Strings (part 1)

CS2023 Winter 2004

Outcomes: Strings (part 1)

e “C for Java Programmers”, Chapter 9
¢ (Other textbooks on C on reserve

e After the conclusion of this section you should be able to

— Use functions that process single characters
— Define strings and string constants

— Perform formatted and line-oriented string 1/0

Character Processing Functions

In ctype.h header

To classify:

int
int
int
int
int
int
int

isalnum(int
isalpha(int
1slower(int
isupper(int
isdigit(int

isxdigit(int c)
isodigit(int c)

1S C an alphanumeric
1s C an alphabetic letter
1s C a lower case letter
1S C an upper case letter
1s C a digit
1s C a hexadecimal digit

1s C an octal digit

Character Processing Functions

To classify (continued):

 1nt isprint(int c) is cC printable (not a control
character)

 1nt isgraph(int c) is c printable (not a space)

 1nt ispunct(int c) is c printable (not space or
alphanumeric)

 1nt isspace(int c) is c whitespace
To convert:

 int tolower(int c)

 int toupper(int c)

What does this program do?

#include <stdio.h>
#include <ctype.h>

int main(){

int c, v;

v=0;

while(isdigit(c = getchar()))
v=v®*10 + (c - '0");

printf("%d\n", v);

return 1;

3

Strings 1n C

e C stores a string in a block of memory.

* The string is terminated by the \ 0 character:

S

s[0] s[1]

Definitions of Strings

Strings are defined as pointers to characters:

char *s;

To allocate memory for a string that can hold up to 10
characters:

#define SIZE 10

1f((s = Qflloc((SIZE+1)*sizeof(char)))

s[0] = '\'0 , T

"Memory allocation" Idiom

Definitions of Strings

s[0] = "\O° makes s a null string.

Safer to use calloc, which initializes the block to
null:

if((s = calloc(n+l, sizeof(char)))
== NULL) ..

Definitions of Strings

* 1-th character of a string

- To refer to the 1-th character in the string S, use
s[1], where 0 <= 1 < lengthof s.

e Careful: Imtialized pointers are not necessarily
initialized strings.

— If an 1nitialized pointer points to a memory block that
does not contain the null character, the string is not
initialized.

s Definitions of Strings

v

H e 1 1 0 \O

s[0] s[1]

The string S above has the length 5; "hello"

s+1 (asuffix of s)haslength4; "ello"

s+2 (a suffix of s) haslength 3; "1lo"

s+5 (a suffix of S) has a length 0; (it is a null string) """

However, s+6 is not well defined.

String Constants

char *name = "Kasia'';
char *p;
p —_ “abC!!

* Also known as string literals

e “a” represented as a pointer to memory location
that contains character a (followed by null
character)

e Character constant “@’ is represented by an
integer

String Constants

* The block of memory for a string constant should not be

modified, as this may cause programs to behave
erratically

char *p = “abc”, *q = *“abc”

- Some compilers will store ““abc” just once, making both p

and q point to it. If “abc’ changed through p , then string that
q points to also affected.

* Therefore, do not reset any of the characters in the
constant string:

char *name = "Kasia'';
name[0] = 'B’;

Character Arrays vs. Character
Pointers

char date[] = “June 14”;

— Declares date to be an array of characters

— Characters can be modified, like the elements of any
array

- date is an array name

char *date = “June 14”;
— Declares date to be a pointer to a string constant
— Characters shouldn’t be modified

- date is a pointer variable that can be made to point
to other strings during program execution.

Initialization of Strings

* To create a string to be modified, it 1s
programmer’s responsibility to either set up an
array of characters

char s[SIZE+1], *p;

P = S;

or to allocate memory for the string:

s = calloc((SIZE+1)*sizeof(char))

Initialization of Strings

char *p;
p[0] = fa’;
p[1] = ‘b’;
pl2] = ‘c’;
p[3] = *\0’;

We don’t know where P 1s pointing!

Initialization of Strings

char datel[8] = “June 14”
char date[] = “June 14”

Jlu| n|e 1 4 | \O

char date2[9] = “June 14”

Jlu| n e 1 (4 | \O|\O

char date3[7] = “June 14”

J|/ u|/ nj|e 1 4

String Parameters

C strings can be used as parameters as any other pointers

void modify(char *s) {
} S [O] = toupper(S [O]) ; "Memory allocation" Idiom

char *p; /* modify(p); */ i

1if((p = calloc(10, sizeof(char))) == NULL)
error

p[0] = 'h'; p[1] = "o'; /* p[2] == '\0' */
modify(p);

< "String suffix" Idiom

modify(p+1);

char *q = "hello";
modify(q);

String Parameters

/* Same as strlen() */
int length(const char *s) {
char *p;

for(p = s; *p; p++) /* *p != '"\O' */

return p - s;

for(p =

use “p

Traversing a String

S; *pP; p++)

char *strdup(const char *s) { /* return copy of s

0/
char *kopy; /* copy of s */
char *ps; /* used for copying */
char *pkopy; /* for copying */
if((kopy

=calloc((length(s)+1),sizeof(char)))==NULL)
return NULL;

/* memory allocated, now copy */

for (ps = s, pkopy = kopy; *ps; ps++, pkopy++)

“pkopy = *ps;
“pkopy = “ps; A

"String Traversal" Idiom
return kopy;

}

char *modify(const char *s) {

/* return a copy of s modified */

char *news;

1if((news = strdup(s)) == NULL)

return NULL;

news[0] = toupper(news[0]);

4_

return news;

}

"1-th character"
Idiom

char *q = modify("c for java");
char *s = modify("c for java" + 6);

(the last one returns “Java”)

*.

"String Suffix" Idiom

String Parameters & Return Values

void modifyl(const char *s, char
**news) {
/* return through parameter a copy of s
modified*/
1if(s == NULL)
return;

*news = strdup(s);

(*news)[0] = toupper((*news)[0]);
L
char *p;
modifyl("hello", &p);

Formatted String 1/0

The formal control string %S is used for string I/O.

Leading whitespace characters are skipped in a search
for the first

non-whitespace character, and input stops when a word
1s read

(a word 1s a sequence of characters not containing any
whitespace).

Therefore, scanf () can read at most one word.

Formatted String 1/0

To 1nput a string use:
scanf("%s", s)
rather than:
scanf("'%s", &s)

make sure that S is 1nitialized; 1.e. there 1s some memory
allocated for s (for example, using calloc())

make sure that there 1s enough memory allocated for S,
and consider using the field width to avoid overtlow.

if(scanf("%10s", s) 1= 1)
error

int lower(char *s) { /¥ return number of l.c. letters */
int 1i;
char *q;
for(i =0, q = s; *q; q++)
if(islower(*q))
1++;
return i;
}
int main() {
const int M = 10;
char *p;
1if((p = calloc(M + 1, sizeof(char)) == NULL)
return EXIT_FAILURE;
1if(scanf("%10s", p) '= 1)
return EXIT_FAILURE;
printf("%d lower case letters in %s\n", lower(p), p);
return EXIT SUCCESS;

Formatted String 1/0

There are two formatted string I/0 operations:

int sscanf(s, "format", arguments)
int sprintf(s, "format", arguments)

#define N 100
int 1; double d; char *s;

if((s = calloc(N+1,sizeof(char)))
NULL)

return EXIT_FAILURE;
sprintf(s, "%s %d %f", "test', 1, 1.5);
if(sscanf(s+4, "%d%f", &i, &d) !'= 2)

Line-Oriented String 1/0

char* fgets(char *buf, int n, FILE *in);

* reads a line from the file 1n, and stores it in the block
pointed to by buf. Stops reading when:

- n-1 characters have been read
- end-of-line has been encountered; (\n is stored at the end of buf)

- end-of-file has been encountered.

* In any case, buf is always properly terminated (\0 is
stored).

* The function returns buf if successful and NULL if no
characters have been read or there has been a reading error.

Line-Oriented String 1/0

Read a line at most n-1 characters from a file
1if(fgets(buffer, n, £) == NULL)
error

/* find the length of the longest line; at most max */
long longest(const char *fname, const int max) {
char *1ine;

FILE *f;

long i = 0;

if((f = fopen(fname, "r")) == NULL)
return -1;

1f((line = calloc(max + 1, sizeof(char))) == NULL) {
fclose(f); return -1;
}
while(fgets(line, max, f) != NULL)
if(strlen(line) > i)
1 = strlen(line);
free(line);
1if(fclose(f) == EOF)
return -1;
return i - 1;

