
Modules

CS2023 Winter 2004

Outcomes: Modules

� “C for Java Programmers”, Chapter 7, sections 7.4.1 -
7.4.6

� Code Complete, Chapter 6

� After the conclusion of this section you should be able to

� Understand why modules are needed

� Start creating your own modules, complete with header files

� Understand the relationship between client, interface, and
implementation

Functional vs Modular
Decomposition

� Goal of functional (procedural) decomposition:

� Collection of loosely coupled and strongly cohesive functions

� In reality many functions will be coupled through the data they
share

Software in CS2023

Specification

Design

Programming

Debugging

Testing

1 Person
102 Lines of Code
1 Type of Machine
0 Modifications
1 Week

Software in the Real World

Specification

Design

Programming

Debugging

Testing

Lots of People
106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

Good Software in the Real World

� Understandable

� Well-designed

� Consistent

� Documented

� Robust

� Works for any input

� Tested

� Reusable

� Components

� Efficient

� Only matters for 1%

Good Software in the Real World

� Understandable

� Well-designed

� Consistent

� Documented� Robust

� Works for any input

� Tested

� Reusable

� Components

� Efficient

� Only matters for 1%

Write code in modules
 with well-defined interfaces

Write code in modules
 and test them separately

Write code in modules
 that can be used elsewhere

Write code in modules
 and optimize the slow ones

Functional vs Modular
Decomposition

	 Goal of modular decomposition:

 “Allow one module to be written with little knowledge of the
code in another module

 Allow modules to be reassembled and replaced without
reassembly of the whole system”

David Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules”, Comm. ACM vol. 15 no. 12, 1053
(1972)

Modules

� Programs are made up of many modules

� Each module is small and does one thing

� string manipulation

� mathematical functions

� Set, stack, queue, list, ...

� Deciding how to break up a program into modules is a
key to good software design

Modularity: Cohesion & Coupling

 Want each module to be a black box with a well-
defined functionality

 Module cohesion

� Cohesive data and functionality

� Group of services that belong together

� E.g. cruise control simulator:

� Set the speed

� Resume former speed

� Deactivate

� Plus functions for internal use

Modularity: Cohesion & Coupling

� Module Coupling

� Offer complete set of services (through interface)

� GetCurrentSettings(), SetSpeed(),
ResumeFormerSpeed(), Deactivate()

� If services incomplete, other functions might have to
read or write its internal data directly

� Functions in a module will be strongly coupled
through its data

� Not as bad as global data, which is visible to all functions

� Modular data can be kept hidden from other modules

Modules: RPN Calculator

� Evaluate integer expressions entered in Reverse
Polish notation

� e.g. user enters expression:

� � � � � �

� program prints its value:
�� �

� Program reads numbers and operators one by one

 number: push it onto stack

! operator:

" pop two numbers

perform operation

$ push result

Modules: RPN Calculator

% Problem decomposition:

1. Stack representation and operations

& ' (*) + , & +

. Push, Pop, etc..

2. Main program

- ./ 0 .21 .

Modules: RPN Calculator

3 Main program:

while more tokens

read a token

if token is a number

 push it on a stack

if token is an operator

 pop its operands from stack

 perform operation

 push result back in stack

Modules in Separate Files

4 Each module can be compiled separately

5 saves time!

6 78 8 9 8 : ;*< 8 => 8

? compiles but does link

@ produces A BDC E FHG I object code

J Modules more easily reused if kept in separate
files

K How can a function in one file call a function
that's defined in another file?

Recall: from source file to runnable
program

Text
Editor

Source
File

Compiler

Linker

Object
Module

Runnable
Program

Library Routines

program.c program.o

program

Standard libraries
User-supplied modules and libraries

Building multi-file programs

L Compile modules separately, to produce object
files for each module (such as M N OP Q R)

S When compiling main program, give also name of
module object files on command line

TU U V W U X Y U U X Y U Z U [\ XU] Z W

^ Can also compile and link all files at same time:

_` ` a b ` c d ` ` c d ` e ` f g c` h e `

Header Files

i A function may be defined in one file and called in
another file, as long as the call is preceded by the
function declaration.

j Recall:

k include header files for standard C library:

l mon p qsr tou v wx yz {| y }

Search directory(ies) in which system header files
reside (usually /usr/include)

Header Files

~ include all other header files (including
programmer's own)

� �o� � �s� �o� � �� �� �� � �

Search current directory
Best not to include absolute path:

#include "d:utils.h"
#include "\cprogs\utils.h:

#include "utils.h"
#include "../include/utils.h"

Header Files: Macros and Typedef

� Most large programs contain macro and type
definitions that need to be shared by several
source files

� e.g. need macros

�� �

,
�� � ��

, and

��� � �

 type

� Instead of repeating definitions in each source
file, put them in a header file!

� save time copying definitions

� program easier to modify

Boolean Header File

 ¡£¢ ¤¥ ¦ §

¨ ©oª «¬ ­ ª ®¯ °± ²

¨ ©oª «¬ ­ ª ³´ µ ¶ ± ·

¸º¹ » ª © ª « ¬ ­ ¸ ¼¾½ ½ ¿sÀ

Á ÂÄÃ Å ÆÈÇ ÉÄÊ ËÌ Í Í Æ Ê ÎÃ Ï Ð Ë Á ÂÄÃ Å ÆÈÇ ÉÄÊ ËÌ Í Í Æ Ê ÎÃ Ï Ð Ë

Headers and Function Prototypes

Ñ Already seen that calling functions without
declaring them is risky!

Ò Why not declare function in file where it's called?

Ó Better to put declaration in a header file and
include header file in places where function is
called

Ô if function

Õ

 is defined in

Ös× × Ø Ù, put its declaration
in

ÚsÛ Û Ü Ý

Þ include

ßsà à á â
 in files where

ã

 is called

ä do we need to include

åsæ æ ç è

 in

ésê ê ë ì?

Headers and Function Prototypes

í î ïð ñóò ôõ

öø÷ ù úû ü ýþ ù ÿ� ü � ö ÷ ù ú û ü � �

�
� ü � ù� � � � ��	

 � �
 ��� �

��� � �� � �� � �� � � � � ! "$#

% & '()* +) % +-, ./

0 1�2 3 4$5 6�7 89 : 6 1�; < =?>0 1�2 3 4$5 6�7 @ 9 A5 BC 7 < = @

12 : D B 1�2 EF

G
12 : 1$H

9 3 B2 I E @J 6 @LK M 1F H

NC 1�2 : I E @J O P2 @LK9 A5 BC 7 E 1F F

C 7 : 5 C 2 Q HR

Headers and Function Prototypes

S Always include the header file declaring a
function in the source file that contains 's
definition.

T If U UWV X contains other functions, most should
be declared in same header file as f.

Y Functions that are only needed by Z ZW[\
shouldn't be declared in]]W^

_ "secrets" user of module doesn't need to know

RPN Program

` acb d egf hci jck lnm d oqp r j

sm acb tu
v

p p pxw m oci y sz l|{ tu }

p p p�~
� � a h w m oci y s z l{ tu }acb l �k y s z l{ tu }acb l �k � f e e t u }

� � a h �f k r t a b l au }acb l � � z tu }

` acb d egf hci jk lnm d oqp r j

�� � e � �m e �m � p � �

� � a h w m oi y s z l{ tu

v p p p ~

ab l �k y sz l{ tu

v p p p ~

ab l �k � f e e t u

v p p p ~

� � a h �f k r t a b l au

v p p p ~

ab l � � z tu

v p p p ~

� � � ��� �
�� � � �� � � � � � �� �

Sharing Variables

� To share a function, put its definition in one source file,
and declarations in files that need to call the function� Sharing variables done in much the same way� ��� � ���

� �

 declared to be a variable of type

�� ¡

, and defined
by compiler setting aside space for

¢

£ To declare

¤

 without defining it, use ¥¦ § ¥¨ © keyword:

ª «¬ ­ «® ¯ ° ¯ ­ °�±

² extern informs compiler that

³

 is defined elsewhere in the
program, so no need to allocate space for it.

Sharing Variables

´ When declarations of the same variable appear in
different files, compiler can't check that declarations
match variable's definition

µ similar to problem with functions (see earlier)

¶ One file:

·�¸ ¹ ·�º

» Another file: ¼½ ¾ ¼¿ À Á�Â Ã ÄÅ ¼ Æ�Ç

È Declarations of shared variables usually put in header
files

É Sharing variables defeats the purpose of modularization

Nested Includes

Ê A header file may itself contain

Ë ÌÎÍ Ï ÐÒÑ Ó
directives

Ô Õ ÖØ× Ù Ú Û

Ü�Ý Þ ßáà âáã ä Þæå çè éÜ�Ý Þ ßáà êìë í í çè é

î Use

ïñð ð ò

 type:

óáô ô õ öá÷ øáù ú ûæü ýþ ÿóáô ô õ öá÷ ��� õ õ ýþ ÿ

� Need to include � � ��� �	
 in � ��
 � �

"file3.h" included twice

� ��� � ��� ��� � � � � � ��� �

� � � � ��� ��� � � � � � !� �

� � � � ��� ��� � � � � � " � �

� � � � ��� ��� � � � � � �� �

#$ %&(')

+ ,�- .' /+ , - 0' /

*+ , - 1' /

Protecting Header Files

2 Multiple inclusion not a concern if header file contains
only macro definitions, function prototypes, or variable
declarations

3 If header file contains type definition, compilation error
will result

4 576 6 879 :; < =?>

@ A BDC EGF B H I IJ KL MN O

@ EGF B A C F H I IJ KL MN O

@ EGF B A C F PQ R K S

@ EGF B A C F T L J U K V

WYX Z F EGF B A C W H\[[]D^

@ F C E A B

Interfaces

_ An interface defines what the module does

` decouples clients from implementation

a hide implementation details

b An interface specifies

c data types and variables

d Functions that may be invoked

e Interfaces are defined in header files

f g hi j\k lGm n\o p qYr st u

hGv q w\x no p q r s t u

hGv q w\x y{z | | s t u

f g hi }z x ~ s h v q ht u

hGv q } g p st u
� �� � ��� �

Implementations

� An implementation defines how the module does it

� Can have many implementations for one interface

� different algorithms for different situations

� Machine dependencies, efficiency, etc...

� Implementations are defined in source files (.c)

�G� � �\� �\� � �Y� ��

�
� � � ��

� �� � ��� �

Clients

 A client uses a module via its interface

¡ Clients see only the interface

¢ can use module without knowing its implementation

£ Client is unaffected if implementation changes

¤ As long as interface stays the same

¥ Clients “include” header files

¦G§ ¨ ©Dª «G¬ ­G® ¯±° ¨ ²´³ µ¶

¦G§ ¯ ·° ¦ § ¸¹ º

» µ ¦ © ¬ ¸® ¨° § ¼ ¸ ­½ « ¶ ¾ ¿ ¦¹ ÀÂÁ Ã ÄÅ ¹

Æª ® µ ¸ ¦¹

³ ³ ³ ³Ç

Clients, Interfaces, Implementations

È Interfaces are contracts between clients and
implementations

É Clients must use interface correctly

Ê Implementations must do what they advertise

Client

Implementation

Interface

