
Functions (cont'd):
Scope and Lifetime of Variables

Recursive Functions

CS2023 Winter 2004

Outcomes: Functions (cont'd)

� “C for Java Programmers”, Chapters 7 (section 7.3 –
you don't need to read 7.4-7.7); also see other books on
C on reserve in the library

� After the conclusion of this section you should be able to

� distinguish the scope and lifetime of local and global variables
in a C program

� Modify the lifetime of a local variable using static

� Use recursion in C

Scope and Lifetime

� Scope of a variable is the region of the program in
which it is visible

� The lifetime of a variable is the period of time
during which memory is allocated to the variable

� Since storage is freed in the reverse order of
allocation, a stack is a convenient data structure to
represent it with

� (the run time stack)

� C's scope rules use files (Java uses classes).

Local Variables

��� � ��	
 � � � � � �

�
� � � �	
 � ��� � �	 �� � �� � �� � ��� �

� � � � � � � � �
 �

� � � �

��	
 � � �

�
� � �! � � �	
�

�

Local Variables

" Variables declared in the body of a function or
block

#�$ % &' ()

#$ % #+*

,
-

" Local variables have

. automatic storage duration

. block scope

Global Variables

/ Global variables are defined outside the body of
functions in the file. Scope starts at point of definition
and lifetime same as main.

0�1 2 34 56 7 8�9 : 6 4 ; < 5 4 :

0�1 2 3= > ?

@
A

0�1 2 ;B 2 7 C9 : 6 4 ; < 5 4 :

0�1 2 D 5 0 1 = > ?

E E E
A

What Gets Printed?

FHG I JK LNM O K P M QK RTS UV W XHY O J X Z J[F J O XH\] V U

FHG I ^_ ` S

FHG I a J FG _ `

b
c [FHG I ^_ de R fg G h M ^_ ` ` S

c [FHG I ^_ ie R fe R fe R fg G h M JM OM Q ` S

[\ Ikj [G lS

m
FHG I ^_ ` b

FHG I OM QS UV O J G f Q J[\ XY Q J X V U

J K O K Q K nS UV W XHY O J X OM Q J[\ a J] o\ f V U

[\ Ikj [G _ J p O p Q ` S

m

Global Variables

q Global variables should be used with caution, and
always carefully documented.

q Changing the value of a global variable as a result
of calling a function should be avoided; these side-
effects make testing, debugging, and in general
maintaining the code very difficult.

What Gets Printed?

rHs t rvu

w x ry z{ rHs t}| { x~ �� u

w x ry z{ rHs t}| �� t { rv� �� u

rHs t �� rs ��

�

z{ r s t}| �� t { rv� �� u

{ � tk� { s � u

�
w x ry z{ rHs t}| { x~ ��

�
� x { � r � � u r�� � � � u r�� � �

z{ rs t � �� � �� u

�
w x ry z{ rHs t}| �� t { rv� ��

�
� x { � r � � u r�� � � � u r�� � � �

z{ rs t}| { x~ �� u

z{ rs t � �� �s �� u

�
�

Initialization of Variables

� at compile time:

�� �� � � � � � � � � � ��

� at run time:

� ¡ ¢¤£ ¥ � � ¦ � §¨ © ª ª «

� The value of a local variable that is declared, but
not initialized, is undefined.

� Global variables are initialized to a "zero" value.

Changing Storage Duration

¬ Static storage class for local variables

(declared inside a block or function) - the lifetime
of the entire program:

­ ® ¯° ± ®² ¯�³ ´µ ¶

· ¸º¹ ¸ ¯�» ¯³ ¸ » ®¼ ³ ¸º½ ¾ ¿ À�Á

» ®¼ ³ ¸½ ¾ Â Â Á

Ã Ã

Ä

Changes only lifetime not scope, therefore counter not
visibile outside function

Organizing a C Program
Preprocessor directives such as

Å ÆÈÇ É ÊÌË ÍÈÎ and

Ï ÐÈÑ ÒÓ ÔÑ

Type definitions (

ÕºÖ ×Ø ÙØ Ú

)
Declarations of functions and global variables
Function Definitions (beginning with ÛÜ ÝÈÞ)

ß Each doesn't take effect until the line at which it appears

à Recommended order:
 #include directive
 #define directives

Type definitions
Declaration of global variables
Prototypes for functions other than áâ ãHä

Definition of åæ çHè
Definition of other functions

Recursive Functions

éHê ë ìí î ï éHê ë ê ð

ñ
é ò ï ê óõô ö ð ÷ø ùHú ìû ü ú ì û ø ÷

ýû ë í ýê ê þ

û ÿ ìû
ýû ë í ýê ï ê � ìí î ï ê � ö ð ð þ

�

Function call Value returned
sum(1) 1
sum(2) 2 + sum(1) or 2 + 1
sum(3) 3 + sum(2) or 3 + 2 + 1
sum(4) 4 + sum(3) or 4 + 3 + 2 + 1

�� � � �	�
 � � ��

 � �� � � � � ��� � �

� � � � � � ��
��
�� �� �

�
 � � � �
 ��

�
� � �
 � � ��
 �! � � � ��

" � � �

� � ��
 �
�� �� �

� � �
 � � �� #
 $ � �

�
� ! �
 % �

&
� � � � � � ��
��
�� ��

�
�
 � � � ��
 �� ' � � � � ' �� �� � � �
 � � � � � � � � � �(
 � �

� � � � �) (
� � ' � � �� � *) + #
 + �

� � ��
 �
�� � � �

�! � � ' � � � � � �

&

