Pointers

CS2023 Winter 2004

Outcomes: Introduction to Pointers

* “C for Java Programmers”, Chapter 8, sections 8.1-8.8
* Other textbooks on C on reserve

e After the conclusion of this section you should be able to

— Describe the two separate areas of memory: heap and stack
— Declare and 1nitialize pointers of the appropriate type
— Dereference and copy pointers

— Describe generic pointers and the NULL macro (we'll use
these soon)

Addresses

 Each variable occupies one or more bytes of
memory

e Address of first byte 1s address of variable

address contents

0 01010011
2000
1 01110011 2001 :
2002 1's address is
' 2003 2000
n-1 01000011 -

Memory Management

* Compilers manage memory in three main parts:

1) Global and static variables

#include <stdio.h>
int f(int j);

int k = 0;

int main ()

{

int 1;
i= £0k);

}

int f(int j){
static int counter;
int m;

.. }

Memory Management

 Compilers manage memory in three main parts:

1) Global and static variables: never cease to exist!

* Addresses compiled into code
* Allocated at compile time

* limited to fixed-size objects

Memory Management

* Compilers manage memory in three main parts:

2) Automatic variables

#include <stdio.h>
int f(int j);

int k = 0;

int main ()

{
int 1i;
1 = f(k);
}
int f(int j){
static int counter;
int m;

..}

Memory Management

 Compilers manage memory in three main parts:

2) Automatic variables: also called stack variables
* Size known at compile time

* Stored on a stack (run-time stack)

jm
return value f
return address

i i i main

main calls

Memory Management

 Compilers manage memory in three main parts:

2) Automatic variables: also called stack variables

* Function that terminates always the last called

e Never a hole 1n the stack!

Memory Management

 Compilers manage memory in three main parts:

3) Dynamically allocated variables

* Memory allocated and destroyed at run time, under
control of programmer!

* No guarantee that first variable to be destroyed 1s
last created

* This area of memory can have holes and is called

the heap

Memory Management

e Usually heap and stack begin at opposite ends of
the program's memory, and grow towards each

other
logical address space

code @ static heap free stack
memory

— -

low high

Memory Management

Stack-based memory: implicitly managed by function calls
and function returns.

Advantage: you do not have to be concerned with
deallocation.

Disadvantage: may lead to programming errors, €.g.

dangling reference problem
a variable referencing a memory block
whose lifetime has expired

Memory Management

Heap-based memory: explicitly managed by the
programmer.

May result in heap fragmentation

C programmers are responsible for memory management

Improper memory management may lead to memory
leakage

Memory 1s a resource, and has to be managed like any other
resource (e.g. file handles for open files)

Pointers

* A pointer is a variable whose value 1s a memory

address representing the location of the chunk of
memory on either the run-time stack or on the heap.

* Pointers have names, values and types.

* Value of p versus value pointed to by p

Pointers

object at memory location
2000

P 1
2000

q

Declaring Pointers

For any C data type T, you can define a variable of type
"pointer to T":

int *p; pointer to 1nt, or 1nt pointer
char *q; pointer to char, or char pointer
double **w; pointer to pointer to double
Here:

p may point to a block of s1zeof(int) bytes
g may point to a block of sizeof(char) bytes
W may point to a block of s1zeof(double*) bytes

Declaring Pointers

* The placement of the whitespace around the asterisk in a
pointer declaration 1s a convention

int* p;
int * p;
int *p;

We will use the third convention

Address Operator

* Declaring a pointer variable sets aside space for a pointer
but doesn't make 1t point to an object

int *p;

* Need to initialize p El—>
int 1, *p;

. p 1
p = &1;

1 is an 1nt variable

&1 is like an 1nt pointer, pointing to the variable 1

(but you must not assign to it)

Dereterencing: Indirection Operator

int 1,

&I
S &I
D 1

printf("%d\n", 1); /* prints 1/
printf("%d\n", *p); /* prints 1/

Dereferencing: Indirection Operator

“p = 2; [-] III[
p 1

printf("%d\n", 1); /* prints 2/
printf("%d\n", *p); /* prints 2/

Can change variable 1 without actually using 1

e use this to implement function call by reference

Dereferencing: Indirection Operator

* Never dereference an unitialized pointer!

int *p;

printf("'%d", p); /* prints garbage */
* Assigning a value to *p much worse!

int *p;

*p = 1;

* Where does p point to? It might point to memory
belonging to the program, causing it to behave

erratically, or to memory belonging to another process,
causing a segmentation fault.

Adresses and Values of variables

inti=1, j =2, *pi = &J;

printf("&i=%p, &j=%p, &pi=%p\n", &i, &j, &pi);
printf("pi=%p, *pi=%d, i=%d, j=%d\n", pi, *pi, i, J);
return 0;

0x0bO
Address: oxob4 0x0ac

1 ‘ 2 OxObOI

i j pi

Pointer Assignment

* Can copy pointers of the same type

int 1, J, *p, *Qq; D_,-
P = &1; .

q = p; P +

g

o) 1

a¥a
©» p

Pointer Assignment

Pointer Assignment

* Don't confuse g=p with *q=*p

int i, j, *p, *q; D_>.
P = &i;
qQ = &J;

D 1
:':q — -.':p; D

q J

Using pointers: example 1
int 1, J, *pi;
scanf("%d%d", &i, &j);

pi = i> 3 7 &i: &j;
printf("%d\n", *pi);

Using pointers: example 2

int i, j:
int *pi = &1;
int *pj = &J;

scanf("%d%d", pi, pj);

printf("%d\n", *pi > *pj ? *pi : *pJ);

Don't need the & operator 1n scanf, because p1 and pj are
already pointers

Using pointers: example 3

Why bother using 1 and j?
int *pi;
int *pj;

scanf("%d%d", pi, pj);

What will go wrong?

const pointers and pointers to const

const int *p; pointer to a constant integer, the
value of p may change, but the value of *p can not

int *const p; constant pointer to integer; the value
of *p can change, but the value of p can not

const int *const p; constant pointer to constant
integer.

Generic Pointers

* A reference to "any" kind of object

use a variable of type void*
vold *p;

defines a generic, or typeless pointer p. Often cast to

(T*)p

Generic pointers cannot be deferenced. Must cast.

Generic Pointers

Data stored in a memory object can be recovered as a value
of a specific data type. For example, for a generic
pointer

void *p

which points to an object containing a double value,

you can retrieve this value using the following syntax:

(double)p

Generic Pointers

void *p;

char ¢ = 'c’;
char *cp = &c;
Can assign to p:

p = Cp,

but not dereference it:
putchar(*p);
Have to use cast:

putchar(*(char*)p);

NULL macro

* Special "zero" value that 1s useful to initialize
pointers, and then to compare pointer's value:

- 1f(p == NULL) ..

* NULL defined in six headers, including
stdio.hand stdlib.h

