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Outcomes: Functions (cont'd)

� “C for Java Programmers”, Chapters  7 (section 7.3 – 
you don't need to read 7.4-7.7); also see other books on 
C on reserve in the library

� After the conclusion of this section you should be able to

� distinguish the scope and lifetime of local and global variables 
in a C program

� Modify the lifetime of a local variable using static

� Use recursion in C



Scope and Lifetime

� Scope of a variable is the region of the program in 
which it is visible

� The lifetime of a variable is the period of time 
during which memory is allocated to the variable

� Since storage is freed in the reverse order of 
allocation, a stack is a convenient data structure to 
represent it with 

� (the run time stack)

� C's scope rules use files (Java uses classes).



Local Variables
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Local Variables

" Variables declared in the body of a function or 
block

#�$ % &' ( )

#$ % #+*

,
-

" Local variables have

. automatic storage duration

. block scope



Global Variables

/ Global variables are defined outside the body of  
functions in the file. Scope starts at point of definition 
and lifetime same as main.
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What Gets Printed?
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Global Variables

q Global variables should be used with caution, and 
always carefully documented. 

q Changing the value of a global variable as a result 
of calling a function should be avoided; these side-
effects make testing, debugging, and in general 
maintaining the code very difficult. 



What Gets Printed?
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Initialization of Variables

� at compile time:

�� �� � � � � � � � � � �� 

� at run time:
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� The value of a local variable that is declared, but 
not initialized, is undefined. 

� Global variables are initialized to a "zero" value.



Changing Storage Duration

¬ Static storage class for local variables 

(declared inside a block or function) - the lifetime 
of the entire program:

­ ® ¯° ± ®² ¯�³ ´µ ¶

· ¸º¹ ¸ ¯�» ¯³ ¸ » ®¼ ³ ¸º½ ¾ ¿ À�Á
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Changes only lifetime not scope, therefore counter not 
visibile outside function



Organizing a C Program
Preprocessor directives such as 

Å ÆÈÇ É ÊÌË ÍÈÎ  and 

Ï ÐÈÑ ÒÓ ÔÑ

Type definitions (

ÕºÖ ×Ø ÙØ Ú

)
Declarations of functions and global variables
Function Definitions (beginning with ÛÜ ÝÈÞ )

ß Each doesn't take effect until the line at which it appears

à Recommended order:
      #include directive
      #define directives

Type definitions
Declaration of global variables
Prototypes for functions other than áâ ãHä

Definition of åæ çHè
Definition of other functions



Recursive Functions
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Function call Value returned
sum(1) 1
sum(2) 2 + sum(1) or 2 + 1
sum(3) 3 + sum(2) or 3 + 2 + 1
sum(4) 4 + sum(3) or 4 + 3 + 2 + 1
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