Advanced Use of Pointers

CS2023 Winter 2004

Outcomes: Advanced use of Pointers

* “C for Java Programmers”, Chapter 8, section 8.11, 8.15
* Other textbooks on C on reserve

e After the conclusion of this section you should be able to

— Allocate and deallocate blocks of memory dynamically on the
head

— Use pointers to functions in order to pass a function as a
parameter to another function

— Use generic pointers to write more general functions

Dynamic Memory Allocation

e ('s data structures normally fixed in size

* C supports dynamic memory allocation to allocate
storage during execution

— needed for dynamic arrays, lists, strings, ...

* Dynamically allocated memory stored on the heap

Recall: Memory Management

* Dynamically allocated variables

* Memory allocated and destroyed at run time, under
control of programmer!

* No guarantee that first variable to be destroyed 1s
last created

* This area of memory can have holes and is called
the heap

Recall: Memory Management

e Usually heap and stack begin at opposite ends of
the program's memory, and grow towards each

other
logical address space

code @ static heap free stack
memory

— -

low high

Dynamic Memory Allocation

malloc Allocates a block of memory, but doesn't
initialize it
calloc Allocates a block of memory and clears it

— Note: arguments of malloc and calloc of type
size_t, which is type returned by sizeof operator
(normally unsigned long)

Dynamic Memory Allocation

Two primary methods of allocating memory:
void *malloc(size_t requestedSize);
void *calloc(size_t requestedCount,
size_t requestedSize);

T *p;
p = malloc(sizeof(T)); /¥ or: */
p = calloc(1l, sizeof(T));

You should always remember to check if a call to a memory

allocation function was successful.

Dynamic Memory Allocation

int *p;

/* A block to store one int %/

if((p = malloc(sizeof(int))) == NULL)
exit(EXIT_FAILURE);

*p = 12;

int *q;

/* a block to store 3 ints */

1f((qg = malloc(3*sizeof(int))) == NULL)
exit(EXIT_FAILURE); q

"q = 5;

Dynamic Memory Allocation

¢ Note that malloc returns void*, whereas the left hand
side of p = malloc(sizeof(int)) is of type
1nt*. Some programmers use an explicit cast, but this
1s not required:

p = (int*)malloc(sizeof(int)))

e Always pass sizeof(type)as a parameter to malloc,
rather than the absolute value

- use malloc(sizeof(int)) instead of
malloc(4)

Memory Deallocation

Memory should be deallocated once the task it was
allocated for has been completed.

int *p;

if((p = malloc(sizeof(int))) == NULL)
ex1t(EXIT_FAILURE);
*p = 12;

free(p);
/* p not changed; don't use *p */

Memory Deallocation

Always follow the call to
free(p)
with

p = NULL

Errors

 Memory deallocation using £ree() should only be used
1f memory has been previously allocated with

malloc():

int 1, *p;
p = &i;
free(p);
— always remember where memory came from: heap or stack
* Don't create garbage objects!

p = malloc(sizeof(int));
p = malloc(sizeof(int));

— The first object created 1s now inaccessible

Errors

* Given two pointers P and q, the assignmentp = q does
not copy the block of memory pointed to by q into a
block of memory pointed to by p

e Remember that after p = q; p and q share the value;

if you call free(p) this would also deallocate q, now
you must not call free(q)

Pointers to Blocks Containing
Pointers

* A block containing three pointers to double
objects. In order to access a single object, the code
has to apply dereferencing twice

block >

= 21

3l

"4

Pointers to Blocks Containing

Pointers

double **block;
#define SIZE 3
1f((block=calloc(SIZE, sizeof(double*)))
== NULL)
error:;

for(i = 0; i < SIZE; i++)
if((block[i]=calloc(1l, sizeof(double)))
== NULL)
error;

*(*block)

= 2. ,
block[0][0] =

2.1;

Pointers to Blocks Containing
Pointers

The complete code to initialize the block:
for(i = 0; 1 < SIZE; i++)
block[1][0] = 2.1 + 1i;

To free memory :

for(i = 0; 1 < SIZE; i++)
free(block[i1]);

free(block);

block = NULL;

#define SIZE 3 /* Triangular block of memory */

1f((block=calloc(SIZE, sizeof(double*)))== NULL)
error

for(i = 0; i < SIZE; 1i++)

if((block[i]=calloc(i+1l, sizeof(double)))==
NULL)

error
/* read in values */
for(1i = 0; i < SIZE; i++) /* for each row */

for(j = 0; j <= i; j++)

if(scanf("%1f", &block[i][j]) != 1)
error

/* find the sum */
for(i = 0, sum = 0; 1 < SIZE; i++)

for(j = 0; J <= 1i; J++)

sum += block[1]1[j];

Pointers to Functions

* A pointer to a function determines the prototype of this
function, but 1t does not specify its implementation:

int (*fp)(double); /* a pointer to a function */
int *fp(double); /* a function returning ... */
* You can assign an existing function to the pointer as long

as both have 1dentical parameter lists and return types:

int f(double):; /* another function */

fp = f;
* You can call the function £() through the pointer £p:

int 1 = fp(2.5);

Functions as Parameters

void tabulate(double low, double high,
double step, double (*f)(double)){

double x;

for(x = low; x <= high; x += step)
printf("%13.5f %20.10f\n", x, f(x));

}
double poll(double x) {

return x + 2;

}

tabulate(-1.0, 1.0, 0.01, poll);

Functions as Parameters

void tabulate(double low, double high,
double step, double (*f)(double));
f is called:
— a virtual function; 1ts implementation 1s not known to
tabulate() but will be provided when
tabulate() is called.

— a callback function, because it calls back the function
supplied by the client.

Generic Search

C does not support polymorphic programming, but it can be
simulated using generic pointers (i.e. void¥) .

A function prototype may specily that a block of memory
and the value it 1s looking for are not typed:

int searchGen(const void *block,
size_t size, vold *value);
/¥ non-typed values: Need more parameters: */

int searchGen(const void *block, size_t size,
void *value, int (*compare)(const void *,
const void *));

Implementation of Generic Search
(Incorrect)

int searchGen(const void *block,
size_t size, void *value,
int (*compare)(const void *, const void *)) {
void *p;

if(block == NULL)
return 0;
for(p = block; p < block+size; p++)
if(compare(p, value))
return 1;
return 0;

}

Implementation of Generic Search

int searchGen(const void *block,
size_t size, void *value, size_t elSize,
int (*compare)(const void *, const void *)) {
void *p;

if(block == NULL)

return 0;
for(p = block; p < block + size*elSize; p +=
elSize)
if(compare(p, value))
return 1;
return 0;

}

Application of Generic Search

The client's responsibilities:

int comp(const double *x, const double *y) {
return *x == *y;

}

int comp(const void *x, const void *y) {
return *(double*)x == *(double*)y;
H

Note that this callback 1s sufficient for search, but not for
SOrt.

/* Application of a generic search */
#define SIZE 10
double *b;
double v = 123.6;
int 1;
if((b = malloc(SIZE*sizeof(double))) == NULL)
exit(EXIT_FAILURE);
for(i = 0; i < SIZE; i++) /* initialize */
if(scanf("%1f", &b[1]) '= 1) {
free(b);
exit(EXIT_FAILURE);
}
printf("%f was %s one of the values\n",

v, searchGen(b, SIZE, &v, sizeof(double), comp)
— 1 ? [ARA] : llnotll) ;

NAME
gsort — sorts an array

SYNOPSIS
#include <stdlib.h>

void gsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

DESCRIPTION
The gsort() function sorts an array with nmemb elements of size size.
The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or
greater than zero if the first argument is considered to be respec-
tively less than, equal to, or greater than the second. If two members
compare as equal, their order in the sorted array is undefined.

