
UNIX Make

CS2023 Winter 2004

Outcomes: Make

� Managing Projects with Make, Andrew Oram and Steve
Talbott, on reserve in the library

� After the conclusion of this section you should be able to

� Understand the purpose of the make utility

� Write your own simple makefiles

Multi-File example

� �� �� �	�
�

�
�� � ��� ��� ��� �� �� � � � �

��� � � � � � �� �� � � ��� � � � � !

"
� � # � � � $ %

&
� �� �� �	� '�

��� � � � �

� �� �� � � � � � � � � ! %

� �� �� �)(* � � * �
�

�
�� � ��� ��� +� # �
 � � �-,

�
�� � ��� ��� �� �� �� � � � �

�� # . �
�� � !

"

�� #
 %

� � � � / � �0 � �21 3
 ! %

4 �
 � # / � �0 5 6� �1

� �� �� � �
 ! !

� � # � � � 7 %

&

Dependencies

89 9 : 9 ;< = >? @BA 9

89 9 : 9 ;< = >? @DC
E @ ; E A 9

89 9 : F ;< = >? @ ; < = >? @C
E @ ; E A F ;< = >? @BA F

G Which commands must be re-executed if a change is
made to ;< = > ? @A 9 ?

G We say that ;< = > ? @BA F depends on ;< = > ? @A 9

G Also, ;< = > ? @ depends on ;< = > ? @DC
E @ ; E A F and

;< = > ? @A F

G Which commands must be re-executed if a change is
made to ;< = > ? @A H

?

Source of Error

I What should be recompiled?

I Have you ever made a change to one or two of
many files making up a program and forgot to
recompile before linking? Bug is difficult to find
because actual program does not correspond to
the source files which you're looking at.

Possible Solutions

J Keep everything in one file

K editing is slow

K compiling is slow

J Keep things in separate files but always recompile
everything

K compiling is slow

J Automatically choose things to be recompiled

K use make utility

Dependency Diagram

LM N OP QSR T

LM N OP QVU W Q L W R X LM N OP Q R X

LM N OP Q R Y

LM N OP Q

LM N OP QVU W Q L W R Y

UNIX Software Development
Environment

" The UNIX operating system earned its reputation
above all by providing an unexcelled environment for
software development. The make and sccs (rcs)
utilities are widely regarded as the greatest
contributors to the efficiency of this environment.
Although the immense growth of the computer
industry and the increasing scale of software projects
reveal limitations in these tools, most of their
potential successors are just extensions along the
lines of principles established by make and sccs."

Z Managing Projects with make, Andrew Oram
and Steve Talbott

make

[From the make man page:

\ The purpose of the make utility is to determine
automatically which pieces of programs need to be
recompiled and issues the commands to recompile
them.

[Using a description file (makefile) make creates a
sequence of commands for execution by the
UNIX shell

Description File

] Using an editor, create a file named:

^_ `ba cd eba

or

fg_ `ba cd eba

h This file specifies two things:

i the dependencies

i the shell commands necessary to make a new version
of a file

Using make

After editing any source file, just type:

jk lbm

and the appropriate commands will be executed

makefile

no p qr st no p qr sDu
v s n vxw y no p q r sw y

z{ { | y no p qr s n o p q r s u
v s n v w y no p qr sw y

no p qr su
v s n vw y t n o p q r s u
v s n vxw { n o p q r sw }

z{ { | { no p qr s u
v s n vxw {

no p qr sw y t no p qr sw { no p qr sw }

z{ { | { no p qr sw {

: represents a tab character

Steps for Efficient Software
Development

~ Create a directory for program development

� Create .h and .c files

� Create Makefile

� Type make

errors revise files

� Run program

� Done

make target

� You can specify several targets in a single
makefile

� By default the first target is the only one
examined (along with any rules for its
dependencies)

� Can build any target in the description file:

�� �b� ��� � � �

� If no prerequisite files modified since last time
target was created, make issues the message:

� ��� � � � � �b� � � ��� �b� ���

make macros

 Real-life description files are much more succinct
than our previous example, due to:

¡ macros

¢ suffix rules

£ Simple macro

token = replacement text

¤ To recall a macro

$(token)

Example makefile with macro

¥¦ § ¨ © ª« ¬ ­® ¯D°
± ¯ ª ±x² ³ ª« ¬ ­ ® ¯² ³

´µ ¶· ¸ ¨ © ¹ º ­ » »

ª« ¬ ­ ® ¯¼ ½¾ ¥ ¦ § ¨ ¿

ÀÁ Á ¹ ³ ª« ¬ ­® ¯ ½ ¾ ¥¦ § ¨ ¿

ª« ¬ ­ ® ¯°
± ¯ ª ±x² ³ ¼ ª« ¬ ­ ® ¯D°
± ¯ ª ± ² Á ª« ¬ ­ ® ¯² Â

ÀÁ Á ¹ Á ª« ¬ ­® ¯D°
± ¯ ª ± ² Á ½ ¾ ´ µ ¶· ¸ ¨ ¿

ª« ¬ ­ ® ¯² ³ ¼ ª« ¬ ­® ¯² Á ª« ¬ ­® ¯² Â

ÀÁ Á ¹ Á ª« ¬ ­® ¯² Á ½ ¾ ´µ ¶ · ¸ ¨ ¿

make macros

Ã Macro names are uppercase by convention

Ä You can use macros in macro definitions

ÅÆ Ç È ÉÊ Ë

ÌÍ ÎÏ È ÐÏ É ÐÒÑ
ÓÔ Å Æ Ç Õ

Ö Macro definitions that have no string after "=" are
assigned null string

× You don't have to worry about the order in which
you define macros

Internally defined macros

Ø Ù Ú

: recognized as C compiler

ÛbÜ Ý Þbß à áâ Û Ü Ý Þbß à ßãä å å æ ç ß ÛÜ Ý Þbß à ß

same as:

èbé ê ëbì í îï è é ê ëbì í ì

ì ì ð ì èé ê ëì í ì

ñ Note that ò ò typically linked to óô ô command in Linux

õ Can redefine internally defined macros:

ö ö ÷ øbù úû üþý û ÿ �� � � �

� C compiler and linker flags:

�� �� 	
 � �� � �� 	

Internally defined macros

 macro evaluates to current target

� ��� �� �� � � � ��� ��� � ��� � � �� � � � � � �

� � � � � � � � � � � � �� � � � � � �

make suffix rules

! Can simplify description file even further

" C language source files always have # $ suffix,
Fortran source files have % suffix.

& C and Fortran compilers automatically place
object modules in ' (files

) make uses these and other conventions

make example revisited

* + , - . /0 12
3 1 - 354 6 - . / 0 14 6

78 9 + , : / ; ;

- . / 0 1< = * + >

?@ A A B C D ?E ?@ FG H I B ?@ AJ KL M I B

N O PQ RS
T R N T5U VW N O PQ RU

N O PQ RU VW N O PQ RU

make and header files

X Keeping track of all the header files can be tricky

Y Can be automated (see Managing Projects with
Make, pp. 85-87

Z [[\ runs only the preprocessor and produces
a dependency list suitable for make

] ^_ _ ` a bc d ef gih _

bc d ef gh jk bc d ef gh _ bc d ef gh l

 make all target

m We said make by default only processes the first
target rule

n What if we want to compile several independent
targets?

o We can create a special target rule as the first rule

p By convention this target is called "all"

q r rts uv wx yz { |

 make all target

} This will work fine as long as we define the
macro

~� �

 to equal the names of all the
executables we want to create

�� �� � � �� �� �� � �� � � �� � � � � � �� � � � �

� This means that we simply type make and the first
target is processed, which in turn processes each
of the targets � �� �

, � �� �

, � �� �

,
...

touch command

� � ¡ ¢ £ ¢ ¤¥ ¦ § ¤

¨ The UNIX command touch is used to update the
modification timestamp of a file.

© It sets the time to the current system time

ª If the file does not exist, a zero-byte file is created

« If ¬ ­ option is used, no file is created

® Very useful for testing makefiles and forcing
complete recompiles

