
Pointers

CS2023 Winter 2004

Outcomes: Introduction to Pointers

� “C for Java Programmers”, Chapter 8, sections 8.1-8.8

� Other textbooks on C on reserve

� After the conclusion of this section you should be able to

� Describe the two separate areas of memory: heap and stack

� Declare and initialize pointers of the appropriate type

� Dereference and copy pointers

� Describe generic pointers and the NULL macro (we'll use
these soon)

Addresses

� Each variable occupies one or more bytes of
memory

� Address of first byte is address of variable

�� �� � �� �

�� � � � �� �

�� � � � �� �
���

0

1

n-1

� � �	�
� � �
 � �
 � ��

�����
�����

2000

2001
2002

2003

�
�

's address is
2000

Memory Management

� Compilers manage memory in three main parts:

1) Global and static variables� ��� � ��� �! "# $ � ��% & ')(�� $ *+ � � $,- .�� $ / 0 1 .�� $ 23 � � + -

4
��� $ � .

& & &� 0 *+ /- .

& & &5
�� $ *+ � � $,- 4

$ 3 $ � � �� $ � % � � $ 6 .��� $ 2 .

& & & 5

Memory Management

7 Compilers manage memory in three main parts:

1) Global and static variables: never cease to exist!

8 Addresses compiled into code

8 Allocated at compile time

8 limited to fixed-size objects

Memory Management

9 Compilers manage memory in three main parts:

2) Automatic variables: ;�< = >�? @!A BC D @ ;�E F G)H;< D IJ ; < D KL M;< D N O P M;< D QR ; < J L

S
;�< D ; M

F F F; O IJ NL M

F F FT
;< D IJ ; < D KL S

C D R D ; = ;< D = E ? < D A U M;�< D Q M

F F F T

Memory Management

V Compilers manage memory in three main parts:

2) Automatic variables: also called stack variables

W Size known at compile time

W Stored on a stack (run-time stack)

X

Y Z

return value
return address

X X

main calls f

main

f

Memory Management

[Compilers manage memory in three main parts:

2) Automatic variables: also called stack variables

\ Function that terminates always the last called

\ Never a hole in the stack!

Memory Management

] Compilers manage memory in three main parts:

3) Dynamically allocated variables

^ Memory allocated and destroyed at run time, under
control of programmer!

^ No guarantee that first variable to be destroyed is
last created

^ This area of memory can have holes and is called
the heap

Memory Management

_ Usually heap and stack begin at opposite ends of
the program's memory, and grow towards each
other

`a bdc e fg f h ` ic g j e fg ` klnm c c
oc oa mp

q a r i hts i

q a s h ` g q g b b m c e e e j g `c

Memory Management

Stack-based memory: implicitly managed by function calls
and function returns.

 Advantage: you do not have to be concerned with
deallocation.

 Disadvantage: may lead to programming errors, e.g.

 dangling reference problem
 a variable referencing a memory block
 whose lifetime has expired

Memory Management

Heap-based memory: explicitly managed by the
programmer.

May result in heap fragmentation

C programmers are responsible for memory management
Improper memory management may lead to memory

leakage

Memory is a resource, and has to be managed like any other
resource (e.g. file handles for open files)

Pointers

u A pointer is a variable whose value is a memory
address representing the location of the chunk of
memory on either the run-time stack or on the heap.

v Pointers have names, values and types.

w Value of p versus value pointed to by p

Pointers

2000

x

24

y z{}| ~ �� �� | � y�� � y ~� � � y��� � �

2000

�

24

�
2000

�

Declaring Pointers

For any C data type T, you can define a variable of type
 "pointer to T":

��� � ��� � pointer to

��� �

, or
��� �

 pointer

� ��� � ��� � pointer to ¡�¢ £, or ¤ ¥�¦ § pointer¨�© ª «¬ ­ ® ®°¯ ± pointer to pointer to

²�³ ´ µ¶ ·

Here:

¸ may point to a block of ¹ º¼» ½¾ ¿À º�Á Â Ã

 bytes

Ä may point to a block of Å Æ¼Ç ÈÉ ÊË Ì Í�Î Ï Ð

 bytes

Ñ may point to a block of Ò Ó¼Ô ÕÖ ×Ø ÙÖ Ú ÛÜ Õ Ý Þ

 bytes

Declaring Pointers

ß The placement of the whitespace around the asterisk in a
pointer declaration is a convention

à�á â ã äå

à�á â ã äå

à�á â ã äå

We will use the third convention

Address Operator

æ Declaring a pointer variable sets aside space for a pointer
but doesn't make it point to an objectç�è é ê�ë ì

í Need to initialize î

ï�ð ñ ïò ó îô

î õ ö ïô

ï

 is an

÷�ø ù

 variableú û

 is like an

ü�ý þ
 pointer, pointing to the variable

ÿ

(but you must not assign to it)

�

?

�

Dereferencing: Indirection Operator

��� � �� �	�

� � � �

� �

� � � � � �� �� � � � � ��
 � � � � � ���

� � � � � �� �� � � � � �	� �
 � � � � � ���

�

?

�

�

1

�

Dereferencing: Indirection Operator

�	� � � �

� ! "�# $ %& '() # '* "+ � � � ! "�# $�, �

� ! "�# $ %& '() # '* �� + � � � ! "�# $�, �

Can change variable
-

 without actually using

.

• use this to implement function call by reference
/

2

0

Dereferencing: Indirection Operator

1 Never dereference an unitialized pointer!

2�3 4 5	6 7

6 8 2�3 4 9: ;< = ;> 6 ? 7 5 @A B�C D�E FG A H G FI J K

L Assigning a value to

M	N much worse!

O�P Q R	S T

R S U V T

W Where does X point to? It might point to memory
belonging to the program, causing it to behave
erratically, or to memory belonging to another process,
causing a segmentation fault.

Adresses and Values of variables

Y[Z \ Y] ^`_ a] b _ ced Y] f ahg

d i Y[Z \ jk l f Y] md _ f a] md _ fd Y] md nZ l _ f Y_ f a _ fd Yo g

d i Y[Z \ jk l d Y] md _ ced Y] m p_ Y] m p_ a] m p nZ l _ d Y_ ced Y_ Y_ a o g

iq \sr i Z tg

1 2 uwv u x u

y z z[{ |} } ~ �w� � �� �w� � � � �� ����

� � � �

Pointer Assignment

� Can copy pointers of the same type

��� � �� � � �	� � �	� �

� � � � �

� � � �

� � � � �

�

?
�

�

�

1
�

�

Pointer Assignment

�	� � �

¡

2

¢

£

Pointer Assignment

¤ Don't confuse q=p with *q=*p

¥�¦ § ¥¨ © ¨ ª	« ¨ ª	¬ ­

« ® ¯ ¥ ­

¬ ® ¯ © ­

¥ ® ° ­

ª¬ ® ª	« ­

±

?
²

³
?

´

µ

1
¶

·
1

¸

Using pointers: example 1

¹�º » ¹¼ ½ ¼ ¾	¿ ¹ÁÀ

ÂÃ Äº ÅÆ ÇÈ ÉÈ É Ç ¼ Ê ¹¼ Ê ½Ë À

¿ ¹ Ì ¹ Í ½ Î Ê ¹ÁÏ Ê ½ À

¿ Ð ¹º » ÅÆ ÇÈ É º Ç ¼ ¾ ¿ ¹Ë À

Using pointers: example 2

Ñ�Ò Ó ÑÔ ÕÁÖ

Ñ�Ò Ó ×	Ø Ñ Ù Ú ÑÖ

Ñ�Ò Ó ×	Ø Õ Ù Ú Õ Ö

ÛÜ ÝÒ Þß àá âá â à Ô Ø ÑÔ Ø Õã Ö

Ø ä ÑÒ Ó Þß àá â Ò à Ô ×Ø Ñ å ×	Ø Õ æ ×	Ø Ñ ç ×	Ø Õ ã Ö

Don't need the & operator in scanf, because pi and pj are
already pointers

Using pointers: example 3

Why bother using i and j?

è�é ê ë	ì èÁí

è�é ê ë	ì î í

ïð ñé òó ôõ öõ ö ô÷ ì è÷ ì îø í

What will go wrong?

const pointers and pointers to const

ùú ûü ý þ û ý ÿ�� � pointer to a constant integer, the
value of � may change, but the value of

��� can not

��� 	
�� � �
 	 �� constant pointer to integer; the value
of

��� can change, but the value of � can not

�� �� � � � � � �� �� � �� constant pointer to constant
integer.

Generic Pointers

• A reference to "any" kind of object
 use a variable of type � � ��

� � �� �! "

defines a generic, or typeless pointer #. Often cast to $% & '�(

Generic pointers cannot be deferenced. Must cast.

Generic Pointers

Data stored in a memory object can be recovered as a value
of a specific data type. For example, for a generic
pointer

) * +, -�.

which points to an object containing a double value,
you can retrieve this value using the following syntax:

/ 01 23 45 6 / 7�8

Generic Pointers

9 : ;< =�> ?

@ A�B C @ D E @ E ?

@ A�B C = @> D F @ ?

Can assign to p:

G H I GJ

but not dereference it:

KL MON P�Q R ST K UWV

Have to use cast:

XY ZO[\�] ^ _` _ [\�] ^` a X aWb

NULL macro

c Special "zero" value that is useful to initialize
pointers, and then to compare pointer's value:

d if(p == NULL) ...

e NULL defined in six headers, including

f g hji k and l m no

p

