Primitive Data Types and
Terminal 1/O

CS2023 Winter 2004

Outcomes: Data types and terminal 1/0

e “C for Java Programmers”, Chapter 3

e After the conclusion of this section you should be able to

Give the relative size of the primitive data types

Find the range of values that the primitive data types can
represent

Use assignment conversion and arithmetic conversion between
data types

Modity these conversions using a cast

Write a basic C program that reads and writes to and from the
terminal, using the appropriate idioms for

® Character I/O with getchar, putchar
 Formatted I/O with scanf, printf

Basic Data Types

C provides several primitive data types: char, int,
float and double.

e No built-in Boolean type; instead use 1nt:
the value O stands for false,
any non-zero value stands for true

* No guarantee that a specific amount of memory
will be allocated to a particular data type.

Range of Integers

* Signed integers use the leftmost bit (sign bit), to
represent the sign.

The largest unsigned 16-bit integer: 2! - 1

The largest signed 16-bit integer: 2P - 1

e C provides a header file 11mits.h, it defines

e.g.
CHAR_BIT - the width of char type in bits (>= 8)

INT_MAX is the maximum value of 1nt (>= 32,767).

Integer Types

e plain, signed and unsigned

short unsigned int
signed long
int

e size(short) <= size(int) <= size(long)

Character Types

* There are three character data types in C:
(plain) char
unsigned char
signed char

* Character types are actually represented internally
as integers (unsigned or signed).

* Two popular character sets:

ASCII (American Standard Code for Information
Interchange): 7 bits (127 characters)

EBCDIC (used by IBM computers)

Floating-point Types

float

double
long double

Use float.h for sizes and ranges.
Only guarantee:

size(float) <= size(double) <=
size(long double)

Declarations of Variables and
Constants

int 1; /¥ initial value undefined */
double d = 1.23;

const double PI = 3.1415926;

sizeof

sizeof(type name)
or

sizeof expression

returns the size of the data type or object represented
by the expression.

sizeof(int)
sizeof i

Type Conversions

 Type T 1s wider than type S (and S 1s narrower
than T), 1f

sizeof(T) >= sizeof(S)

* The narrower type 1s promoted to the wider type,
the wider type 1s demoted to the narrower type

e An 1nt value can be safely promoted to double

e A double value can not be safely demoted to
int

Arithmetic Conversions

* If operands of an expression are of different types, then
these operands will have their types changed, using
arithmetic conversions.

* A lower precision type 1s promoted to a higher precision
type according to the following hierarchy:

int

unsigned

long
unsigned long
float

double

long double

Assignment and Cast Conversions

* Assignment conversions occur when the expression on
the right hand side of the assignment has to be converted
to the type of the left-hand side.

* The type cast expression
(typ) exp
converts the expression exp to the type typ.
double f, c;
f = 10; /% assignment conversion */
f = 100.2;
c = (5/9)*(f - 32);
c = ((double)5/9) * (f - 32); /* cast */

Type Synonyms: typdef
typedef existingType NewType;

For example, if you want to use a Boolean type,
define

typedef int Boolean;

Boolean b = 1;

When specifying a new type using typedef, start
1dentifier names with an upper case letter.

[iteral Constants

integer:
floating point:
character:

string:

123 47857587L

12.66

l\nl

abc

ldl

23478 .78899E-20

Expressions

* As in Java, but evaluation rules more relaxed.
Only four binary operators that guarantee that left
operand 1s evaluated before the right operand:

logical AND, as in el && e2
logical OR, as in el || e2
a conditional expression, as in el ? e2 : e3

a comma expression, as in el, e2

Terminal 1I/0
#include <stdio.h>

int getchar() to input a single character

int putchar(int) to output a single character

* Program that reads two characters and
* prints them 1n reverse order, separated by
* a tab and ending with end of line.
* Error checking: Program terminates if
* either of the input operations fails.
No error checking for the output
%/
#1nclude <stdio.h>
int main()

{

int c, d;

_ < [diom!
if((c = getchar()) == EOF)

return 1;

if((d = getchar()) == EOF)
return 1;

putchar(d);
putchar('\t');
putchar(c);
putchar('\n');

return 0;

Errors

*Placement of brackets:
if(c = getchar() == EOF)
*The compiler interprets it as follows:
if(c = getchar() == EOF)
echar c;

c = getchar()

Formatted Output

int printf("format", exp)
printf("'%d", 123);

printf("The value of 1 = %d.\n", 1);

printf("Hello world\n");

Integer Conversions

To print integers, the following conversions are used:

d signed decimal

ld long decimal
u unsigned decimal
0 unsigned octal

X, X unsigned hexadecimal

printf("'%d%o%x", 17, 18, 19);

Float Conversions

To print floating point values, the following conversions are
used (the default precision is 6):

f (-] ddd.ddd

e [-] d.ddddde{sign}dd
E [-] d.dddddE{sign}dd
g shorter of £ and e

G shorter of £ and E

printf("%5.3f\n", 123.3456789);
printf("%5.3e\n", 123.3456789);
123.346

1.233e+02

String Conversions

To print characters and strings, the following
conversions are used:

C character

S character string

printf("%c", 'a');
printf("%d", 'a');
printf("This %s test", "is");

Formatted Input

int scanf('format', &var)

int 1;
double d;

scanf("%d", &1);
scanf("%l1lf", &d);

scanf("%d%1lf", &1, &d);

More on scanf

scanf () returns the number of items that have been
successfully read, and EOF 1f no items have been read
and end-file has been encountered.

For example scanf("%d%d", &1, &J)
returns the following value:

2 if both input operations were successful

1 if only the first input operations was successful
0 if the input operation failed

EQOF if an end-of-file has been encountered.

int main() {
double i, j;

printf("Enter two double values:");
if(scanf("%1f%1f", &1, &j) != 2)

< [diom!
return 1;

printf("sum = %f\ndifference = %f\n",
i+ j, 1-3);

return 0;

Idioms

* Read single character:

if((c = getchar()) == EOF) ..
/* error, else OK */

* Read single integer with prompt:

printf("Enter integer: ");

1if(scanf("%d", &1i) =1) ..

/¥ error, else OK */

* Read two integers:

printf("Enter integer: ");
1f(scanf("%d", &1i) =1) ..
/¥ error, else OK */

