
Introduction to C

CS2023 Winter 2004

Outcomes: Introduction to C

� After the conclusion of this section you should be
able to

� Recognize the sections of a C program

� Describe the compile and link process

� Compile and run C programs

� Explain the difference between text and binary files

� Explain the difference between reading from standard
input and reading from a file

� Follow the C language coding standard for CS2023

� Begin to appreciate the importance of good
programming style

Text Files

� Text files are line-oriented (unlike binary files)

� 32,767 as a text file:

� 32,767 as a binary file:

� End-of-line terminator:

� Windows: carriage return + linefeed

� Mac: carriage return

� UNIX: linefeed

00110011 00110010 00110111 00110010 00110111

01111111 11111111

From source file to runnable program

Text
Editor

Source
File

Compiler

Linker

Object
Module

Runnable
Program

Library Routines

program.c program.o

program

Portability, Efficiency, and
Correctness

� C object code runs only on target machine

� However, it is possible (and desirable!) to write
portable C source code

� First make sure your program is correct, then
optimize if necessary

� Design for change

Comparison of C and Java

� Primitive data types: character, integer, and real

� In C, they are of different sizes

� there is no Unicode 16-bit character set

� Structured data types: arrays, structures and unions.

� In C, arrays are static

� there are no classes

� Control structures are similar

� Functions are similar

Comparison of C and Java

� Java references are called pointers in C.

� Java constructs missing in C:
packages
threads
exception handling
garbage collection
standard Graphical User Interface (GUI)
built-in definition of a string
standard support for networking
support for program safety.

Two Simple Programs
/* Output all of input on one line */

#include <stdio.h>

int main()
{
 int c;

 while((c = getchar()) != EOF){
 if(c != '\n') putchar(c);
 }
 putchar('\n');
 return 0;
}

Two Simple Programs
/* Output all of file “name” on one line */

#include <stdio.h>

int main()
{
 int c;
 FILE *f;

 f = fopen("name", "r");

 while((c = getc(f)) != EOF){
 if(c != '\n') putchar(c);
 }
 putchar('\n');
 fclose(f);
 return 0;
}

How do these programs
differ?

Source File Organization
/* krfind.c: print lines that match pattern from first
 * argument in file given by second argument
 * Author: Eric Aubanel
 * Date: September 13, 2002
 * Based on Kernighan & Ritchie, The C Programming
 * Language, 2nd edition P. 116
 */
#include <stdio.h>
#include <string.h>

#define MAXLINE 1000

FILE *inFile;

/* getline: get line from inFile into line[], return
length */
int getline(char line[], int max);

Language Coding Standard: Source
Code Organization

� File Documentation

 the first item in a source file should be a comment
block identifying the name of the file, its author and
what functionality the code provides. Each individual
function within the file should also have a comment
block naming the function and the functionality it
provides.

� Preprocessor Information: #define MAXLINE 1000

 list the header files that are needed, followed by the
preprocessor macros. Preprocessor macro names should
use capital letters only.

Language Coding Standard: Source
Code Organization

	 Type definitions

 programmer-defined data types, using the C keyword
typedef

	 Global variables (use sparingly!): FILE *inFile;

	 Function Prototypes:
int getline(char line[], int max);

 prototypes for all programmer-defined functions
should be presented. The arguments should be
specified with both data type and name

Language Coding Standard: Source
Code Organization

 Main function

 Programmer-defined functions

int main(int argc, char *argv[]){
 char line[MAXLINE];

 if (argc != 3) {
 fprintf(stderr,"Usage: %s pattern filename\n",argv[0]);
 return 1;
 }
 if((inFile = fopen(argv[2], "r")) == NULL) {
 fprintf(stderr,"Cannot open file %s\n", argv[2]);
 return 1;
 }

 while (getline(line, MAXLINE) > 0)
 if(strstr(line, argv[1]) != NULL)
 printf("%s", line);

 if(fclose(inFile) == EOF) {
 fprintf(stderr, "Cannot close file %s\n", argv[2]);
 return 1;
 }
 return 0;
}

Function Format
int main(int argc, char *argv[]){

� The main function must be of type int and must return
appropriate return codes.

� Variable Declaration: all variables to be used in the
function will be listed immediately following the
function's opening brace.

 Comments are only required for global variables (which should
normally not be used, except in specific cicumstances), constant
definitions, fields in structures. Instead of commenting each
variable, use meaningful names. Names made up of multiple
words should have the initial letter capitalized, except for the
first word (e.g. FrontOfTheQueue), or be separated with
underline characters (e.g. front_of_the_queue).

Function Format

� Function code

� Function return: the return statement should appear as
the last statement of the function, unless the function
returns nothing (void):

int getline(char s[], int lim)
{
 int c,i;

 i = 0;
 while (--lim > 0 && (c=fgetc(inFile))!=EOF &&
 c != '\n')
 s[i++] = c;
 if (c == '\n')
 s[i++] = c;
 s[i] = '\0';
 return i;
}

Statement Block Format

� Code blocks should be set off by indenting using
a tab.

� In the Emacs C environment this will be done
automatically, which also helps spot syntax errors as
you write.

� Statements that exceed the width of the screen (or
printed page) should be broken into more than
one line so that the continuation line is indented
from the parent line.

Prohibitions

� The use of side effects is discouraged since it
distracts from readability and comprehension, and
can lead to unpredictable results!
i = 1;

j = i++ + i++;

what is the value of j?

� Use of the standard I/O function gets() is
absolutely prohibited since introduces an an
unavoidable security hole and/or bug into every
program it is a part of.

The Practice of Programming

� Kernighan and Pike (on reserve in library):
practice of programming includes testing,
debugging, portability, performance, design
alternatives, and style

� Simplicity

� Keep programs short and manageable

� Clarity

� Programs should be understandable by people as well
as machines

� Generality

� Programs adapt well to new situations

Communication

� Only 30% of an average programmer's time is
spent working alone

� Even less time is spent communicating with a
computer

� An experienced programmer writes code for an
audience of people rather than machines

Programming Style

� Source code is written for people!

 A well-written program is easier to understand and
modify than a poorly-written one

! Logic of program should be straightforward

" Meaningful names

Helpful comments

$ Consistency

% Use idioms!
while(*p++ = *q++)

;

Why Idioms?

i =0;
while (i <= n-1)
 array[i++] = 1.0;

for (i = 0; i < n;)
 array[i++] = 1.0;

for (i = n; --i >= 0;)
 array[i] = 1.0;

for (i = 0; i < n; i++)
 array[i] = 1.0;

Layout of a C Program

& Program made up of tokens

' e.g. main, (, and)

(Statements can be divided over any number of
lines

) Space between tokens improves readability:
volume = height * length * width;

* Indentation makes nesting easier to spot

+ Blank lines divide a program into logical units

The Program

, Every C program must include a function called

- . /10

2 Two possible prototypes:

354 6 78 354 9 3 4 6 8 :; <>= < ? 8 : @ 8 :; A BC D

354 6 78 354 9 D

E Return codes: 0 (success) or 1 (failure) or:

F GH IJ
K

LM IN OP G
,

QR ST
U

VW X X Q V V

(include Y Z [\]^ _ `

)

Comments

/* Hello */

Wrong:

 /* outer /* inner */ */

//
/** */

Comments

if(isdigit) /* error */

/*
 * Program to sort integer values
 */

 k++; /* k is incremented by 1*/

Comments

a Make every comment count.

b Don't over-comment.

c Don't comment bad code, rewrite it!

d Make sure comments and code agree.
if ((country == SING) || (country == BRNI) ||
 (country == POL) || (country == ITALY) {
/* If the country is Singapore, Brunei or
 * Poland then the current time is the answer
 * time rather than the off hook time.
 * Reset answer time and set day of week */

Identifiers

e Use a consistent style throughout your code.

f Variables should have meaningful names when
appropriate (i, j, for counters is fine)

gih j k l j m n n lo p h j q
n l j m n r5s t

