Testing

CS2023 Winter 2004

Why Test?

* The Practice of Programming, Chapter 6

* Demonstrate the presence of bugs, not their
absence

* How to write bug-iree code?
* Think about potential problems as you code

* Test systematically and use automated tests
* Generate the code with a program

e Use functions, and test them individually

Test as You Write the Code

e Test code at its boundaries

int 1;
char s[MAX]:
for (1 = 0; (s[1] = getchar()) != "\n’

&& i < MAX-1; 1i++)

s[--1] = "\0';

Test as You Write the Code

Use 1idiom!
int 1i;
char s[MAX]:

for (1 = 0; 1 < MAX-1; i++)
if ((s[1i] = getchar()) == '\n')
break;
s[1] = "\0O';

Test as You Write the Code

int 1i;
char s[MAX]:

for (1 =0; 1 < MAX-1; i++)
if ((s[1i] = getchar()) == '\n' ||
s[i] == EOF)
break;

s[1] = "\0O";

Test as You Write the Code
int c, 1i;
char s[MAX]:
for (1 =0; 1 < MAX-1; i++)

{
if ((c = getchar()) == '\n' ||

c == EOF)
break;
s[i] = c;
}
s[1] = "\0';

* What about outer boundary?
What happens if line 1s longer than MAX?

Test pre- and post- conditions

* Verily that expected or necessary properties hold
before and after some piece of code executes

* Pre-condition example:

Test pre- and post- conditions

double avg(double a[], int n)
{

int 1;
double sum;

sum = 0.0;

for (1 = 0; 1 < n; 1i++)
sum += a[i];

return sum/n;

what if n 1s zero or negative?

Test pre- and post- conditions

double avg(double a[], int n)
{

int 1;
double sum;

sum = 0.0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return n <= 0?7 0.0 : sum/n;

Preconditions

1 >=0 precondition to computing sqrt(1)
— postcondition is the desired square root of 1
e b*b - 4*a*c >=0 precondition to finding
real roots of a quadratic equation

e 0 <= 1 < size precondition for using X[1]
when X declared as X[s1ze]

Assertions

* Pre- and postconditions are types of assertions

* A piece of code is considered correct if all the
precondition assertions will lead to the
postcondition assertions once the code 1s
executed.

e Cprovides assert(int e) macro (assert.h)

- If @ == 0, error message displayed and execution of
program aborted

- If e =0, assert(e) does nothing

Assertions

e assert(1 >=0) before calling sqrt(1)

e assert (b*b - 4*a*c >=0) before
finding real roots of a quadratic equation

e assert(0 <= 1 < size) before using

x[1]

Assertions

#include <assert.h>
double avg(double a[], int n)

{
int 1;
double sum;

assert(n > 0);

sum = 0.0;

for (1 = 0; 1 < n; 1i++)
sum += a[i];

return sum/n;

Assertions

e call avg with n <= 0, program aborts:

assert: assert.c:9: avg: assertion 'n > 0' failed

e Assertions slow down execution

* Can turn them off by defining NDEBUG prior to
including <assert.h>:

#define NDEBUG
#include <assert.h>

* Can also define NDEBUG on compilation line:
gcc -DNDEBUG ...

When to use assertions

* Assertions useful for validating properties of
parameters passed to functions

— Can draw attention to inconsistencies between caller
and callee

e Assertions can indicate who's at fault

— If assertion of precondition fails, fault 1s with the
caller of the function

— If assertion of postcondition fails, fault 1s with the
function itself

Defensive Programming

e Test for "can't happen" cases, such as previous
avg example

if (grade < 0 || grade > 100)

letter = '?';

else if (grade <= 90)
letter = 'A';

else

* What to test for: null pointers, out of range
subscripts, division by zero,....

Check Error Returns

* Check error returns from library functions
int 1;
scanf("%d", &1);
printf("%d", 1);

int 1;

1if(scanf("%d", &1) != 1) {
fprintf(stderr, "Invalid input\n");
return 1;

}
printf("%d", 1i);

Example

int factorial(int n)
{
int fac;
fac = 1;
while (n--)
fac *= n;
return fac;

Example

int factorial(int n)

{
int fac;
fac = 1;
while (n){
fac *= n;
n--,
}

return fac;

}

Example

int factorial(int n)
{
int fac;
if(n < 0) return O0;
fac = 1;

while (n){
fac *= n;
n--;

}

return fac;

}

Another Example

* Print characters of a string one per line

1 =0;
do {
putchar(s[i++]);
putchar('\n');
} while (s[1] !'= '\0');

Another Example

1=0;
while (s[1] !'= "\0'){
putchar(s[i++]);

putchar('\n');
L

Systematic Testing

* Test incrementally
— Don't write large program then test it all at once

e Test each function

 Eg. function that performs binary search on array
of integers. Try searching:

— array with no elements

— array with one element, and trial value that 1s

¢ less than element
* equal to element

* greater than single element

Systematic Testing

— array with two elements and trial values that check all
five possible positions

 Build a test scaffold
int i, key, nelem, arr[1000];

while(scanf("%d %d", &key, &nelem)!=EOF){
for (i = 0; 1 < nelem; i++)
arr[i] = 2*1 + 1;
printf("%d\n", binsearch(key, arr, nelem));

}

return 0;

Systematic Testing

e Know what output to expect!

- not always obvious
e compilers

* numerical algorithms (are output properties sane?)

* Important to validate output by comparing it with
known values

* If program has an inverse, check that input
recovered. (eg, encryption-decription)

Regression Testing

 Compare new version of output with old version

— compare old (old_ka) and new (new_ka) versions of ka
program for a large number of different test files

for
do

done

i in ka_data.* #loop over test data files

old_ka $i > outl # run old version
new_ka $i > out2 # run new version
if ! cmp -s outl out2 #compare output
then

echo $i: BAD #different: print message
fi

