Functions (cont'd):
Scope and Lifetime of Variables
Recursive Functions

CS2023 Winter 2004




Outcomes: Functions (cont'd)

* “C for Java Programmers”, Chapters 7 (section 7.3 —
you don't need to read 7.4-7.7); also see other books on
C on reserve in the library

e After the conclusion of this section you should be able to

— distinguish the scope and lifetime of local and global variables
in a C program

— Modify the lifetime of a local variable using static

— Use recursion in C



Scope and Lifetime

* Scope of a variable 1s the region of the program in
which it 1s visible

* The lifetime of a variable is the period of time
during which memory is allocated to the variable

* Since storage 1s freed 1n the reverse order of

allocation, a stack 1s a convenient data structure to

represent 1t with
e (the run time stack)

* C's scope rules use files (Java uses classes).



[Local Variables

int log2(int n)

i
int log = 0; /* local variable */

while(n > 1) {
n /= 2;
log++;

5

return log;

}



[Local Variables

* Variables declared in the body of a function or
block

int £f() {
int 1;

}
e [.ocal variables have

— automatic storage duration

— block scope



Global Variables

* Global variables are defined outside the body of
functions 1n the file. Scope starts at point of definition
and lifetime same as main.

int flag = 0; /* global */
int £ {

}

int out = 1; /% global */
int main() {



What Gets Printed?

int a=1, b=2, c=3; /* global variables */
int fQ);

int main()

{
printf("%3d\n”, f());
printf(“%3d%3d%3d\n”, a, b, c);

return 0;

3

int £(O{
int b, c; /* b and c are local */
a=b-=c-=4; /* global b,c are masked *

return (a + b + ¢);

}



Global Variables

e (Global variables should be used with caution, and
always carefully documented.

* Changing the value of a global variable as a result
of calling a function should be avoided; these side-
effects make testing, debugging, and in general
maintaining the code very ditficult.




int 1; .

void print_row(); What Gets Printed?
void print_matrix();

int main()

{
print_matrix();
return 0;

}

void print_row()

{

for (1 = 1; i<= 10; i++)
printf(“*");

}

void print_matrix()

{

for (i = 1; i<= 10; i++){
print_row();
printf(“\n");
H
H



Initialization of Variables

* at compile time:
const int a = 3 * 44;
* at run time:

double x = sqrt(2.66);

* The value of a local variable that 1s declared, but
not 1nitialized, 1s undefined.

e GGlobal variables are initialized to a ""zero" value.



Changing Storage Duration

e Static storage class for local variables
(declared inside a block or function) - the lifetime
of the entire program:

void login() {
static int counter = 0;
counter++;

}

Changes only lifetime not scope, therefore counter not
visibile outside function



Organizing a C Program

Preprocessor directives such as #1nclude and #define
Type definitions (typedef)
Declarations of functions and global variables

Function Definitions (beginning with main)
— Each doesn't take effect until the line at which it appears

* Recommended order:
#include directive
#define directives
Type definitions
Declaration of global variables
Prototypes for functions other than main
Definition of maln
Definition of other functions



Recursive Functions

int sum(int n)

{
if (n <= 1) /* base case */
return n;
else
return (n + sum(n - 1));
}
Function call Value returned
sum(1) 1
sum(2) 2+sum(l)or2+1
sum(3) 3+sum(2)or3+2+1

sum(4) 4+sum(3)ord+3+2+1



/* write a line backwards */
vold write_1t();

1int main()
{
printf(“Input a line: “);
write_it();
printf(“\n”);
return O;

}

vold write_1t()
{
int c; /* each call has i1ts own local storage */
1f ((c = getchar()) != '"\n')
write_1t();
putchar(c);
}



