Introduction to Functions

CS2023 Winter 2004

Outcomes: Introduction to Functions

 “C for Java Programmers”, Chapters 7 (beginning)

e After the conclusion of this section you should be able to

— Write function declarations and definitions in C

— Understand how the types of parameters and return values are
converted when using functions

— Place function declarations at the beginning of your programs,
knowing what purpose they serve

— Exit from a program from within a function other than main

Why Create Functions?

* Reduce complexity

— Abstraction: hide information so that you won't need to
think about it

— Minimize code size

— Improve maintainability and correctness

* Avoid duplicate code
* Limiting effect of changes

* Making a section of code readable

— short functions valuable!

Functions 1n C

A C program consists of one or more function
definitions, including exactly one that must be called
main

The syntax for C functions is the same as the syntax for
Java methods

All functions are stand-alone, which means that they are
not nested 1n any other construct, such as a class

As 1n Java, parameters are passed by value

Function Declaration

A declaration merely provides a function prototype:

function header (includes the return type and the list of
parameters)

int power(int x, int n);

The declaration does not say anything about the
implementation.

The definition of a function includes both the function

prototype and the function body, that is its
implementation.

How Long Should a Function Be

 Muldner (C for Java Prog.) recommends one page

* Steve McConnell (Code Complete) recommends
up to 200 lines long (not including blanks and
comments)

* In any case, a cohesive function (does one thing
well) won't be very long

Review: Passing by value

Advantage: can use parameters as variables in the

function without affecting the correponding
argument

int power(int x, int n)
int 1, result = 1;

for(i = 1; i <= n; i++)
result *= x;

return result;

}

This can be rewritten as:

Review: Passing by value

int power(int x, int n)

{

int result = 1;

while (n—-- > 0)
result *= x;

return result;

}

* Disadvantage: difficult to write a function that returns
more than one number

- Need pointers

Return values

* Void functions
— vold printStuff ()
- Sometimes called procedures
- return at end not required

¢ Non-void functions

— must return a value!

— using return alone will return an undefined value

Void and Conversions

* Definition:

int £ is equivalent to int f(void)
e Call:

£f(); is equivalentto (void)f();

The value of each actual parameter 1s implicitly
converted to the type of the corresponding formal
parameter.

The same rules apply to return type conversion.
int f(int);
double x = £(1.2);

/* Function: maxi

* Purpose: find the maximum of its integer
* arguments

* Inputs: two parameters

* Returns: the maximum of parameters

* Modifies: nothing

* Error checking: none

* Sample call: 1 = maxi(k, 3)
% /

int maxi(int, int);

int maxi(int i, int j)
{
return 1 > 3J ? 1 : J;

}

#define MAX(1,3j) ((1) > (3D? (L) : (3))
int maxi(int 1, int j);
int main()

{
float x = 4.5, vy = 4.8, max1l, max2;

maxl = MAX(x,VY);

max2 = maxi(x,y);

printf("'Max. of %f and %f is %f?\n", x, y, maxl);
printf("'Or is max. of %f and %f %f?\n", x,y,max2);
return 0;

}

int maxi(int i, int j){
return 1 > j 7?7 1 : J;

}

Default Conversions

* What happens if compiler has not encountered a
prototype prior to the call?

e parameters: f1oat converted to double, char
and short converted to int

* Default conversions may not produce desired
result!

* Avoid problems by always placing function
prototypes before any functions (including main)
are defined

Default Conversions

What happens?

#include <stdio.h>

int main ()

{

int 1;

scanf("%d" , &l) ;
printf ("$g\n", square(i));

return O;

}

double square (double x)
{

return x * x;

}

Why bother with function
declarations?

e Could define functions before main.

— Have to be careful of order of function definitions

#define N 7
void prn_heading(void) {...}

long power(int m, int n){...} . Mustcome before

volid prn_tbl_of_powers(int n){...
printf(“%1d”, power(i, j)); ...}

int main() {
prn_heading();
prn_tbl_of_powers(N);
return O;

}

Function Invocation Means

int main(){
float p; int a=5, b=2;

p = power(3*a, 2*b);
printf(“%f\n”, p);
}..

int power(int x, int n){ ...}
1)Each expression in parameter list 1s evaluated

3*a, 2*b

2)Value of expression 1s converted, 1f necessary, to type of
formal parameter, and that value 1s assigned to its
corresponding formal parameter at the beginning of the
body of the function

x = 15,y = 4

Function Invocation Means (cont'd)

3)The body of the function 1s executed

int 1, result = 1;

for(i = 1; 1 <= n; i++)
result *= x;

return result;

4) If a return statement 1s executed, then control passed
back to calling environment

p = power(3*a, 2*b);
=» printf(“%f\n”, p)

Function Invocation Means(cont'd)

5)If the return statement includes an expression, then
the value of the expression 1s converted, if necessary, to
the type given by the type specifier of the function, and
that value 1s passed back to the calling environment, too.

return result; /* Backinmain:p = result */

6)If the return statement does not include an expression,
then no useful value 1s returned to the calling
environment

‘NHIf no return statement is present, then control 1s
passed back to the calling environment when the end of
the body of the function is reached. No useful value 1s
returned.

Function Invocation Means(cont'd)

8)All arguments are passed “call by value”

* Any changes made to formal parameters are lost
when control 1s passed back to calling environment

Exit Function

To terminate the execution of an entire program:
exit(int code);
Belongs to <stdlib.h>, same library that
contains EXIT SUCCESS and EXIT FAILURE

return equivalent to exit Inmain

Exit Function

double f(double x) {
1if(x < 0) {
fprintf(stderr, "negative x\n'"');

exit(EXIT_FAILURE); /* no return ..

}

return sqrt(x);

}

