Function Design: Cohesion and
Coupling

CS2023 Winter 2004




Outcomes: Function Design

* “Code Complete”, Chapter 5 (on reserve in library)

* After the conclusion of this section you should know
what to aim for when designing functions: they should
be strongly cohesive and loosely coupled.



Cohesion

* How closely are the operations in a function
related?

— sin()
— sinAndTan()
* Strong cohesion

— Function should do one thing well and not do
anything else



Types ot Cohesion

Functional cohesion

— The best kind!
— Sin(), GetCustomerName(), CalcLoanPayment()
— Can be very short

Sequential cohesion
Temporal cohesion

Logical cohesion



Sequential Cohesion

* Operations performed 1n a specific order, share
data from step to step, but don't perform a
complete function

Program: Open File, Read File, Perform Calculations,
Output Results, and Close File

DoStepl () DoStep2 ()
Open File Output Results
Read File Close File

Perform Calculations



Removing Sequential Cohesion

 Names should have verb + object

GetFileData () MassageData ()
Open File Perform Calculations
Read File

OuputFileData()
Output Results

Close File



Temporal Cohesion

e Operations combined 1n a function because all
done at same time

Startup()

e Best to have this kind of function call other
functions

ReadConfigFile()
InitializeMemory()
ShowInitialScreen()



Logical Cohesion

* Function does one of several things depending on
a control flag parameter

OutputAll()

e Better to have distinct functions for each
operation

OutputSummary(), OutputReport(),
OutputDetailedReport ()

* Can still have logically cohesive function call
these



Coupling

* How strongly functions are related to each other
* Want loose coupling: independent functions
* Coupling criteria:

— Size (how many variables shared?)

- Intimacy (parameters, global data, files)

— Visibility (coupling by global data is sneaky)

— Flexibility (how easily can connections be changed?)



Levels of Coupling

* Data coupling

- simple data

— data structures
* Control coupling

— One function passes data to another function that tells
it what to do

* Global data coupling

— tolerable if global data 1s read-only, or 1f global data
couples closely related functions in a module



Why Loose Coupling?

* Reduces program complexity, allowing
programmer to focus on one thing at a time.

* If functions are too closely coupled then
complexity 1s not reduced.



Structured Design

* [terative process: multilevel decomposition

* Top-down decomposition

— design top-level first

— postpone working out details until lower level of design
* Bottom-up decomposition

— what does this system need to do?

¢ Can use both!



