Pointers & Arrays

CS2023 Winter 2004

Outcomes: Pointers & Arrays

* “C for Java Programmers”, Chapter 8, section 8.12, and
Chapter 10, section 10.2

e (Other textbooks on C on reserve

* After the conclusion of this section you should be able to

— Identify how pointers and array are similar and how they are
different

— Use pointers to traverse C arrays (1D and 2D) and pointer
subtraction to count how many elements have been traversed

— Use pointers to pass portions of C arrays to functions

Arrays and Pointers

* A single-dimensional array is a typed constant pointer
initialized to point to a block of memory that can hold a
number of objects.

int 1d[1000];
int *pid;
1d is an 1nt pointer that points to a block of memory that
can hold 1000 integer objects
pid is a pointer to 1nt.

id = pid;
pid = 1id;

Arrays and Pointers

* When an array is declared, compiler allocates enough
contiguous space in memory to contain all the elements
of array

int a[100], *p;
* Base address of array 1s address of first element of array.

Say bytes numbered 300, 304, 308, ..., 696 are alocated
as addresses of a[0], a[1],... a[99]

P = a; isequivalenttop = &a[0];
Causes 300 to be assigned to p

N

O 1 2 3 4 5 ..9

Arrays Assignment and Pointers

* (Can access first element of an array using:
al0] = 5;

* or through pointer:
P = a,

P =53
* (Can access other elements of a using pointer arithmetic

P\
\
a >

O 1 2 3 4 5 .9

Pointer Arithmetic

Valid operations on pointers include:

- the sum of a pointer and an integer
- the difference of a pointer and an integer
- pointer comparison

- the difference of two pointers.

Sum of Pointer and Integer

* To access other objects in the block of memory pointed
to p, use

D + n

where n 1s an integer. This expression yields a pointer to
the n-th object beyond the one that p currently points to.

* The exact meaning of "object" 1s determined by the type
of p.

Sum of Pointer and Integer

int a[3], *p;

P = a;
*p = 1;
*(p + 1) = 2;
*(p + 2) = 3;
i 1203
b A

Sum of Pointer and Integer

int a[10], *p, *q;

p
\/
p = a + 2; a 3
*p = 3 0 1 23 456 7 89
|
p q
\J
q=p + 3; a 3 6
*q = 63 0 1 23 456 7 8 9
- Yy
q | p
\J
p += 6; 9 3 6 9

0O 1 2 3 4 56 7 8 9

Sum of Pointer and Integer: ith object

To access the i-th object 1n a memory
block:

*(p+1)

or

pl[i]

pL0] and *p are equivalent.

Sum of Pointer and Integer: ith object

ffdefine SIZE 3
double a[SIZE], *p;

p = a;
for(1 = 0; 1 < SIZE; i++)
if(scanf("%1f", p+i) == 0) /* no & */
ex1t(EXIT_FAILURE);

#*(p+SIZE) = 1.2;

Difference of Pointer and Integer

Often, we need to access objects preceding the object
pointed to by a pointer q .

q-—-1n

yields a pointer to the n-th object before the one
that q currently points to.

Difference of Pointer and Integer

int a[10], *p, *q;

P
\J
p = a + 8; a 9
.v.p=9 O 1 2 3 4 56 7 8 9
y
q P
\j
q=p - 3; a 6 9
o O 1 2 3 4 56 7 8 9
oq=6;
p q |
P = 6; 9 3 6 9
-,',‘p_3. 0 1 2 3 456 7 89
= oy

Example

#define SIZE 3

int *p, *q, a[SIZE];

P = a;
.. /¥ 1nitialize the block */
/* output in reverse order */

for(i = 0, q = p+SIZE-1; i < SIZE; i++)

printf("%f\n", *(q-1)); p q

Careful!

Given a block of memory of SIZE objects, pointed to by p,
you can set q to point to the last object in the block using:

p+SIZE-1
rather than

p+SIZE

(‘off by one’ error).

Pointer Comparison

* Two pointers of the same type, p and q, may be compared
as long as both of them point to objects within a single
memory block

* Pointers may be compared using the <, >, <=, >=, ==, I=

* When you are comparing two pointers, you are comparing
the values of those pointers rather than the contents of
memory locations pointed to by these pointers

Pointers and traversals

Assuming
double *p, *pi;
and p pointing to an array of SIZE doubles:

for(pi = p, product
product *= *pi;

1; p1 < p+SIZE; pi++)

/* print backwards */
for(pi = p+SIZE-1; pi >= p; pi--)
printf("%f\n", *pi);

Block Traversal Idiom

for(pi = p; p1 < p+SIZE; pi++)
use pi here

Example: largest element

/* Return the largest element in array p */
double find_largest(double p[], int n)

{

double *max, *pi;

for(max = p, pi = p+l; pi < p+n; pi++)
if(*max < *pi)
max = pi;

return *max;

}

Example: block copy

Copy the contents of a block (or array) pointed to by p of
size STZE to another block pointed to by q:

double *pi, *qi;
double p[SIZE], q[SIZE]

for(qi = q, pi = p; qi < q+SIZE; qi++,
pi++)
7'€qi — 7'€pi;

Pointer Subtraction

Given two pointers, P and q, such that:
e both pointers are of the same type,
* P>q
e both point to objects in a single memory block,
the expression
P-4
yields the number of objects between p and q,

including the object pointed to by (.

The type of the result of pointer difference is ptrdiff_t,
defined in stddef.h.

Pointer Subtraction

int a[10], *p, *q;

a; \ Y

P

ad

a + 3; 0 123456789

q
printf("'%d", q-p);

Output: 3

Example

Find the first occurrence of the value 0 in a block of
integers (EOF if not found):

int position;

int *p, *p1i;

/* p 1nitialized */

for(pi = p; pi < p+SIZE; pi++)
if(*pi == 0)
break;
position = (pi == p+SIZE) ? EOF : pi-p+1;

Example

Find the first occurrence of the value 0 in a block of
integers (EOF if not found):

int position; :
. o p pi
int *p, *pi;
/* p initialized */ \ v
a 1 2 0
for(pi = p; pi < p+SIZE; pi++)
if(*pi == 0) position=3

break;
position = (p1i == p+SIZE) ? EOF : pi-p+1;

Arrays as Parameters

When arrays are used as function parameters, they are
actually

treated as pointers. The following two declarations are
equivalent:

int maxiA(double arr[], int size):
int maxiP(double *arr, int size);

The second parameter 1s necessary to specify the size of the
array.

int readArray(int x[], int size) {
int *pi;

for(pi = x; pi1 < p1 + size; pi++)
if(scanf("%d", pi) '= 1)
return 0;
return 1;

}

void printArray(int x[], int size) {
int *pi;

for(pi = x; pi < pi + size; pi++)
printf(%d", *pi);

/* Applications of readArray and printArray */
#define SIZE 20
double d[SIZE];
if(readArray(d, SIZE) == 0)
error;
printArray(d, SIZE);
printArray(d, SIZE - 10); /* prefix */
printArray(d + 2, SIZE - 2); /* suffix */

printArray(d + 2, 5); /* segment */

Are Arrays and Pointers
Interchangeable?

* Array parameters are interchangeable with pointer
parameters, but array variables are not the same as
pointer variables.

e C compiler converts name of an array to a constant
pointer when necessary

* sizeof(array) returns number of bytes occupied by array,
whereas sizeof(pointer) returns number of bytes used to
store pointer

Are Arrays and Pointers
Interchangeable?

int id [1000];

int *pointerld;

sizeof(id) is 1000*sizeof(int)
sizeof(pointerId) is the number of bytes used to

store a pointer to an int.

Pointers & Multi-Dimensional Arrays

type arr[sl][s?2];

e example:
int x[2][3];

01| 2 <4row0 x[0]
314 |5 4¢rowl 1]

X

* Arrays stored in row-major order

O 1|23 4]|5

row 0 row 1

Pointers & Multi-Dimensional Arrays

int a[NUM_ROWS][NUM_COLS];
int row, col;

for(row = 0; row < NUM_ROWS; row++)
for(col = 0; col < NUM_COLS; col++)

alfrow][col] = O;
View a as a one-dimensional array of integers:

int *p;
for (p =)&a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1];
p++
“p = 0;

Pointers & Multi-Dimensional Arrays

Point to row 1 in array a:

int *p;

p = &[1][0];
or.

p = a[i];

since a[1] is the 1th row of a

contrast with single-dimensional array where a[1] equivalent
to *(a+1)

Pointers & Multi-Dimensional Arrays

Clear row 1 of array a:

int int a[NUM_ROWS][NUM_COLS], *p, 1;

for (p 3 a[i]l; p < a[i] + NUM_COLS; p++)
“p = 03

Can pass a[1] to a function that is expecting a one-
dimensional array as its argument. Find largest element
in row 1 of a:

largest = find_largest(a[i], NUM_COLS);

Pointers & Multi-Dimensional Arrays

Caution:

* The base address of a two-dimensional array a 1s

&a[0][0], not a.
* The array name a by itself is equivalent to &a [0]

Storage Mapping Function

int a[3][5];
al1][J] isequivalentto *(&a[0][0] + 51 + J)

* Note that column size is required in storage mapping
function, which 1s why it must be specified in function
declaration

1int sum(int a[J[NCOLS], NROWS)

