Introduction to C

CS2023 Winter 2004

Outcomes: Introduction to C

* After the conclusion of this section you should be
able to

— Recognize the sections of a C program

— Describe the compile and link process

— Compile and run C programs

— Explain the difference between text and binary files

— Explain the difference between reading from standard
input and reading from a file

— Follow the C language coding standard for CS2023

— Begin to appreciate the importance of good
programming style

Text Files

e Text files are line-oriented (unlike binary files)

* 32,767 as a text file: [RN ETnT]
e 32,767 as a binary file: Lomnmn | |

e End-of-line terminator:

— Windows: carriage return + linefeed

— Mac: carriage return

— UNIX: linefeed

W0 IQePIISE MMM :32IN05

T fLZTH#T LLT AL LZT igg#y LET A5 56 Z fcafs LL0 J5 E£9 [Fodeavdas qTum) 50 A0 AT TE
~ fQRT#% 9LT dL 9ZT| . we#® 98T IS Fo < {79#F® 9L0 dE E9 (zodeaedas pIooax] o 950 IT 0L
{ g7 T#% SLT dOL SET| [#ce#y SET I5 £6 = {Tagy SL0 O T9 (Todeaedas dnoifl) 29 520 dT 62
| ‘HZT#7 FLT IL FZT| 4 26 FET 19 ZA = fnagy FLO JE 09 (zodeaedas 3aT7T3) o4 FL0 IT 82
VYpTT#e ELT 9L EET|] {Te#w EET 95 TI6 ! lpg#w A0 9E &5 (adeosa)l 153 ©oQ 4T LT
= {FET#® CLT Wi Z2T| Z ‘oo#y 2ET W5 06 D fggEw L0 YE 89 (2anatisqne) dns Zoo ¥T1 92
A ITET#® TLT 6L TET| L ‘eo#y TET 65 68 £ fL5#% TLOD 65 LS (mIp=am JOo pu=a) HI TS0 6T 52
¥ f0ZT#Y OLT 94 O02T| x 2o00#% 0ET 25 99 o ofacg® 0L0 25 0% [T2oued) MY 050 8T %2
m ZETT#® L9T L4 BTT| m ro#w L2T LS LB fOYgo#E® L90 LE 55 (Ho0Tq *SUEIl JO PU3) 4LA LZ0 LT EF
A POTT#® 99T 94 8TT| A fog#y 92T 95 982 o fRo#® 990 95 FS (2TPT shouoIyouwlds] LS 970 9T 22
o fLTT#® S9T S& LTT| 0 259#% S2T 55 5% S IEg#y 990 S5£ £5 [aApaTnouyoe aaTaelat) ¥¥H 570 ST IF
9 faTT#y FOT FL 9TT| L wo#y 21 5 FE T src#® FO0 FE 29 (f TOIIUO0D 20T&3P) B0 20 F1 OF
c IGTT#% £9T S4 STT| o 2oy C2T £5 £8 CoSTG#® £O0 EC TS (L TOIZU0D F2TAIP) 00 £20 BT 6T
I {RTT#9 29T 24 BIT| 4 i7ogs 2T 75 20 7 {pg#® FA0 2 0% {7 TOoI3uod =22Ta&3R) 700 720 ZT 8T
b ZeTT#® T9T TL ETT| 0 fT12#y I2T 15 I8 T ‘{6F#7 T90 T% &F (T ToIauod 20T&3R) TJd TE0 TT AT
d 2FTT#® 09T 0L ZTT| 4 #ng#y 02T 05 OB 0 fgk#® 090 0E 9F (adeosa HUTT ®Ba®p) ITd 020 OT 9T
o STTT#% LST 49 TTT| 0 26i#% LTT JdF 6L S OiLE#Y LSO A7 LF (UT 23TUy=) I% LT0 4 ST
u ZOTTHE® 95T 9 OTT| M fgi#y 9TT Ik 24 © YofR#r 950 dZ 9F (ano 4ITU=) 08 210 4 BT
m IE0TH#® SST dI9 60OT| If pi#® STT IF LL - Igp#® 950 J2 SF (uana=I aBeTIIRI)] 97 STO 0 £T
T ‘20T#% FST 29 20T| T 9r#s FIT IF 9L fipR# FS0 22 FF |(2Ped meu ‘paag wrol JN) 44 BTO0 2 ZT
¥ 2L0T#® S5T 99 LOT| A f5e#w STT dF 5S4 + fch#y £50 97 £F (qe1 TEOTII=A) LA £TO 9 11
C fonT#® 25T ¥9 90T| p Fi#y 21T Y& FL ¢ $7F#® EC0 ¥E EF |[RUIT mau ‘p233 2UTT TIN) AT ETO0 ¥ 0T
T 250T#® TST 69 SOT| T foogs TTT 6F £4 [Tb#® TS50 &2 TF (qe3 TRIU0ETION] JVL TTO & 6
1 fFOTH#Y OST 29 FOT| H 2o#% OTT 9F ZL | f0F#% 050 22 OF (2oedsyoeq) o9 0T0 8 2
BorenT#y LFT L9 SOT| 4 To#y LOT LF TL . PRE#T LFO LE BE (TT=2q) T¥9 L00 & L
T fF0T#% 9FT 99 Z0T| 1 ‘oi#y 90T SF OL w focgy 9F0 92 2% [aPpaTmouyoe]) {07 900 9 9
2 fTOT#® SPT 59 TOT| T 69#% 50T SF 69 £ fpe#y SF0 5% LE (Artnbua) QNI S00 5005
P oYOoOT#® FRT ¥9 00T g “oo#% FOT ¥F 29 & foc#gs TR0 FE 9E [UoTssTWEwRIl J0 PU2) 10X #0O0 + F
a2 fge#y EFT £9 66 | 0 Zi9#% COT EF L9 4 {gocgw R0 £Z SE (3x=23 Jo pua) ¥IF £O00 & £
q fgg#7 ZFT 29 86 | 3 f99#% Z0T ZF 99 . iFo#® ZF0 22 FL (3x=1 JO 233was) XIS ZO0 2 07
= fre#y TRT T2 L6 | v fgo#% TOT TF 599 | fgc#Ew TRO TZ ES (Putpeay Jo 33IB38) HOS TOO T 1
_ fag#® OFT 09 96 | @ %o#% 00T OF ¥F9 |somds fzocgs 0F0 02 ZE (TTOoT) IO 000 O O
AW JWH 120 #H 22d (4o JWH 120 ¥H 2=2d) A4 [WIH G ¥H 93d ABYD 0 xH 23]

From source file to runnable program

Source Compiler S-SER Ol v
File Module

program.c program O

Library Routines M

Runnable
Program

program

Portability, Efficiency, and
Correctness

* C object code runs only on target machine

* However, it 1s possible (and desirable!) to write
portable C source code

* First make sure your program is correct, then
optimize 1f necessary

* Design for change

Comparison of C and Java

* Primitive data types: character, integer, and real
* In C, they are of different sizes

® there 1s no Unicode 16-bit character set
* Structured data types: arrays, structures and unions.

* In C, arrays are static
e there are no classes

e Control structures are similar

e 'unctions are similar

Comparison of C and Java

* Java references are called pointers in C.

* Java constructs missing in C:
packages

threads

exception handling

garbage collection

standard Graphical User Interface (GUI)
built-1n definition of a string

standard support for networking

support for program safety.

Two Simple Programs

/* Output all of input on one line */
#include <stdio.h>

int main ()

{

int c;
while ((c = getchar()) != EOF) {
if(c != '"\n') putchar(c);

}
putchar ('\n");
return 0;

}

Two Simple Programs

/* Output all of file “name” on one line */

#include <stdio.h>

int main () How do these programs
{ differ?
int c;
FILE *f;
f = fopen("name", "r");
while((c = getc(f)) != EOF) {
if(c !'= '"\n') putchar(c);

}
putchar ('\n'") ;

fclose (f);
return 0;

S R

Source File Organization

krfind.c: print lines that match pattern from first
argument 1n file given by second argument

Author: Eric Aubanel

Date: September 13, 2002

Based on Kernighan & Ritchie, The C Programming
Language, 2nd edition P. 116

#include <stdio.h>
#include <string.h>

fdefine MAXLINE 1000

FILE *inFile;

/*

getline: get line from inFile 1nto line[], return

length */
int getline(char line[], 1nt max);

Language Coding Standard: Source

Code Organization
e File Documentation

the first item 1n a source file should be a comment
block i1dentifying the name of the file, its author and
what functionality the code provides. Each individual
function within the file should also have a comment
block naming the function and the functionality it
provides.

* Preprocessor Information: #define MAXLINE 1000

list the header files that are needed, followed by the
preprocessor macros. Preprocessor macro names should
use capital letters only.

Language Coding Standard: Source
Code Organization
* Type definitions

programmer-defined data types, using the C keyword
typedetf

* Global variables (use sparingly!): riLe *inrFile;

* Function Prototypes:

int getline(char line[], 1nt max);

prototypes for all programmer-defined functions
should be presented. The arguments should be
specified with both data type and name

Language Coding Standard: Source
Code Organization
* Main function

* Programmer-defined functions

int main(int argc, char *argvl[]) {
char line[MAXLINE];

if (argc !'= 3) {

fprintf (stderr, "Usage: %$s pattern filename\n",argv[0]);
return 1;

}
1f((1inFi1ile = fopen(argvi(2], "r")) == NULL) {

fprintf (stderr, "Cannot open file %$s\n", argv([2]);
return 1;

while (getline(line, MAXLINE) > 0)
1f(strstr(line, argv[l]) != NULL)
printf ("%$s", line);

i1f(fclose (inFile) == EOF) {
fprintf (stderr, "Cannot close file %s\n", argv[2]);
return 1;

}

return O;

Function Format

int main(int argc, char *argvl[]) {

* The main function must be of type int and must return
appropriate return codes.

* Variable Declaration: all variables to be used in the
function will be listed immediately following the
function's opening brace.

— Comments are only required for global variables (which should
normally not be used, except in specific cicumstances), constant
definitions, fields in structures. Instead of commenting each
variable, use meaningful names. Names made up of multiple
words should have the initial letter capitalized, except for the
first word (e.g. FrontOfTheQueue), or be separated with
underline characters (e.g. front_of_the_queue).

Function Format

e Function code

* Function return: the return statement should appear as
the last statement of the function, unless the function
returns nothing (void):

int getline(char s|[],

{

int c,1i;

1 = 0;

while (——1im > 0 &&

c !'= "\n'")

s[i++] = c;

if (¢ == '\n')
s[i++] = c;

s[i] = "\O0';

return 1;

int 1lim)

(c=fgetc(i1nFile)) '=EOF &&

Statement Block Format

* Code blocks should be set off by indenting using
a tab.

— In the Emacs C environment this will be done
automatically, which also helps spot syntax errors as
you write.

e Statements that exceed the width of the screen (or
printed page) should be broken into more than
one line so that the continuation line 1s indented
from the parent line.

Prohibitions

* The use of side effects 1s discouraged since it
distracts from readability and comprehension, and
can lead to unpredictable results!

1= 1;
J o= 1i++ + i++;
what 1s the value of j7?

e Use of the standard I/O function gets () 1s
absolutely prohibited since introduces an an
unavoidable security hole and/or bug into every
program it 1s a part of.

The Practice of Programming

e Kernighan and Pike (on reserve in library):
practice of programming includes testing,
debugging, portability, performance, design
alternatives, and style

e Simplicity
— Keep programs short and manageable
e Clarity

- Programs should be understandable by people as well
as machines

e Generality

— Programs adapt well to new situations

Communication

* Only 30% of an average programmer's time 1S
spent working alone

* Even less time 1s spent communicating with a
computer

* An experienced programmer writes code for an
audience of people rather than machines

Programming Style

* Source code 1s written for people!

- A well-written program 1is easier to understand and
modify than a poorly-written one

* Logic of program should be straightforward
* Meaningful names
* Helpful comments

e Consistency

— Use 1dioms!
while (*p++ = *g++)

4

Why Idioms?

1 =0;

while (1 <= n-1)
array[i++] = 1.0;

for (1 = 0; 1 < n;)
array[i++] = 1.0;

for (i = n; ——1 >= 0;)
array[1] = 1.0;

for (i = 0; 1 < n; 1++)
array[1i] = 1.0;

Layout of a C Program

* Program made up of fokens
- e.g. main, (,and)

e Statements can be divided over any number of
lines

* Space between tokens improves readability:
volume = height * length * width;
* [ndentation makes nesting easier to spot

* Blank lines divide a program into logical units

The maln Program

* Every C program must include a function called
mailrn

* Two possible prototypes:
int main(int argc, char *argv[])
int main()

e Return codes: 0 (success) or 1 (failure) or:

— EXIT_FAILURE, EXIT_SUCCESS
(include stdlib.h)

Comments
/* Hello */
Wrong:
/* outer /* inner */ */

//
/** */

Comments

if (isdigit) /* error */

/ *
* Program to sort integer values

*/

k++; /* k is incremented by 1%*/

Comments

* Make every comment count.
e Don't over-comment.
e Don't comment bad code, rewrite 1it!

* Make sure comments and code agree.

if ((country == SING) || (country == BRNI) ||
(country == POL) || (country == ITALY) {
/* If the country is Singapore, Brunei or
* Poland then the current time i1is the answer
* time rather than the off hook time.
* Reset answer time and set day of week */

Identitiers
* Use a consistent style throughout your code.

* Variables should have meaningful names when
appropriate (1, 7, for counters 1s fine)

LongIdentifier 1long_identifier

