The tree representation @lls a hierarchical repre-
sentation of features. Moreover, semantic information isacried both by nodes and
arcs. Finally, weights are assigned to arcs to express thdaté/e importance between
features of a query. An example is depicted in Fig 2.2. For mi@iae processing the

trees are represented using a weighted extension of Objéxttented RuleML [6].

2.1.2.2 Description of the Algorithm

Utilizing the particular aspect of these trees, an algoritm was developed to compute
the similarity of a pair of trees. This algorithm traverses he tree recursively top
down and then computes the similarity from the leaves bottonup. Each recursively
computed similarity value is adjusted by an adjustment funiton A() before proceed-
ing to the next computation to prevent similarity degradation with depth increasing.
Missing subtrees in either of the trees are handled by a sinqpty measure over the

present subtree that replaces the similarity value betweeih and the absent subtree.

11



2.1. Match-Making

The formula expressing the similarity at a given level, witlthe weightsw;; adding

up to 1.0 for a givenj, is the following:

Sm(TiT)=  As) — (2.1)
2.1.2.3 The AgentMatcher Architecture
Similarity Similarity 14 Buyer-
: ‘ Agent Pairing
Compf.lta?tlo_n Rankin (Pairing Seller AQ?"‘_
(Tree similarity Table Algorithm) Pairs Negotiation
algorithm)
h
v
Buyer & Seller Finalized Transactions
Agents ( Trees ) between Buyers and Sellers

Figure 2.3: The AgentMatcher Architecture

The tree similarity algorithm is the rst component of the AgentMatcher Archi-
tecture (see Fig 2.3). The whole architecture is composed ®fo other components,
the Agent Pairing and the Agent Negotiation. The work propoed in this thesis is

not limited to the rst component as some aspects are alreadyart of the next two

steps:

First the rings formed by our ring bartering algorithm (see ®apter 5) are a

generalisation of pairing suggestions from 2 to.

Then the notion of risk that will be introduced in Section 5.2is a rst step

toward negotiation.

12
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2.2 Bartering

Bartering systems have been proposed using di erent appra@es and restrictions.
The trade balance problem, that is to say trying to make pro &ble deals while keeping
the balance of every user close to zero is discussed in [12he balance of the user
is arti cially created by using trade dollars as intermedi&e in the bartering process.
Instead of trying to perform direct exchanges of goods betee users, the system
performs one way deals ( e.guser; is buying an amountA of goods for a priceP

in trade dollars from user, ). Then the system will try to bring back the balance of
user; and user, to zero by making other deals with other users. This can be see
as what we call a ring bartering process but delayed in time. dwever, one major
requirement of this approach is to be able to quantify and/oevaluate goods in the
\bartering pool". This is not always possible, e.g. when ddag with people and

information as in [20].

In [20], the aim is to improve the global knowledge of agentylsharing/exchang-
ing cases. The decision of making a deal or not is done by chagkwhether a value
called ICB (Individual Case Bias) is decreasing or not. This approach is not quite
related to eCommerce as in the latter the aim is not to improva global knowledge

but to satisfy two parties: the seller and the buyer.

2.2.1 Ring Bartering

We did not nd relevant work done on Ring Bartering for eCommece. However 3
nodes Bartering Rings for Peer to Peer applications (see R2g4) are used in [3]. This

work starts from the same assumptions as ours, namely thatig di cult to nd two
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2.2. Bartering

download download

oo

Figure 2.4: A Bartering Ring from [3]

nodes (agents in our case) in need of each other service.
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CHAPTER 3

Bartering Trees

3.1 Bartering Trees

The rst step to deal with Bartering Scenarios is to shift the\client/server"-like

buyer/seller view to a \peer-to-peer"-like bartering agehview. The former uses a
single tree to represent an agent: a seek tree in the case ofuydr and an o er tree
for a seller. With bartering agents, we need two trees for da@agent (see Fig. 3.1),
one for its o er and one for its seek, as each bartering agers at the same time a

potential buyer as well as a potential seller.

This concept of bartering trees can be seen as the generalsa of the usualgoods
for money deal. Indeed it is always possible to represent money as a degrated tree

and have this tree as the o er of the rst bartering agent (seerig. 3.2), the former

15



3.2. Aggregate Similarity

Apartment

Location
0.5

Rooms Halifax
Kitchens  Dist_stores
0.1 05 Dist_beach
05
5 2 1 5 3

Seek

Apartment

Location
0.5

Tregun
Beds Ki:;:hsins Dist_stores
; - 0.2 Dist_beach
Bathfooms L
|0.33
3 1 1 1 0.5

Offer

Figure 3.1: Bartering Tree Pair

buyer, and a similar one as the seek of the second barteringeag the former seller.

3.2 Aggregate Similarity

When dealing with bartering scenarios, we are faced with twkevels of similarity.

First we have the similarity values between, on one side, theeer of Agent; and the

seek ofAgent, and, on the other side, the seek oAgent; and the o er of Agent,.

The second level of similarity is the aggregate similarity détween the two pairs. This

similarity S is to be computed from the two previous ones; and s,. This process

is to be performed with caution asS is the nal result that the user will obtain.

Figure 3.3 illustrates the two levels of similarity for two lartering pairs.

16



3.2. Aggregate Similarity

Apartment Money

Capacity Location

0.5 Weekly amount

1.0
Rooms Halifax 500%
Kitchens  Dist_stores
0.1 0.5 Dist beach
0.5
5 2 1 5 3
Seek Offer

Figure 3.2: Money as the O er Tree

3.2.1 Motivation

The rst idea for the value of the aggregate similarityS would be to take the arith-
metic mean ofs; and s,. This is equivalent to considering the two trees (O er and
Seek) of an agent as the right and left sub-trees of a bigger#& with a 0.5 weight
on both arcs (see Fig. 3.4) and then computing the similaritgpf two such trees (the
second one having the right and left sub-tree inverted, so ¢halgorithm [5, 4, 31, 32]

would need a \complementary" treatment of the labels Seek anO er).

However, taking the arithmetic mean is not judicious. Indegwe have to consider
that not all similarity values will have the same impact on thke nal deal. For example,
if we have a very low similarity between the O er ofAgent; and the Seek ofAgent,,
Agent, is not very likely to conclude the deal withAgent; even if Agent, is seeking
exactly what Agent, is o ering. Consequently, the aggregate similarity shouldealize

this by being lower than the arithmetic mean here. That re ets the fact that people

17



3.2. Aggregate Similarity

Agent 1 Agent 2
1, Similarity 1 |
‘ Offer 1 ) 1 Seek 2 ‘
< Aggregate Similarity
L SeekT JL. Similarity 2 { Offer 2 ‘

Figure 3.3: Two levels of similarity

try to maximize their Seek similarity (the other's O er similarity), not their O er
similarity (the other's Seek similarity). So, the aggregag similarity should not be a
linear combination ofs; and s;: if any of these two component similarities approaches
0.0, the aggregate similarity should also approach 0.0. Ifentake the most extreme
case, with the arithmetic mean the aggregate similarity fos; = 0:0 ands, = 1:0
would be %(0:0 +1:0) = 0:5, that is to say the same value as i§; = s, = 0.5 =
%(0:5+0:5). This appears not judicious as the agents involved in thegpential 0.0/1.0

deal are clearly going to behave di erently from those in theotential 0.5/0.5 deal.

3.2.2 Aggregation Function

In the context of discussion in Section 3.2.1 we had to nd artleer way of combination
for the aggregate similarity. The rst idea was to try some na arithmetic means.
When dealing with means that are not linear what comes to min@t rst are the

harmonic ( ) and the geometric Px y ) means. The former one is not

1
1=x+1l=y
applicable as we would have a problem when dealing with 0.0t would still be

possible to make a continuity extension however we would theend up in the same

18



3.2. Aggregate Similarity

Bartering Pair

e
Seek T Offer
0.5 &

- T
- e
Apartment Apartment
/
Capacny b Location Capacny Location
5 / 0.5 0.5
/
/
r
ROOI’I‘IS Halifax Rooms Tregun

0.7 Dist_beach 0. 33
0.5

/ Bath \ u.‘\ : / Bathjuusl:;s \

5 2 1 5 3

Beds / J \KItChBHS Dist_stores Beds / 1\ Kltchens Dist_: stores
{ = Dist_| beach

Figure 3.4: A Single Bartering Tree

con guration as with the geometric mean. Indeed, the geom&t mean gives too much
importance to the very low values (see Fig. 3.5). The extremzase is when dealing
with 0.0 for one of the two similarities. In that con guration, no matter the other
similarity, the resulting aggregate similarity would be 0. That is not acceptable as
the aggregate similarity has to re ect di erences between #&rade with rst-level of
similarities of 0.0 and 1.0, and one with rst-level similatties of 0.0 and 0.0 as the

potential for a future deal is not the same in both cases.

Thus we studied two families of functions, one polynomial,fahe form

a + a 1=a
Pa(siis) = L2 (3.1
and one exponential of the form
1 €81 + %2
Ea(s1;82) = a In 5 (3.2)
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3.2. Aggregate Similarity

1,007

0,901

0,90 80,90-1.00
g;z' 0,80-0,90
Aggregate Similarity 0:,50 WoE00
o0 — .
00: zg % -'}'}!;"""' 0,40-0,50
o0 A 08 00,30-0,40
0,00+ il Similarity 2 i
8w g g m0,10-0,20
sc3g8es 0,00-0,10

Similarity 1 =

Figure 3.5: Aggregate Similarity as a Result of the GeometriMean

The rst family is the generalisation of the arithmetic and harmonic means and

the second one an extension to the exponential functions. &tchoice of these func-

tions was driven by four main constraints:

The function must be symmetric
The result must be between 0 and 1
If s; = s, then the result must beS = s, =5,

Give more importance to the lower value betwees;, and s,

Already from the last constraint we were able to limit the valie of the parameter
a to [0; 1] for the rst family and [ 1 ;0] for the second one. This results from the
derivatives ofx? and e*x, which are decreasing functions on JQ] with these values of
a. The next step was to choose good values for parameter For this we focused on
extreme cases, that is to say whes, = 0 and s, = 1. We decided to x the resulting

similarity to 0.33 for our study. However, a system based oruowork can change this
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3.2. Aggregate Similarity

0.0/1.0 trade a for P, a for E,

0.1 0.3 -7

0.25 0.5 -2.5

0.33 0.62 -1.5

0.5 1 n/a (or O by extension)

Table 3.1: Values ofa for Di erent 0.0/1.0 Trade Similarity Value

value to match its requirements or let the user be able to chge it by him/her-self.

Based on the value 0.33, the correspondirayfor the rst family is 0.62 and -1.5 for

the second (see Table 3.1).

Finally, to choose between these two functions, we looked dieir shapes. As we

can see in Figures 3.7 and 3.8, the rst one is more sharpened the edge. The

right graph in Figure 3.6 shows this for a similarity 1 xed to 1.0. The left graph

has similarity 2 xed to 0.0. Consequently, the selected fution was the second one

which has a smoother progression toward 1.0:

2
E 1s(s1;82) = 3
0,35
E 0,30
& 025
E . .
w 0.20 —P_0.62(3_1.0)
£ 015 |[—E_-15(5_1.0)
£ 010
0,05

:§’~°m*§’n<§’@‘\%ut§’

e o ¥ o7 o @F oF o of of W

Similarity 1

e

Aggregate Similarity

LB
58

22 =
B &8

|
3 3a.
251 + @ 2%2

. (3.3)

[——P_062(1.5_2)]
—E_15(15.2)

0,60 4

D B P R R
R, S S R

Similarity 2

Figure 3.6: Comparison of the Two Functions with One Similaty Fixed
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Aggregate Similarity

1T
(i '!#' ".' =
KT
Similarity 2
g’ ;— %- 4 S w
RS g B @
Similarity 1 =

Figure 3.7: Aggregate Similarity with Pg.g»

Aggregate Similarity

Similarity 2

Figure 3.8: Aggregate Similarity WithE 1.5

3.2.3 Polynomial Approximation

One problem with the selected function is that the exponerdi and the logarithm are
not built-in operations in many programming languages andhiat they are quite slow
to compute. So we tried to nd a polynomial approximation of 1 using Taylor series.

The rst step is to take the Taylor series ofe® at 0. We decided to stop the series at
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3.2. Aggregate Similarity

the eighth order.

1 1 1 1 1 1
1 2y2 33 4.4 55 6,,6 Ty 7 o) 8
+taxX+ za' X"+ zax"+ —a'Xx +_l a~X +—7 a X +—5 ax' + (X)

Then we have to take the Taylor series dh(1 + x) at 0. Here again stopped at

order eight.

X oxEk ¢ ot %xS %x6+ %x7+ O(x®)

Finally, substitute the x in the previous formula by the combination of the rst
one applied tos; and s,, divided by 2 and -1 ( because it was a development of
In(1 + x) and not In(x) ). The resulting two variable polynomial, of degree 49 is
relevant only up to degree seven as the two Taylor series weae order eight. Of
course this approximation has to be tested because these tagries are only relevant

around x = 0 and here we have values that are going up to 1.

We have tested with the degree 2 polynomial function:

1 1 1 1 1
APas(s1;$) = Zasi+ 2as;  Zasis+ 51+ 5 (3.4)
From this function with a = 1:5 we obtained a maximum deviation from the

original function of 0.02 (4.67%) for only the two extreme \Jaes and an average

deviation of 0.35% (See Figure 3.9).

As a variation of 0.02 for a similarity value will not change he interpretation of

the results, this approximation appears acceptable. The reapproximation would
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B 0,90-1,00
W 0,80-0,90
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Similarity 2
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Similarity 1

Figure 3.9: Approximation of the Aggregate Similarity

require a degree 4 polynomial as there are no degree 3 termsg &o the increased
computation time appears not to be worth the resulting gain (naximum deviation

of 0.69%, average deviation of 0.03% ).

The resulting degree 2 and 4 polynomials fa= 1.5 are the following:

3 3 1
AP 152(S1;92) = E(Si + S3) + éslsz + 5(51 + Sp) (3.5)

2

9 9 27
AP 154(S1;S2) = —=(S1+ S3)  —oo(SiS2 + S1S3) + =SS5

512 128 256 !

3 3 1
1_6(S§ + S5) + 53182 + é(sl + S) (3.6)

Intuitively, note that in both cases, reading these sums fira right to left, we
take the arithmetic mean ofs; and s,, add 3=8th of their product (while the geo-
metric mean is the square root of their product), and subtraca combination of their

squares. While the degree 2 polynomial uses this as the samily value, the degree 4
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3.3. Summary and Remarks

polynomial performs three further corrective additions/sbtractions on the arithmetic

mean.

3.3 Summary and Remarks

We have de ned the concept of bartering trees which constita a pair of trees, one for
the agent's o er and one for his/her seek. Then we de ned theggregate similarity.
This value, describing the similarity between two barterig pairs, is computed from
the similarity values of the rst o er with the second seek aml of the rst seek with
the second o er. We did not just use the arithmetic mean as wehink it is not giving
enough importance to low similarity values, which are morekiely to make the future
negotiation steps fail. Instead we found an exponential bed function. We nally

gave a polynomial approximation to prevent computation tine losses.

The weighting schema presented in this chapter to combine g¢htwo rst-level
similarity values could also be applied within the similaty algorithm. We are cur-
rently using the arithmetic mean to combine the recursivelgomputed similarities at
every inner node of the tree structure. We could replace tharithmetic mean by our
aggregation function (or its generalized form - see Sectinl.2) for the same reasons

we stated at the beginning of this chapter.
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CHAPTER 4

Tree Approximation in a
Multi-Dimensional Space

In this chapter we propose a representation approximatingre:labelled node-labelled
weighted trees in a multi-dimensional space. We de ne a falyiof representations
with less and less dimensions resulting in more coarse-ged approximations. We
then expose the Order Preserving Linear Hashing data-struce which provides us

with an e cient way of performing range queries in our multidmensional space.

4.1 Motivation

Many multi-dimensional data-structures and algorithms eist to e ciently handle

range queries and/or the nearest neighbours problem [26h dur system we want to
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4.1. Motivation

Root Root Root
Arc 1 Arc 1 Arc 1 Arc 2
* * * *
Arc Arc Arg Arc Arc Arc
1.1 1.1 1.2 1.1 12 2.1
* * * * * *
1 dimension 2 dimensions 3 dimensions

Figure 4.1: Family of Trees with an Ever Increasing Number ddimensions

use such algorithms to get the closest o er trees for a givereek (resp. the closest
seeks for a given o er) without having to sequentially compte their exact similarities.
As we will see in Chapter 5 this is the rst step of our algoritim: we want to limit the
similarity computations to trees that are likely to have a hgh similarity. In order to
use these e cient data structures and algorithms we need apeesentation of our trees
in a multi-dimensional space. Indeed this is the rst and mdsmportant requirement
for these data structures to be used. The problem is that, tleeetically, a tree has
an in nite number of dimensions (see Fig. 4.1). Even if we ragt ourselves to a
nite set of trees, we expect the number of dimensions to be adarge to be handled

e ciently.

Some work has been done on the problem of nearest neighbouarsighly multi-
dimensional spaces (e.g. [7]). However, as we are only iet&ed in this representation
for the early phase of our algorithm, an approximate repres&tion (that is to say,

not a bijective representation) with less dimensions, is stient here and will improve
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4.2. Tree Representation in a Multi-dimensional Space

the speed of our system.

4.2 Tree Representation in a Multi-dimensional

Space

We are now going to detail how to represent an arc-labelled de-labelled weighted
tree in a multi-dimensional space. The rst step is to de ne he subset of the set of
all possible arc-labelled node-labelled weighted trees wwrk with. Such subsetting
corresponds to constructing tree instances according to @t schema, as already
explored in AgentMatcher's eLearning application [11] anth Teclantic.ca. We will
assume that the set of trees we are working with has, for a giveet of arcs, a unique
set of corresponding inner nodes. That is to say that a giverrawill always come
from the same node, and will always go to the same node, excémtthe leaf level (see
De nition 4.2.1 and Figures 4.3, 4.4). The representation euld still work without
this restriction, but the number of dimensions would greayl increase. We will present
a solution in section 4.2.3 to deal with trees not from this $evithout increasing the
number of dimensions. Finally, this restriction may appeavery strict in theory, but
in practice it is very often the case that the structure of thdrees is more or less xed

with only the number of arcs and the leaves varying (e.g. Figa 4.2).

De nition 4.2.1 (path-to-node persistant trees) Let T be a set of trees such
that for all treesT; and T; 2 T if two arcs Ay 2 T; and A 2 T; have the same arc
label and are on corresponding paths from their respectivaots (in terms of arc labels
and node labels), then either they have the same child nodeeleor they point to a

leaf.
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4.2. Tree Representation in a Multi-dimensional Space

Figure 4.2. A Fixed Tree Structure for an Apartment Rental Paotal

4.2.1 De nition of the Multi-dimensional Space

We will now de ne the space, where our trees will be represeat by de ning the

corresponding base.

De nition 4.2.2  For all possible paths from a root to a leaf in the tree schemé& o
the set of treesT, we de ne a unary treeB;. This tree is the restriction of the tree
schema to this path with no value on the leaf and all weight$ &e1.0. Let B be the
set of allB;. B is the base for the seT in the k-dimensional spac& wherek is the

number of B;.

This is the rst base of our family. The one with the least appoximation. Indeed
we only have an approximation on the leaf level. If we want arxact representation,
we need to keep the information on the leaves. We will see ircien 4.2.3 how to deal
with this without increasing the number of dimensions. The ther bases are de ned

as follows:
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4.2. Tree Representation in a Multi-dimensional Space

Figure 4.3: Two Trees not in our Subset

Figure 4.4. Two Trees in our Subset

De nition 4.2.3 Let N be the maximum depth of a tree iB. For all n <N we
de ne B, as follows:8B,; 2 B,,; B, is the restriction of B; 2 B to the n rst levels.

S, is the correspondingk,-dimensional space, wittk, <K.

It is clear from this de nition that the number of dimensionsis going to decrease
with n as more and moreB,; are going to become equal. This will lead to a more
coarse-grained approximation while gaining some computah time. Examples are

illustrated in Figure 4.5.

30



4.2. Tree Representation in a Multi-dimensional Space

Figure 4.5: Examples of Corresponding Bases

Now that we have our bases, we must show how to represent a giveee of the

setT in S,. That is to say how to compute the coordinates of a tree in thedseB,.

4.2.2 Representation of the Trees

Given our bases of trees for our space, we can now compute tlo®rclinates of any
tree by taking the similarity value of each base tree with theorresponding subtree in
the original tree. Here, if some levels of the original tredracture have been ignored
(i.e. if nis not equal toN), two choices are possible. Either we restrict the subtre@t
the structure of the corresponding base tree, that is to sayememove any potential
subtrees that would appear beneath the leaf level of the basee. In this case we are
loosing some information but have more control on the represtation. Or we don't

restrict the subtree before passing it to the the similarityengine and we are more

precise but we loose control over the representation.

Indeed, ifn is the depth of a base tree, in the rst solution we know that whtever
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4.2. Tree Representation in a Multi-dimensional Space

the (n+1)-th level is, if the rst n levels of two trees are identical, they will have the
same representation. In the second case, two trees can haverdnt representations
even if the rst n levels are identical, but it is very di cult to tell how the re presenta-
tion will evolve. Two totally di erent trees at the ( n + 1)-th level can have the same
representation and two nearly equal trees can have a di erenne. The explanation
of this comes from the fact that the information we add here isnly the structure of
the (n + 1)-th level and not the values. So we are more precise but nmuse cautious

while interpreting the results.

Consequently, if we apply the similarity computation thei-th coordinate for a
given tree will be, in case of a one level tree base witly being the weight of the
corresponding arc in the original treet; the simplicity of a potential missing subtree

(or 1 otherwise) andA() the adjustment function

Xi = "2 A(t)

For a two level tree base we would have

xi = Mo A(MZE A(L))

The formula for recursively computed similaritiessy is

Xj = "M A(Sice1)

4.2.3 Keeping Information on Nodes and Leaves

The rst restriction made on our trees when computing their oordinates, that is to

say ignoring the node and leaf values, can be worked aroundhwaiut a great loss in
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4.2. Tree Representation in a Multi-dimensional Space

Figure 4.6: Examples of Coordinates for Di erent Base Depth

computation time. Indeed we ignored these values becauss,the current similarity
algorithm is de ned, there is no way to distinguish two di erent values from two
others: the similarity between two leaves is either 0 or 1. @sequently, we need to
have in order to get a unique representation in the space, asmtree for each possible
value. However, recent work on the algorithm [5] showed that some cases we could
compute a similarity ranging between 0 and 1 for two leaves lwsing a local similarity
measure. For example two price values or two dates. Conseqtg every time we
can compute such a local similarity between leaves we can jpabe information in
these leaves, without adding any dimension to the base. Alleahave to do is set the
base tree leaf value to a default value such as the mean val@ié iexists. This could

also be extended to inner nodes for identical arcs that lead ti erent node values.

Moreover, we can extend this principle to all nite sets of vlues. Indeed, some-
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4.3. Notion of Distance

times it may not be possible to compute easily a similarity he/een values. For
example, if we take towns, one could take the similarity be®en their population,
or their distance from one point or many other parameters. N@ of them would be
really accurate. One solution would be, if the set of possélalues is nite, to create
a table of values, incorporated into the system that will gig the \similarity" value

between every pair.

These methods will increase the precision in the computatioof the distance
without adding any dimension and thus computation time. Of ourse we will still

have the computation time of the local similarity.

4.3 Notion of Distance

The aim of this representation of queries is to perform rangeearches to make a rst
selection among all the possible choices. In other words, want to select all the
trees that are within a given distance of the query point. Wer@ now going to de ne

the distance between two trees in our multi-dimensional spe.

4.3.1 De nition

We de ne the square of the distance between two trees as foll® (n is the dimension

of the space). It is the usual Euclidean distance between twaints

iTuTg%= (i x)?
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4.3. Notion of Distance

Consequently for a one level tree base the expression of thetahce between two

trees becomes

. . Xowi+1 wo+ 1
jiTe Tajj% = —— Alt) =5

2
At
i=1 2

4.3.2 Behavior

If T, = T, then 8i;w; = wlandt; = t°% Consequently, all the terms in the sum

become null and the distance is 0, which is what we expectedsoch a case.

On the other hand, if T, and T, are very di erent, for most values ofi either t; or
t2 will be null (that is to say that most of the branches existingin the rst tree will
not exist in the second one and vice versa) and consequently those values of, one
of the terms of the subtraction will be null and the resultingterm will be of greater
importance. So we can see that the more di erent the two treeare, the greater is

their distance.

Of course when taking a base less deep than the real treessifiossible to have
a zero distance for trees that are not similar at all becausé lower levels that are not
taken into account. However, this does not matter, as suchdes will be discarded
very soon in the algorithm (see Chapter 5). The most importdrfact is that for high

similarity values the distance will be low, no matter the defh of the base.

This con rms the choice of our de nition of distance and, mosof all, of our
choice of tree representation in a nite space as this was thmain constraint. In
Chapter 7 we will discuss some test results of the distancesdathe corresponding

similarities supporting our choice.
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4.4. Order Preserving Linear Hashing

4.4 Order Preserving Linear Hashing

Order Preserving Linear Hashing (OPLH) is a variation of theLinear Hashing data
structure from Litwin [18] that handles range queries more @ently. We are going

to use this data-structure to retrieve trees in the rst phag of our algorithm.

4.4.1 Principle

The OPLH is a bucket based data-structure without directory It grows or shrinks
dynamically while data are being inserted or deleted. Eachqre of data is represented
by a key K. This key is generated by the inversed bit interleaving opation (see
Figure 4.7). Then the following hashing function is used toetermine which bucket

the data is to be stored in.

8

2 h(K)= K mod 2*' if h(K) < number of buckets

S (4.1)

h(K)= K mod 2" otherwise

The splitting process is controlled by a storage utilizatio factor. Over ow buck-

ets are assigned when a bucket is full.

4.4.2 Range Queries

Range queries are performed by visiting the buckets that iatsect with the query.

These buckets are found by splitting recursively the spacehile checking whether the
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Figure 4.7: Example of Inverse Bit Interleaving

current subspace is outside, inside, or intersecting witthe query.

In our algorithm, we de ne the query by a maximum distance (d@ed as in

Section 4.3.1) above which the trees must not be retrieved.

Then in the last phase of the query, we have to check the poinis the buckets
to keep only those below the maximum authorized distance. Wean also decide to
keep all the trees stored in the buckets that intersect withtte query. This will speed
up the selection process but will increase the number of tre¢hat will be selected.

Moreover, we loose some control on the selected trees.

4.5 Remarks

Depending on the system where our algorithm will be implemgsd, some vari-
ations of Linear Hashing and/or OPLH could be applied. Someaviations that
use a key vector instead of a single key are given in [16, 21].ZPhe choice of

the hash function according to the key distribution is discesed in [24]. This
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45. Remarks

requires knowledge of the latter but can improve performaecby ensuring a
better repartition among the buckets. Finally, the local oder preserving prop-
erty of OPLH is extended to global order preserving in [14]. Aat is to say that
not only points in the same buckets will be close to each othdsut also points

in adjacent buckets will not be too far apart.

This whole chapter is independent of our ring bartering syst and contains
results that can be used for other indexing purposes. For axale the retrieval

of categories of trees in the database with a single query.
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CHAPTER 5

Ring Bartering

In this chapter we describe our Ring Bartering algorithm. Werst make some prelim-
inary remarks before describing the notion of risk. Then werpceed to the description

of our algorithm before extending it to bartering tuples.

5.1 Preliminaries

In the rest of this chapter, we are going to assume, without $3 of generality, that we
will start from a seek. That is to say that the initial query will be made from a seek.

We will show later that starting from an o er will give the same results.

Except where mentioned otherwise, the labelling of the agenn this chapter are

relative to a given ring. For example Agent; is the rst agent in the current ring.
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5.1. Preliminaries

5.1.1 De nition of a Bartering Ring

De nition 5.1.1 (Bartering Ring) A bartering ring R, of lengthn is a succession
of n > 1 bartering agents, linked by their respective seek and o eiThe seek of an
agent is linked with the o er of the following one in the ring.The seek ofagent, is

linked with the o er of agent;.

Figure 5.1: A Bartering Ring

5.1.2 Generalized Aggregate Similarity

We have de ned in Chapter 3 the aggregate similarity for badring pairs as Equation
( 3.3). In that chapter we dealt with bilateral bartering which is a special case of a

bartering ring with n = 2. With bartering rings of size n we now extend this de nition
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5.2. Notion of Risk

to more than two similarity values in a natural manner. This g@neralized aggregate

similarity is the value that describes the similarities beween all consecutive seeks and

o ers in the ring:

GAggSim(sy;::isy) = gln —= (5.1)

5.2 Notion of Risk

When speaking about bartering, and making deal in generalheére is always a risk
that one participant in a potential deal will not agree with the terms of the deal.
Especially if what he/she would receive does not match veryell with what he/she

is seeking. Other reasons could interfere, such as a suddéarge of mind and a
nancial problem. The more participants in a trade, the morelikely such behavior is
going to happen. Consequently, giving risk measures as walthe similarity values of
potential deals is a valuable information that will allow ugrs to weigh the similarity
values that are given to them. Most importantly, this information will be key to

e cient pruning during the ring construction process (see 8ction 5.3).

5.2.1 De nition

There are two main aspects that can increase the risk of a deal
The number of participants in the deal
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5.2. Notion of Risk

The similarities between the corresponding seeks and o etsat are involved in

the deal.

Moreover, very low similarity values should have a great inget on the risk mea-
sure as a very low similarity value between a seek and an o em the ring is very
likely to make the whole trade collapse even if the generadid aggregate similarity
is high. A zero valued similarity somewhere in the ring shodlgive the value of one
to the risk value. Consequently, the harmonic mean, which the lowest of the usual
means seems a good choice. Of course we will have to make aiooity extension

at 0. Thus we propose the following formula as the risk measur

JAVaee]

if 99 n; s =0
Rn() =

\Y
N

n2 _n _  otherwise

i=1 sj

The rst term of the product handles the number of participarts and the second
one is the harmonic mean. The symbols represent the similarity values involved in
the ring: s; is the similarity between Seek and Offer ,, s, the one betweenSeek

and Offer 3, ..., S, the one betweerSeek, and Offer ;.

5.2.2 Requirement for the Ring Bartering Algorithm

One needed property for the risk function in order for our algrithm to be e cient
is that when adding more than one patrticipant to the current tade, no matter the
similarity values which we are going to have, the risk shoulde greater than if we had

added only one participant. This allows us to discard rings ere, after the addition
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5.2. Notion of Risk

of an agent, the value of the risk is too high. Indeed this pragty ensures that even
if we can improve the generalized aggregate similarity by dohg more agents in the
ring, the risk will still be too high (see Section 5.3). As welaays add an agent before

using this property we only needisk (Rn+x) >risk (Rn+1) 8k > 1.

Proposition 5.2.1 Given a ring R, with n agents. LetR . be the ringR, with k

more agents. TherBk > 1;risk (Rn+x) > risk (Rp+1).

Consequently, the following function has to be strictly ineeasing inp, wherep
is number of participants we add to the current deal. We havees their similarity
values to 1 as we know by de nition that this is the value for with the risk will be
minimal. So if the property is true for these values of the siiarities then it will be

true for all values:

N QO

if 99 n; s =0

1
Rn(p) =
" O L ”*—pl otherwise

n 11
i=l s

Consequently, the derivative inp of this function should be positive fromn = 2
and p = 1 as there will always be at least two participants in a curret deal when
trying to add further ones. For the following formulas we sirplify the expression by

setting:
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5.2. Notion of Risk

ntp 2

Rﬂ(p) = m

In() (n+p) (+ p+1)+ +1 nj:

Having this expression positive is the same as having theltaling one positive:

In() (n+p (+ p+1)+ +1 n

That is to say if we want a condition on

+1 n

N E ) (* oprD)

The problem is that we do not have much control on , which can g fromn 1
to the in nity. Hopefully the second term of the previous inguality is a decreasing

function of . Indeed its derivative (n is xed at this point) is:

(n+ p)?
(n+p? (+ p+1)2

Consequently, by taking the limit in at the in nity we can se t a condition on

that would to be true for all values of . Thus the condition on becomes:

1
n+p

In( )
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5.2. Notion of Risk

As we want our property to be true for at leastn = 2 and p = 1, then the nal

condition is:

es 071

5.2.3 Remarks

5.2.3.1 Generalized Aggregate Similarity and Risk

It is important to di erentiate clearly the risk value and th e generalized aggregate
similarity. The generalized aggregate similarity is a vakithat is computed only from
the consecutive similarity values of the ring. We must not ty to give more meaning
to this value than what it actually carries. It only tells that if this value is high, the
o er(s) and seek(s) in the ring must match each other well, cwersely for a low value.
It is a tool that can be used for the subsequent negotiation pise. On the other hand,
the risk value carries di erent information. It can be seen s the probability for the
deal not to happen. It is a rst step toward the negotiation piocess that is done

during the ring construction, as we will see in the next sedn.

5.2.3.2 Improvement of the Risk Estimate

We have taken into account two parameters for the risk calcation. However, it is
possible to add some extra information such as the relialtyli of the agents in the
ring. Indeed here we have supposed that every agent has thensaimpact on the
ring. But some agents might have a reputation of breaking desamore often and thus

should increase the risk when they appear in a ring.
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5.3. Ring Bartering Algorithm

5.3 Ring Bartering Algorithm

We now describe our algorithm. We start with an overall desgstion before going

further into details by explaining the di erent steps of the process.

5.3.1 Description of the Algorithm

The aim of our algorithm is to construct rings of agents whereach one will nd a
good match for what he/she is seeking. We want to avoid exhaug search as with
large databases the computation time would increase drasaily with the number
of agents in the ring. We use a risk function (see Section 5.8) perform e cient

pruning during the construction process. Another prunings made at the beginning

of each recursion by using the distance de ned in Chapter 4.

5.3.2 Details of the Algorithm

Our algorithm is a recursive procedure that has three main @ses:

The selection of closest o ers
The closure of the ring

The testing of the risk

Each recursion begins with a seek, the rst recursion begimyg with the querying

seek, and with a ag that controls the need for the third step.
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5.3. Ring Bartering Algorithm

5.3.2.1 The Selection of Closest O ers

The rst step of the recursion is to select which o ers the algrithm is going to work
with. It is the rst pruning step. Indeed, with huge databases, going through all the
possible o ers would be far too time consuming. Consequeyytiwe restrict ourselves
to a subset of all the possible o ers. This subset is composed the closest o ers
to the current seek according to the distance de ned in Chapt 4. Two options are
possible here, either we x a maximum distance beyond whichess are rejected, or
we X a maximum number of o ers. We have chosen the rst solubn as the second

one does not guarantee symmetry.

Then these o ers are sorted according to their similarity viues (the exact similar-
ity value) with the current seek. This allows the system to gk the third phase when
we have reached the maximum risk. Indeed, the only di erence two consecutive
third phases in the same recursion is the value of the similgy between the current
seek and the current o er. As the risk is a decreasing functioof the similarities, if
we lower one similarity value in the calculation, the risk wi increase. Consequently,
with sorted similarities we know that when we have reached éhmaximum risk with

one particular o er, the risk will be higher with the following o ers.

With this step, we reduce a great amount of computation time Y reducing the

similarity calculations to a small subset of the possible tal.

After this selection, the system goes into a loop over all theelected o ers, per-

forming the next two steps.
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5.3. Ring Bartering Algorithm

Figure 5.2: The Selection of Closest O ers

5.3.2.2 The Closure of the Ring

The second step of the recursion, the rst of the loop, is to ake the current ring. The
ring currently starts from the original seek and ends with tke o er selected during

the previous step.

Thus to close the ring we need to get the similarity between #thseek of the last
added agent and the o er of the very rst agent in the ring. Hovever, if we return
the ring like this, we lose the symmetry of the algorithm. Inded, at every step, we
restrict the o ers to those within the distanceD o« Of the current seek. Consequently,
we must do the same here and test the distance between the Iasiek and the o er
of the rst agent. If this distance is aboveD o, the ring must be rejected in order

to keep symmetry.

Finally, as we close the ring, we must compute the generaliz@ggregate simi-
larity and the nal risk value to be reported to the user if it is below the maximum

authorized risk.
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5.3. Ring Bartering Algorithm

Figure 5.3: The Closure of the Ring

5.3.2.3 The Testing of the Risk

The last step of the loop is the most important. It tells whetter the algorithm should
continue further in the recursion or not. This step is basedrothe risk function.
We calculate the risk of the current ring where we have addedchddeal agent (see

De nition 5.3.1) and compare this value toRax .

If the risk is above the maximum value, we know that adding mar agents to
the ring will leave the risk above this maximum. This result§rom Proposition 5.2.1.
Consequently, we do not need to go further. Moreover, as theecs selected in step
one are sorted according to their similarities, we don't neleto perform this test again

for this recursion. We thus inform the system by changing thealue of the ag.

If the risk is below Ry, We can create a ring with another agent that might
improve the generalized aggregate similarity of the wholéng while remaining below
the maximum risk. Consequently, we recursively call the poedure with the seek of

the last added agent.
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5.3. Ring Bartering Algorithm

De nition 5.3.1 (Ideal Agent) An agenf in a ring is called ideal if the similarity
value of his/her o er with agent k-1 seek and the similarityalue of his/her seek with

agent k+1 o er are both equal to 1.

Figure 5.4: An Ideal Agent

Figure 5.5: The Testing of the Risk
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5.3. Ring Bartering Algorithm

5.3.2.4 Overall Algorithm

Figure 5.6 shows the overall algorithm. The rst call is madeavith the current ring
containing only the querying seek. We can see that the two gt® from the loop are

independent.

Figure 5.6: The Ring Bartering Algorithm
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5.3. Ring Bartering Algorithm

5.3.3 Properties of the Algorithm

De nition 5.3.2 (acceptable ring) A ring is called Do/ Rmax acceptable if:

Condition 1. The distance between a seek and the o er of thext@gent is below

Dmax .

Condition 2. The risk is belowR yax -

Our algorithm veri es the following soundness and completeess properties.

Property 5.3.1 (soundness) All rings reported by the algorithm areD yax/ Rmax

acceptable.

The proof of the rst condition is immediate as we only consier o ers that are
within a given distance. The second condition in order to bB ./ Rmax acceptable

results directly from the testing during the closure phase.

Property 5.3.2 (completeness)  All the rings starting from an Agent; of the agent
database that areD ./ Rmax acceptable will be reported by the algorithm called with

Agent; as argument.

Proof: Let R, be a ring ofn agents that areD ./ Rmax acceptable. From its rst
condition, we know that if we start a recursion with the rst k agents ofR,,, the

(k + 1)-th agent's o er will be selected in the rst step of the recursion.

Now we have to show that the recursion will continue with the + 1)-th agent's

seek. The pursuit of the recursion is dictated by the risk fustion. After having
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5.3. Ring Bartering Algorithm

selectedOffer .+, an ideal agent is added to the ring and the risk is calculated.
However by hypothesis we know that the risk dR , is below the maximum authorized
risk. Thus we know that the risk of a ringRigeas cOmposed of thek + 1 rst agent of
R,andn k 1 ideal agents will be belowR ., as the risk is a decreasing function
of the similarity values. Finally according to Proposition5.2.1 we know that the risk
of the current ring with an ideal agent will be below the risk bR igea and thus below

Rmax - Consequently the recursion will continue and the propertys true.

Based on the two properties above we state the following thesmm.

Theorem 5.3.1 Arring starting from an Agent; of the agent database will be reported
by the algorithm, called withAgent; as argument, if and only if it iS Dmax/ Rmax

acceptable.

Corollary 5.3.1 Suppose a ring is reported by the algorithm when starting Wit
given agent. This ring, except for the labelling of the agsnwill be also reported if

we start the algorithm with any of the other agents in the ring

Proof: Let R be a ring reported by the algorithm starting with Agent; and j;k 2
1::m where m is the number of agents in the database. This ring sats the two
conditions of Theorem 5.3.1. If we start the algorithm with a Agenty of R, all
rings that satisfy the conditions of Theorem 5.3.1 and whicltart with Agent, will
be reported. The ringR® composed of all the agents oR in the same order but
starting with Agent, obviously shares the same risk value & and has the same
set of similarity values between the consecutive o ers ancesks. ConsequentlyR°

satis es the conditions of Theorem 5.3.1 and will be reporte
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5.4 Extended Algorithm for Bartering Tuples

With bartering pairs there is a strong restriction: we have @ assign, to each o er of
a user, one seek. However, a user might have two o ers and owlyge seek or might
not want to bind his/her seeks and o ers to each other. This agdd be handled by
declaring several bartering pairs. Note that, by allowing tie algorithm to handle

tuples instead of pairs, we can avoid storing extra informain in the database.

Figure 5.7. A Bartering Tuple Replacing 3 Bartering Pairs

5.4.1 The Closure of the Ring

The rst phase which needs changes is the closure of the ringndeed, now we

have many potential seeks that correspond to each selecte@roof the rst phase.
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5.4. Extended Algorithm for Bartering Tuples

Consequently, we have to try every seek in the tuple before queeding further on.

And for each of these seeks we have to test every o er of the quieg agent.

Figure 5.8: The Modi ed Closure of the Ring for Bartering Tupes

5.4.2 The Testing of the Risk

The testing by itself does not need any changes. Indeed, whaading the ideal agent
before computing the risk, we do not care about the last non é&l seek in the ring

because by de nition of the ideal agent, the similarity withits o er will be 1.

However, when we have to continue the recursion, we must reése on every seek

of the tuples.

55



5.5. Discussion

Figure 5.9: The Modi ed Testing of the Risk for Bartering Tupes

5.5 Discussion

5.5.1 Limitations

When returning rings, our algorithm does not take into accaat previously computed
rings (either by a previous call of the algorithm with anothe agent or within the
same call). One consequence is that agents can be part of npl# rings which may

not be compatible together. See Section 8.2.1 for more ddsaabout this issue.

5.5.2 Case of Small Databases

In the case of small databases, we can improve the accuracytd results by replacing
the distance by the real similarity value as it is possible teompute every similarity
value before running the algorithm. That is to say that we do at need the OPLH
and the tree representation anymore. We just compute everynslarity value with

the current project before running the algorithm, and whenelecting the closest o ers
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5.5. Discussion

(resp. seek) to the current seek (resp. o er) we take the clest one according to the

similarity.

5.5.3 Storing similarity values

To avoid computing many times the same similarity values, t system has to store
them on the y each time a new value is computed. Of course, irase of a modi cation

of a tree, these values have to be reset.

5.5.4 Bidirectional Search

In all previous sections, we have assumed that the startingopt of our algorithm
is a seek. Instead, starting with an o er will not change the lgorithm, we only
need to replace seek by o er, and conversely, everywhere hmetalgorithm. To allow
both, the system just has to remember from where the procesashstarted and act
correspondingly. With the same kind of proof as for Theorem%.1 we can show that

going from the o er direction will not provide di erent results.

Consequently, a bidirectional search, will not provide bétr results. One use
of bidirectional search could be to parallelize the computian by starting in both
directions at the same time. However, this would raise a prédm as it would be
di cult to nd a meeting point. One possible way to paralleli ze the algorithm would
be to wait for the rst recursions to occur and distribute these recursions among the

processors/computers.
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5.5.5 Multiple calls

In all previous sections, we have always consider that ourgalrithm was focusing on
one particular agent. In order to get all possibld ./ Rmax acceptable rings for a

given set of agents, the algorithm must be called with each et as a starting point.

5.5.6 Complexity

The complexity of our algorithm is discussed in Section 7.3.
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CHAPTER 6

An Application: Teclantic.ca

In order to test our system, we decided to implement it on the 8clantic.ca portal.
In this chapter we describe the portal before explaining sarspeci cs and choices of

the implementation. The results of the testing are given in Gapter 7.

6.1 Description of Teclantic.ca

Teclantic.ca is a technology transfer portal for the reseehn area in the Atlantic
Canadian region. The portal is using the AgentMatcher Treeimilarity algorithm

[1, 5, 4, 32] to provide the user with the opportunity to contat other users having
similar projects. It is a match-making portal where the negmtion phase is left to

the user by means of an internal message service.
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6.2. Details of Teclantic.ca for the Bartering System

One key di erence to most other match-making portals is the mighting scheme
which allows the user to give more or less importance to the éient partonomic and

taxonomic branches of his/her project.

Extending this portal to bartering and ring bartering will enhance further the

possibilities given to the user for facilitating collabortive work in the research area.

6.2 Details of Teclantic.ca for the Bartering Sys-
tem

In order to understand fully the next chapter, it is requiredthat we review some

speci cs of Teclantic.ca that have a direct in uence on our lgorithm.

6.2.1 Bartering Tuples

Teclantic.ca deals with research projects. Bartering pairin the research area is not

really judicious. Indeed in most cases the following situ@ns are going to occur:

A user has only project o ers ( e.g. a research group lookingrffunding ).

A user has only projects seeks ( e.g. a venture capitalist kewy for technologies
).

A user has both o ers and seeks but not the same number of each.

Consequently, we have to implement a system that will deal i the two rst

cases as well as the third one. The two rst cases are easy tkéacare of. We only
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6.2. Details of Teclantic.ca for the Bartering System

need to test whether the project has at least a correspondirger (resp. seek) or not,
and run the actual similarity algorithm or the ring bartering algorithm accordingly.
The third case requires the use of the Extended Algorithm faBartering Tuples (see
Section 5.4). Moreover, with this extended algorithm, evgro er (resp. seek) of
a user can form a potential bartering pair with any seek (respo er) of this user.
We consequently remove the arti cial binding between a us@ro ers and seeks that
would be required with bartering pairs and which does not amgar very meaningful

in the research area.

Finally, some projects may have an o er and a seek at the samane. Indeed
a research group may be willing to start a collaborative workvith another group

working in the same area.

6.2.2 Tree Representation

In Teclantic.ca, the trees are separated in two parts. The st part has xed arcs,
nodes and weights. Only the leaves are varying. It describ#®e general information
about the project. The weight of this subtree is 0.3. The send part is the description
of the areas of the project. The nodes and leaves are empty aheé possible arc-labels
are from a given set. This subtree is a two-level tree, eachvé corresponding to a

level of the taxonomy (see Figure 6.1).

To represent these trees in a multi-dimensional space we amely going to focus
on the taxonomy part of the tree as we would need to go to the [ekevel to get some
information on the general information part. Also we will rstrict the base of trees
to one-level trees. As the taxonomy is quite important we wdd have far too many

dimensions with two-level trees. With one-level trees we rabdy have 29 possible
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Figure 6.1: The Taxonomy Part of a Project Tree in Teclantica
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6.2. Details of Teclantic.ca for the Bartering System

arc-labels and consequently 29 dimensions in our space. g 6.2 shows the values

of the corresponding 29 coordinate{ to x,g) for a sample tree.

Figure 6.2: An example of Tree with its Representation

As we can see in the previous example, most of the coordinata® 0. This is
why we must not have too many dimensions in our space, as theligmg process
of linear hashing will never reach the last coordinates if thhnumber of dimensions is
too high. Already with 29 it is not likely that a split on the last dimension will ever

occur. We are going to further explain this problem in the nexsection.

6.2.3 Order Preserving Linear Hashing

One peculiarity of the Teclantic.ca trees is that many of theoordinates of a tree in
the multi-dimensional space are going to be 0. Indeed it is nbkely that a project
will be classi ed under more than two or three main taxonomy ategory items. With
such a small amount of data the division of space is only on thest few coordinates.

Consequently, many projects are going to be in the same buthsecause these rst
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Figure 6.3: The Repartitioning of the Trees in the Buckets

few coordinates are going to be null (see Figure 6.3). Thislislow down the range
query process as the system will have to check many trees aftetrieving them from

the buckets. In a worst case scenario, all the projects areigg to be in the same
bucket and the range query function will have to check all ofiem to see if they are
within the querying distance. Nonetheless, this will stillbe faster than computing

every similarity value.

However, it is possible to arti cially work around this prodem by increasing the
number of buckets. Indeed we can start with an OPLH of high l&y which will allow
a better repartition in the buckets. Or, we can decrease thaéze of the buckets to
speed up the splitting process. Still, it will also slow dowthe range querying process
by forcing more and more intersection checks between subspa and the query and

also more bucket retrievals.

Another solution, would be to perform a multiple OPLH. That is to say that,

instead of storing all points in bucket 0 as they are, we coula-hash them, starting
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6.2. Details of Teclantic.ca for the Bartering System

from another coordinate, and store them in another OPLH. Foexample we have 29
dimensions in Teclantic: we could have 2 level 10 and one Ie@OPLH. It would
only increase the number of buckets by a factor of 3 instead béving 22° buckets if

we wanted to retain a single level 29 OPLH.

However, as long as Teclantic is not dealing with a great amouof data, we can

replace the distance by the real similarity value, as expa$en Section 5.5.2.
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CHAPTER 7

Computational Results

We now present computational test results of our system. Onmust keep in mind
that the results are dependant on the kind of data we are dealy with. We will
rst present some results on the in uence of the distance, #n we will discuss the

in uence of the risk before showing the outcomes of compuian time testings.

All the tests, except when mentioned otherwise, are done Wit2- and 3-agent

rings.

7.1 Inuence of the Distance

Two main aspects must be tested for the distance. First, thedhavior of the distance

against the similarity. This is to justify our choice of disance. And secondly, the
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resulting pruning in order to check whether we only loose rgs with low aggregate

similarity when lowering the maximum distance.

7.1.1 Distance Behavior

Figure 7.1:. Behavior of the distance against the similarity

We have computed 195 distance and similarity value pairs otal Teclantic.ca
data. The results show that the distance behaves in the inv& way as the similarity,
as we expected. The most important observation is that for gh similarities the
distance is low. Because if we had some high similarities tvihigh distances, this

would mean that we would miss some potential trees that coulde acceptable for a
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7.1. Inuence of the Distance

ring computation. The opposite phenomenon is of less imparice, as a low distance
with low similarity is going to be discarded very fast in the &gorithm. We cannot
help this to happen as we restrict ourselves to one-level leagees to represent our
trees. Indeed two trees can be totally similar on the rst legl and di er completely

underneath, consequently resulting in a low similarity vale (see Figure 7.2).

Figure 7.2: Two Trees with Low Similarity and Zero Distance

7.1.2 Distance In uence on the Resulting Rings

The data set used here was real Teclantic.ca data, chosen &present every case.
That is to say that we have some very close projects as well asme completely
di erent ones. We used 25 projects that were o ers and seeksthe same time. That

corresponds to a maximum of 625 rings.

The values used for the distances are to be taken with cautioithey are strongly
dependent on the system. Indeed, the more dimensions thereean a space, the
greater the maximum distance can be. Moreover, depending dne depth of the

base, the values that the coordinates can take will changegditly. That is to say
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Dmax | Minimum Maximum Number of | Highest Number
Aggregate Aggregate Rings Re- | Missing of High-
Similarity Similarity ported Ring est non

Missing
Rings

1 0.34 0.86 625 0 625

25 |0.35 0.86 407 0,62 29

2 0.42 0.86 84 0.62 28

15 042 0.86 44 0.67 18

1 0.72 0.86 9 0.72 8

Table 7.1: In uence of the Distance

that coordinates will not always go from 0 to 1. Consequentlyt is mandatory to
test the system in its earlier phases of development in ordéo choose the right
distance parameter. One approach is to rst implement the stem without using
the distance, as with small databases (see. Section 5.5.2jil gathering information
on the distance values. And then, when the database becomeagder, one will have

enough information on the distance to choose the parameteissly.

Finally, for the entire sequence of testsR,ax was set to 1 so that it would not

in uence the results.

From Table 7.1 we can see that by lowering the distance, we imgve the results
by pruning most of the rings with a low aggregate similarity.In the meantime, we
keep most of the high similarity rings. In the last test, we ca see that on the 9 rings

reported, we have kept the 8 best ones.
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7.2. Risk Inuence on the Resulting Rings
Rmax | Minimum Maximum Number of | Highest Number
Aggregate Aggregate Rings Re- | Missing of High-
Similarity Similarity ported Ring est non
Missing
Rings
1 (034 0.86 625 0 625
09 |0.34 0.86 625 0 625
0.8 | 0.34 0.86 625 0 625
0.7 | 0.34 0.86 501 0.44 397
06 |04 0.86 93 0.57 74
0.5 | 052 0.86 18 0.69 13
0.4 | 0.65 0.86 6 0.78 4
0.3 | 0.72 0.85 3 0.86 0
0.2 | 0.84 0.85 2 0.86 0
01 |0 0 0 0.86 0
0O |0 0 0 0.86 0
Table 7.2: In uence of the Risk on Teclantic.ca Data
7.2 RIisk Inuence on the Resulting Rings

We performed here two series of tests. One with the same da&t as in the previous
section. The other with random similarity values. It was notrelevant to perform the
previous tests on the distance with random similarity valug Indeed, the distance
is linked with the similarity but is not the result of a computation implying the
similarity values. If we had used random similarity valuesn the previous section,
we would have lost the correlation between the distance antié similarity. On the
contrary, the risk is directly computed from the similarity values and having random
data will not change the correlation. For both tests,Dh.x was set tol so that it

would not interfere with the results.

Most of the results in Tables 7.2 and 7.3 are satisfactory. Bhpruning is mostly
done on the bottom aggregate similarity values and we keep stoof the top rings,

even with low risk values. In both cases, from a risk of 0.3 wedse the best ring
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7.3. Computation Times

Rmax | Minimum Maximum Number of | Highest Number
Aggregate Aggregate Rings Re- | Missing of High-
Similarity Similarity ported Ring est non

Missing
Rings
1 0.02 0.89 625 0 625
09 |0.11 0.89 499 0.47 248
0.8 | 0.21 0.89 372 0.5 216
0.7 | 0.38 0.89 225 0.55 164
0.6 | 0.43 0.89 134 0.62 104
05 | 051 0.89 42 0.7 34
0.4 |0.61 0.89 11 0.81 7
0.3 |0.71 0.89 6 0.88 2
0.2 |1 0.82 0.89 5 0.88 2
01 |0 0 0 0.89 0
0O |0 0 0 0.89 0

Table 7.3: In uence of the Risk with Random Similarity Values

(according to the aggregate similarity). This is not alarmmg. Indeed the risk value
re ects more the low similarities in the ring than the aggregte similarity. That is
to say that if a similarity value is low and the others high, tke risk will be more

in uenced than the aggregate similarity.

7.3 Computation Times

7.3.1 Theoretical Results

Giving an exact time complexity for our algorithm is not an eay task. Indeed as the
computation time depends on the repartition of the data (i.ethe di erent similarity
values), Dnax and Rpax it is hardly possible to provide a general formula. However

we can still give some information on the algorithm's behaor.
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7.3. Computation Times

For one recursion step, the time complexity is the following
TC=TCse+p [TCy+ TCiisk + i+1TCiua] (7.1)

T Cse Is the time for the selection of the closest o ers. As we are ing OPLH, this
time is in O(p)

TC, is the time for the closure of the ring.

T Ciisk Is the time for the testing of the risk without the recursion f any.

p is the number of o ers selected in the selection step. It is gendent of D« . FOr
all of the following we will assume thatp is constant (i.e. that the data is uniformly
distributed in the space)

i+1 IS the number of rings we will perform recursion on. It is depelent on Ry ax -

As TCy and TC,isx are constant we will set =1+ TCy + TCisx . We are now

going to detail three cases.

First is the worst case scenario. In this case, it is like if npruning was done
at all and the algorithm performs an exhaustive search. Thisase should never
happen if Dnax and Rpax are set correctly. In this case the time complexity
would be, if we force the algorithm to stop after 4 agents rirgwith N being

the number of records in the database:
T Cuorse = O N (7.2)

The second scenario is the ideal scenario in terms of time qaexity. The

algorithm will not select any o er tree in the rst step and will exit. The time
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7.3. Computation Times

complexity is obviously inO(1).

Finally for a more general scenario we will start from Equatin ( 7.1) withi =0

and will nd a global formula by induction.

TCO TCseI + p [T Ccl + TCrisk + 1T Cl]

O(p+p [ 1+ 4TC))

O(p +p 1TCy)

O(pP +p 1 +p 2TC))
O(p +p* 1 +p* 1 2TCy)

(7.3)

O(p +p* 1 +p* 1210 +p 3TG)
O(p +p* 1 +p° 12 +p° 1 2 3TG)

From this we can show by induction that the general result ishte following, 1

being equal to O:

T (7.4)

Of course in practise, as shown in Table 7.5, from= 7 all ; will be null. With

well parameterizedRax it Will probably be from i = 5.

If we want a formula depending orN, we have to expresp as a percentage of
N and make some hypothesis on the;. We will assume thatp is 1% ofN.
Then we will assume that ; is 90% ofp and that we divide the amount by 2
every time we increase. And from i = 5 we will assume that the algorithm

will not perform any more recursion.
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7.3. Computation Times

Xt N 0:009

TC=0 | (N oo1) 1 1 (7.5)

7.3.2 Experimental Results

We now show some results on the computation time for our algthrm. The tests
have been done with randomly generated data, not with real Téantic.ca data, as we
wanted to have 1000 projects. One consequence is that prajeees are more spread
in the multi-dimensional space and consequently it is notlely that two projects will
be very close to each other as the space is very big (29 dimens). This is why the

Dmax Values used di ers from the ones of Section 7.1.

As the database was not on the same computer as the Tomcat samvthe com-
puters were linked by a WiFi connection: the durations repaed are thus slightly

higher than what they should be.

The amount of time gained by lowering both parameters is rdglimportant. As
the two parameters have a di erent in uence on the algorithm the amount of time
gained by lowering one or the other parameter is not regulaindeed by lowering the
risk without lowering the distance for example, we discard any rings and thus have
less rings to report, but we still try many trees which takes ot of time. An extreme
case would be, if we don't limit the number of agents in the rig, a very low D pax
but with a Rmax Of 1. In this con guration, no matter the distance (except wken
coming very close to zero so that no tree will be in range), tha@gorithm will keep
adding agents to the ring as long as there is an agent in the @dtase within range

and not already in the ring. With huge databases this could eeh the system limits.
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7.3. Computation Times

Rmax | Dmax | Computation time (ms) Number of Rings Reported
1 2.69 41226 116
2.53 17997 45
2.42 16435 30
231 6589 7
2.20 1138 2
0.8 | 2.69 33970 59
2.53 15626 33
2.42 13135 21
2.31 6606 7
2.20 1306 2
0.6 | 2.69 23851 43
2.53 15853 24
2.42 14681 19
231 6508 7
2.20 1174 2
04 | 2.69 16027 14
2.53 10208 11
2.42 9549 11
2.31 2768 7
2.20 1359 2

Table 7.4: Computation Times

In this sequence of tests, the ring was limited to 3 agents: wowve are going to test
our system without any limit to the number of agents, with a xed Do« 0Of 2.42 and
a varying Rnax to show its action on the computation time by limiting the nunber

of agents in the rings.

As expected, the size of the ring and, in parallel, the compation time, decrease
with the risk. The biggest rings are six-agent rings. This add be raised by lowering
the parameter in the risk computation. However it is not judicious as 4-ag# rings

are a realistic limit above which it would be di cult to actua lly perform the deal.

Finally, we did a last test without any pruning, that is to say we performed

exhaustive search, to show how bad the situation would be \libut our work on the
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7.3. Computation Times

Rmax | Computation time Number of Rings Biggest Ring
(ms) Reported
0.9 | 54972 67 6
0.8 | 38887 42 5
0.7 | 33601 32 4
0.6 | 22311 21 4
0.5 | 15540 15 3
0.4 | 9064 11 3
0.3 | 1576 5 2

Table 7.5: Computation Times and Size of the Rings

Maximum authorized size of the

Computation time (ms)

Ring

2 538

3 3252

4 41520
5 249973

risk and the distance. We worked with only 10 projects (whickvere o ers and seeks
at the same time). Table 7.6 shows the results. When the sizétbe ring is increased,
the computation time becomes really bad very fast, and this itth very few projects

to work with. This gives us the con rmation of what we had staed at the beginning

Table 7.6: Computation Times without Pruning

and justi es our work on this problem.
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CHAPTER 8

Conclusion

8.1 Contributions

We have presented an algorithm to extend the usual buyer/det scenario to, rst,
bartering and, then, to ring bartering allowing several agds to take part in the same
trade. By representing the weighted trees in a multi-dimemnsnal space, we allowed
an e cient pruning to be done in the early phase of our algoribm by using the notion
of distance instead of the similarity. Then we introduced th risk to limit the ring

construction process and to restrain the results to viablangs.

The buyer/seller scenario, even if widespread among web pais, nds its limits
when dealing, for example, with knowledge that is di cult to quantify with

money. Bilateral bartering allows to handle naturally and asily any kind of
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8.1. Contributions

\goods". To rate a potential deal, we introduced the aggreda similarity value
of two pairs of trees. By using the weighted tree similarity lgorithm we allow

user to specify detailed queries both on the o ering and theegking side.

By de nition the buyer/seller scenario is a two sided deal. Kifting to barter-
ing allows more sides to be part of the same trade thus incréag the global
satisfaction of each party. We developed a ring bartering gbrithm which gives
the user 2- ton-agent deals. These rings are rated according to a naturally

generalized aggregate similarity value.

As we allow n-agents deals, we developed two pruning technég to avoid ex-

haustive search which would cause drastic performance less

We rst used an approximate representation of the weightedrees in a multi-
dimensional space and de ned the distance between two trees this space.
Thanks to certain e cient data-structures such as the OPLH ve can perform
e cient pruning in the rst phase of our algorithm by testing only the trees

closest to the current one.

Then, we introduced the risk of a ring which is a measure of haikely the deal
is not going to happen. This value based on the number of agemas well as
the similarity values of the ring allows a second pruning pls and prevents the

algorithm from adding agents in nitely.

Finally, we proved Theorem 5.3.1 and its Corollary to verifythe correctness of

our algorithm.
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8.2. Future Work

8.2 Future Work

8.2.1 Pairing

One major area in continuation of our work is the pairing prolem. Currently our

algorithm returns rings regardless of the availability ofhe agents involved. That is to
say that an agent can be involved in many rings. Of course thagent will not be able
to perform all the deals where his/her name appears. Consenly, the natural next

step to our system would be a pairing algorithm that would tryto create the best
combination of rings implying every agent in the virtual maket place so that everyone
would be part of exactly one deal. For this another measure winl be needed, an
equivalent to the aggregate similarity but for the entire maket place. And the system
would have to maximize this value. As this problem is close tihe traveling salesman
problem, the time complexity for an exact solution will prolably be very high and an

approximate algorithm would probably be needed to make it @ctical.

8.2.2 Local Similarity

As mentioned in section 4.2.3, the use of local similarity msures on nodes and leaves,
as developed in [4], can greatly improve our tree represetitan in a multi-dimensional
space. For example, in our Teclantic.ca portal we could addhé¢ general information

part of the tree without adding too much dimensions.
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APPENDIX A

Teclantic Data Sample

The following XML tree is a RuleML Object Oriented represerdtion of the Agent-

Matcher project in the Teclantic.ca portal.

<cterm>
<_opc>
<ctor>Project</ctor>
</_opc>
<_slot name="title" weight="0.05" >
<ind>AgentMatcher</ind >
</_slot>

<_slot name="bSeek" weight="0.0" >
<ind>2</ind>

</_slot>

<_slot name="numpeople" weight="0.05" >
<ind>6</ind>

</_slot>

<_slot name="namepeople" weight="0.0" >
<ind />

</_slot>

<_slot name="website" weight="0.05" >
<ind>http://agentmatcher.cs.unb.ca</ind>

</_slot>
<_slot name="copyright" weight="0.0" >
<ind />
</_slot>
<_slot name="description" weight="0.05" >
<ind>The AgentMatcher project is a project to develop a set o f tools

used in creating systems used for comparison. The main sub
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projects are the *LomGen* tool, which is used to automatical ly
generate a LOM tree, which is used for comparison, and the *
Weighted Tree Similarity* algorithm used to calculate the

similarity of two trees.</ind>

</_slot>
<_slot name="location_country" weight="0.05" >
<cterm>
<_opc>
<ctor>Canada</ctor>
</_opc>
<_slot name="province" weight="1.0" >
<cterm>
<_opc>
<ctor>New Brunswic</ctor>
</_opc>
<_slot name="city" weight="1.0" >
<ind>Fredericton </ind>
</_slot>
</cterm>
</_slot>
</cterm>
</_slot>

<_slot name="start_date" weight="0.05" >

<ind handler= "date" >Jan 1, 2003</ind>
</_slot>
<_slot name="end_date" weight="0.05" >

<ind handler= "date" >Dec 31, 2004</ind>

</_slot>
<_slot name="classification" weight="0.7" >
<cterm>
<_opc>
<ctor>DC</ctor>
</_opc>
<_slot name="100200" weight="0.6923077" >
<cterm>
<_0pc>
<ctor>DC</ctor>
</_opc>
<_slot name="100202" weight="0.4375" >
<ind>DC</ind>
</_slot>
<_slot name="100207" weight="0.4375" >
<ind>DC</ind>
</_slot>
<_slot name="100201" weight="0.125" >
<ind>DC</ind>
</_slot>
</cterm>
</_slot>
<_slot name="100600" weight="0.15384616" >
<cterm>
<_opc>
<ctor>DC</ctor>
</_opc>
<_slot name="100602" weight="1.0" >
<ind>DC</ind>
</_slot>
</cterm>
</_slot>
<_slot name="100100" weight="0.15384616" >
<cterm>
<_0pC>
<ctor>DC</ctor>
</_opc>
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<_slot name="100108" weight="1.0" >
<ind>DC</ind>
</_slot>
</cterm>
</_slot>
</cterm>
</_slot>
</cterm>

86



Candidate's full name:

VITA

Sbastien Stephen Pierre Mathieu

Place and date of birth: Reims, France

Universities:

March 05, 1983

2002 - 2005
Ecole nationale sugerieure des Mines
Saint-Etienne, France

2004 - 2005
University of New Brunswick
Fredericton, Canada



