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Outcomes: Introduction to C

* After the conclusion of this section you should be
able to

— Recognize the sections of a C program

— Describe the compile and link process

— Compile and run C programs

— Explain the difference between text and binary files

— Explain the difference between reading from standard
input and reading from a file

— Follow the C language coding standard for CS2023

— Begin to appreciate the importance of good
programming style



Text Files

e Text files are line-oriented (unlike binary files)

* 32,767 as a text file: [ RN ETnT]
e 32,767 as a binary file: Lomnmn | |

e End-of-line terminator:

— Windows: carriage return + linefeed

— Mac: carriage return

— UNIX: linefeed
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From source file to runnable program
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Portability, Efficiency, and
Correctness

* C object code runs only on target machine

* However, it 1s possible (and desirable!) to write
portable C source code

* First make sure your program is correct, then
optimize 1f necessary

* Design for change



Comparison of C and Java

* Primitive data types: character, integer, and real
* In C, they are of different sizes

® there 1s no Unicode 16-bit character set
* Structured data types: arrays, structures and unions.

* In C, arrays are static
e there are no classes

e Control structures are similar

e 'unctions are similar



Comparison of C and Java

* Java references are called pointers in C.

* Java constructs missing in C:
packages

threads

exception handling

garbage collection

standard Graphical User Interface (GUI)
built-1n definition of a string

standard support for networking

support for program safety.



Two Simple Programs

/* Output all of input on one line */
#include <stdio.h>

int main ()

{

int c;
while ((c = getchar()) != EOF) {
if(c != '"\n') putchar(c);

}
putchar ('\n");
return 0;

}



Two Simple Programs

/* Output all of file “name” on one line */

#include <stdio.h>

int main () How do these programs
{ differ?
int c;
FILE *f;
f = fopen("name", "r");
while((c = getc(f)) != EOF) {
if(c !'= '"\n') putchar(c);

}
putchar ('\n'") ;

fclose (f);
return 0;



S R

Source File Organization

krfind.c: print lines that match pattern from first
argument 1n file given by second argument

Author: Eric Aubanel

Date: September 13, 2002

Based on Kernighan & Ritchie, The C Programming
Language, 2nd edition P. 116

#include <stdio.h>
#include <string.h>

fdefine MAXLINE 1000

FILE *inFile;

/*

getline: get line from inFile 1nto line[], return

length */
int getline(char line[], 1nt max);



Language Coding Standard: Source

Code Organization
e File Documentation

the first item 1n a source file should be a comment
block i1dentifying the name of the file, its author and
what functionality the code provides. Each individual
function within the file should also have a comment
block naming the function and the functionality it
provides.

* Preprocessor Information: #define MAXLINE 1000

list the header files that are needed, followed by the
preprocessor macros. Preprocessor macro names should
use capital letters only.



Language Coding Standard: Source
Code Organization
* Type definitions

programmer-defined data types, using the C keyword
typedetf

* Global variables (use sparingly!): riLe *inrFile;

* Function Prototypes:

int getline(char line[], 1nt max);

prototypes for all programmer-defined functions
should be presented. The arguments should be
specified with both data type and name



Language Coding Standard: Source
Code Organization
* Main function

* Programmer-defined functions



int main(int argc, char *argvl[]) {
char line[MAXLINE];

if (argc !'= 3) {

fprintf (stderr, "Usage: %$s pattern filename\n",argv[0]);
return 1;

}
1f((1inFi1ile = fopen(argvi(2], "r")) == NULL) {

fprintf (stderr, "Cannot open file %$s\n", argv([2]);
return 1;

while (getline(line, MAXLINE) > 0)
1f(strstr(line, argv[l]) != NULL)
printf ("%$s", line);

i1f(fclose (inFile) == EOF) {
fprintf (stderr, "Cannot close file %s\n", argv[2]);
return 1;

}

return O;



Function Format

int main(int argc, char *argvl[]) {

* The main function must be of type int and must return
appropriate return codes.

* Variable Declaration: all variables to be used in the
function will be listed immediately following the
function's opening brace.

— Comments are only required for global variables (which should
normally not be used, except in specific cicumstances), constant
definitions, fields in structures. Instead of commenting each
variable, use meaningful names. Names made up of multiple
words should have the initial letter capitalized, except for the
first word (e.g. FrontOfTheQueue), or be separated with
underline characters (e.g. front_of_the_queue).



Function Format

e Function code

* Function return: the return statement should appear as
the last statement of the function, unless the function
returns nothing (void):



int getline(char s|[],

{

int c,1i;

1 = 0;

while (——1im > 0 &&

c !'= "\n'")

s[i++] = c;

if (¢ == '\n')
s[i++] = c;

s[i] = "\O0';

return 1;

int 1lim)

(c=fgetc(i1nFile)) '=EOF &&



Statement Block Format

* Code blocks should be set off by indenting using
a tab.

— In the Emacs C environment this will be done
automatically, which also helps spot syntax errors as
you write.

e Statements that exceed the width of the screen (or
printed page) should be broken into more than
one line so that the continuation line 1s indented
from the parent line.



Prohibitions

* The use of side effects 1s discouraged since it
distracts from readability and comprehension, and
can lead to unpredictable results!

1= 1;
J o= 1i++ + i++;
what 1s the value of j7?

e Use of the standard I/O function gets () 1s
absolutely prohibited since introduces an an
unavoidable security hole and/or bug into every
program it 1s a part of.



The Practice of Programming

e Kernighan and Pike (on reserve in library):
practice of programming includes testing,
debugging, portability, performance, design
alternatives, and style

e Simplicity
— Keep programs short and manageable
e Clarity

- Programs should be understandable by people as well
as machines

e Generality

— Programs adapt well to new situations



Communication

* Only 30% of an average programmer's time 1S
spent working alone

* Even less time 1s spent communicating with a
computer

* An experienced programmer writes code for an
audience of people rather than machines



Programming Style

* Source code 1s written for people!

- A well-written program 1is easier to understand and
modify than a poorly-written one

* Logic of program should be straightforward
* Meaningful names
* Helpful comments

e Consistency

— Use 1dioms!
while (*p++ = *g++)

4



Why Idioms?

1 =0;

while (1 <= n-1)
array[i++] = 1.0;

for (1 = 0; 1 < n; )
array[i++] = 1.0;

for (i = n; ——1 >= 0; )
array[1] = 1.0;

for (i = 0; 1 < n; 1++)
array[1i] = 1.0;



Layout of a C Program

* Program made up of fokens
- e.g. main, (,and )

e Statements can be divided over any number of
lines

* Space between tokens improves readability:
volume = height * length * width;
* [ndentation makes nesting easier to spot

* Blank lines divide a program into logical units



The maln Program

* Every C program must include a function called
mailrn

* Two possible prototypes:
int main(int argc, char *argv[])
int main()

e Return codes: 0 (success) or 1 (failure) or:

— EXIT_FAILURE, EXIT_SUCCESS
(include stdlib.h)



Comments
/* Hello */
Wrong:
/* outer /* inner */ */

//
/** */



Comments

if (isdigit) /* error */

/ *
* Program to sort integer values

*/

k++; /* k is incremented by 1%*/



Comments

* Make every comment count.
e Don't over-comment.
e Don't comment bad code, rewrite 1it!

* Make sure comments and code agree.

if ( (country == SING) || (country == BRNI) ||
(country == POL) || (country == ITALY) {
/* If the country is Singapore, Brunei or
* Poland then the current time i1is the answer
* time rather than the off hook time.
* Reset answer time and set day of week */



Identitiers
* Use a consistent style throughout your code.

* Variables should have meaningful names when
appropriate (1, 7, for counters 1s fine)

LongIdentifier 1long_identifier



