
CCCG 2006, Kingston, Ontario, August 14–16, 2006

Computing the Tool Path of an Externally Monotone Polygon in Linear Time∗

Prosenjit Bose† David Bremner ‡ Diane Souvaine§

1 Introduction

A Numerically-Controlled (NC) machine typically con-
sists of a worktable and a spindle (or cutter) with several
axes of freedom for positioning the tool. In this paper,
we restrict our attention to machines having only trans-
lational freedom. We focus on 2D milling, which can
only cut out planar objects, and 2 1

2D milling where only
two of the axes are continuous-path controlled and the
third axis is point-to-point or straight-line controlled.
More than 80% of all mechanical parts to be machined
can be cut by applying 2D or 2 1

2D for path control [11].
We study contour-parallel milling where a pocket is

machined by having a cutter following paths that are
equidistant offset curves from the boundary of the ob-
ject. Although there are many types of cutters, the most
common is the ball-end cutter. Such a cutter removes a
disc whose radius is the radius of the ball.

We focus on the following basic problem: given an
object, modelled by a simple polygon on n vertices, and
the radius of the ball-end cutter, compute the boundary
or outer tool path for the cutter and the complete tool
path for the cutter. In Held [11], it is shown how to
compute both these tool paths by using the medial axis
(see [2]). The medial axis can be computed fairly easily
in O(n log n) time. In the specific case of a simple poly-
gon, it can even be computed in O(n) time [6]. How-
ever, the O(n) time algorithm is of theoretical interest
only since it is quite complex and also uses Chazelle’s
[4] linear–time triangulation algorithm which in itself is
extremely complex. The challenge is to simply and effi-
ciently compute both the outer and complete tool path
of a simple polygon in O(n) time.

In this paper, we demonstrate a simple and efficient
method to compute the outer and complete tool path
of a fairly general class of polygons called externally
monotone. A simple polygon is externally monotone if
for every point inside a pocket, there is a path to the lid
of the pocket that is monotone in the direction normal
to the lid. To date, this is the most general class of
polygons for which a simple and efficient linear time
algorithm to compute the tool path is known.

In Section 2, we review notation and preliminaries re-
lated to the results. In Section 3, we show how to com-

∗The first two authors partially supported by NSERC Canada
†School of C.S., Carleton University, Ottawa, Canada.
‡Faculty of C.S., U. New Brunswick, Fredericton, Canada
§Dept. Computer Science, Tufts University, Medford MA

pute the tool path for an externally monotone polygon.
Finally, we present conclusions and open problems in
Section 4.

2 Preliminaries

In this section, we review some notation and prelimi-
naries. Many of the definitions and background can be
found in de Berg et al. [2] and Held [11].

A simple polygon P is defined by a set of vertices
v1, v2, . . . , vn−1, vn in counter-clockwise order such that
each pair of consecutive vertices is joined by an edge,
including the pair {vn, v1}. The interior of the polygon
P is denoted by int(P), and the boundary by ∂P . The
boundary is considered part of the polygon; that is, P =
int(P) ∪ ∂P .

The convex hull, CH (P) of a simple polygon P is
the smallest convex polygon containing P . The pockets
of a simple polygon P are the areas outside P but in
CH (P). Each pocket is a simple polygon in itself and
its boundary is formed by edges of P and one edge of
the convex hull called a lid.

A polygonal chain is monotone with respect to direc-
tion d if the intersection of the chain and any line per-
pendicular to d is a convex set. Let L = {l1, l2, . . . , ln}
and R = {r1, r2, . . . , rm} be two polygonal chains mono-
tone with respect to the y-axis. The chain R is to the
right of L provided that for every horizontal line h in-
tersecting both R and L, the x-coordinate of the in-
tersection point of R and h is greater than that of the
x-coordinate of the intersection point of L and h.

Let C(t) = (x(t), y(t)) be a curve, where t is a real
parameter. An offset curve C ′(t) = C(t)+r ·N(t) where
r is a positive constant representing the offset distance
and N(t) is the unit normal to the curve. Notice that de-
pending on the direction of the normal chosen, the offset
may be to one side or the other of the given curve. We
will refer to the chosen direction as the offset direction.

To accommodate the singularities at vertices, we
slightly modify the definition of an offset curve. We
define the offset of a vertex to be a circular arc centered
at the vertex, and the extent of the arc is determined
by the perpendiculars of the line segments that meet at
the vertex (see Figure 1). The offset of a line segment
is simply the translation of the given line segment by
the offset distance. This definition leads to a natural
definition of the offset of a polygonal chain.

 85

18th Canadian Conference on Computational Geometry, 2006

Offset

Offset
convex

vertex

concave

vertex

Figure 1: Offset of a convex and concave vertex shown
in bold.

The offset of a polygonal chain is the concatenation
of the offset of its edges and vertices. The offset of a
polygonal chain may be to one side or the other of the
chain depending on the offset direction chosen for the
offset distance. While traversing a polygonal chain C
in its given order, if the offset of an edge is to the right
of the edge it is a right offset and symmetrically, if the
offset of an edge is to the left of the edge it is a left
offset.

The offset of a polygonal chain may be self-
intersecting (see Figure 2). The tool path of a polygo-
nal chain consists of the portion of the offset that can
be followed by the cutter without removing any part of
the chain. More formally, a point p is on the tool path
provided that p is on the offset and a circle of radius r
centered at p contains no part of the polygonal chain in
its interior. The tool path of a simple polygon is simply
the tool path of its boundary.

Figure 2: Offset of a polygonal chain may be self-
intersecting.

The tool path of a polygonal chain is not necessarily
a single chain but may consist of several chains (see
Figure 3). One of these chains is of particular interest,
namely the outer tool path. A point p is on the outer
tool path provided that p is on the tool path and a
circle of radius r centered at p can be moved to infinity
without ever intersecting the chain in its interior (see
Figure 3). However, the tool path of a monotone chain
is a single chain consisting of straight edges and circular
arcs. This property of the tool path of monotone chains
is vital to the algorithm.

Outer Tool Path

Offset distance

r

Figure 3: Example of a chain having two components
to the tool path. Tool path is shown in bold.

3 Computing the Tool Paths for an Externally
Monotone Polygons

Computing the tool path of a convex polygon is trivial.
The difficulty in computing the tool path of a simple
polygon lies in computing the tool path of each of its
pockets. We begin by looking at a special case.

3.1 Tool Path of a special type of pocket

Before studying the general problem, we first examine a
special case that will shed some light on the more gen-
eral problem. Suppose polygon P has a pocket whose
boundary consists of a lid (edge [l1, r1]) and two mono-
tone chains L = {l1, l2, . . . , ln} and R = {r1, r2, . . . , rm}
with R being to the right of L and the two chains share
their ends, i.e. ln = rm. Without loss of generality,
assume that the lid is horizontal and the two chains are
monotone with respect to the y-axis.

There are two steps involved in computing the tool
path. Given an offset distance r, the first step is to
compute the tool path of the right offset of chain L and
the left offset of chain R. Chou et al. [5] present a simple
and elegant algorithm that computes the tool path of a
monotone chain in O(k) time where k is the size of the
chain. The algorithm is similar in spirit to Graham’s
scan [10] and the only data structure used is a stack.

Let L′ and R′ be the tool path of the right offset of
L and left offset of R, respectively, as computed by the
algorithm of Chou et al. [5]. The next step in computing
the tool path for the pocket is to find the intersection
points (i1, . . . , ik) between L′ and R′. There must be
at least one intersection point since R and L share the
vertex ln = rm. Since both L′ and R′ are monotone
chains, the intersections can be computed in a manner
similar to the merging of two sorted lists (see [7]).

Note that the intersection points divide both L′ and
R′ into k+1 pieces. Let L′

1, . . . , L
′
k+1 and R′

1, . . . , R
′
k+1

denote the k + 1 pieces of L′ and R′ respectively.

86

CCCG 2006, Kingston, Ontario, August 14–16, 2006

Once both these steps are complete, both the outer
tool path and the complete tool path can be computed.
The outer tool path consists of L′

1 ∪ R′
1. In fact, when

computing the outer tool path, one can stop the second
step after the first intersection point has been found.
The complete tool path is the set of paths L′

2t+1∪R′
2t+1

for all 0 ≤ t ≤ k/2.

3.2 Outer and Complete Tool Path

We now consider the more general problem of comput-
ing the complete tool path of an externally monotone
polygon P .

Recall that a polygon P is externally monotone if for
every point inside a pocket, there is a path to the lid of
the pocket that is monotone in the direction normal to
the lid. We assume for simplicity that our polygon con-
tains no horizontal edges other than the lid. A polygon
Q is internally monotone from a root e provided there
is a path from every point in Q to the edge e that is
monotone in the direction normal to e. A polygon is
externally monotone provided that each of its pockets
is internally monotone from its lid.

Given an internally monotone polygon, we can always
re-orient it so that its root is horizontal; henceforth we
assume that all internally monotone polygons are re-
oriented such that their root is horizontal. A vertex v is
called critical if it is a reflex vertex tangent to a horizon-
tal line. Critical vertices may be classified as upward ,
where ∂P is below the tangent line in the open neigh-
bourhood of v, and downward otherwise. Without loss
of generality, assume that lid of our pocket is horizontal
and strictly above every non-lid vertex of the pocket.
The following lemma follows from e.g. Lemma 2 in [3].

Lemma 1 A pocket is internally monotone from its lid
if and only if it has no downward critical vertices.

Lemma 1 provides a very simple test to determine
if a pocket is internally monotone from its lid, and to
decompose the boundary of a pocket into maximal left
(of the polygon interior) and right monotone chains.
Let C = {c1, c2, . . . , cp} be the sequence of vertices of
the boundary of a pocket. Assume the lid is the hor-
izontal edge [c1, cp]. The first maximal left monotone
chain is the sequence {c1, . . . , cj} where cj is the first
local y-minimum. The first maximal right chain is
the sequence {cj , . . . , ck} where ck is the first local y-
maximum after cj . The local maxima play a special role
in this decomposition. We will refer to them as split ver-
tices for reasons which will be clear in the sequel.

Let [L1, . . . , Lj] and [R1, . . . , Rj] be the sequence of
maximal monotone left and right chains, respectively,
in the order that they occur along the boundary (which
is identical to the order in which they are computed by
the above method). Note that Li and Ri share a vertex

i

a

b
c

r

Figure 4: Illustration of proof of Lemma 2.

that is a local minimum and Ri and Li+1 share a vertex
that is a local maximum. To compute the tool path of
the pocket, we first compute the right tool path of the
Li’s, denoted by L′

i, using the algorithm of Chou et al.
[5] and similarly the left tool path of the Ri’s, denoted
by R′

i.
Although L′

i and R′
i can intersect a linear number of

times, it turns out two left tool paths (or two right tool
paths) can only feasibly intersect once. An intersection
point i between two tool paths is feasible provided that
a circle C of radius r centered at i does not contain any
part of ∂P in its interior. In the special case of two left
tool paths intersecting at ij , let aj (repectively bj) de-
note the intersection of C and the leftmost (respectively
rightmost) of the pair of tool paths (see Figure 4). It
follows from monotonicity that aj and bj are both in the
left half circle of C. We classify intersection points ij as
upper (resp. lower) if aj is above (resp. below) bj . We
omit the proof of the following lemma in this abstract.

Lemma 2 (a) The right tool paths of two maximal left
monotone chains have at most one feasible upper inter-
section. (b) If ij is a lower intersection point, then the
polygon P has a lower critical vertex.

We now discuss how to compute the intersection
points of the right tool paths of maximal monotone left
chains. The computation is symmetric for the left tool
paths of the right monotone chains. Along with the
previous lemma, a key ingredient which allows one to
to merge a set of left tool paths in constant amortized
time per tool path is the following lemma.

Lemma 3 Let Li, Lj and Lk be three maximal left
chains such that i < j < k. If L′

k intersects L′
j it does

so no higher than any upper intersection of L′
i and L′

j

and no lower than any lower intersection of L′
i and L′

j.

We now turn our attention to split points (or local
maxima). Consider Figure 5. Notice that a split point
cleanly divides the problem of computing a tool path
into two portions. No tool path of polygonal chains in
C1 can properly intersect tool paths of chains in C2.

 87

18th Canadian Conference on Computational Geometry, 2006

This gives rise to a simple recursive algorithm to com-
pute the tool path.

C1 C2

Figure 5: Example of property of split vertices.

Before outlining the algorithm for computing the
outer tool path of a pocket, we discuss how to com-
pute for each split vertex S, a pointer to the topmost
split vertex to its left and to its right. If we had such
a structure, it is precisely a binary tree rooted at S. It
is well known that one can reconstruct a binary tree on
n nodes in O(n) time given a sequence representing the
pre-order or post-order traversal of its nodes. We omit
here the details of computing the pre-order traversal.

We now outline the algorithm to compute the outer
tool path. The additional details related to computing
the complete tool path are omitted here. After com-
puting the intersection (effectively merging) the set of
left tool paths and the set of right tool paths, we pro-
ceed by an implicit plane sweep following the (merged)
left and right tool paths downward until a split vertex
is reached. We then proceed recursively on the pairs of
left and right tool paths adjacent to the split vertex (i.e.
using the previously computed vertices adjacent to split
vertices).

There are only three cases of recursive calls. The
three cases depend on where the split vertex appears
with respect to the left and right tool path currently
under consideration. If the split vertex appears in be-
tween them, then both sides of the split vertex are fea-
sible which accounts for the two recursive calls. If the
split vertex appears on the left of the left tool path or
the right of the right tool path, one of the two sides is
no longer feasible and therefore only one recursive call
is required. All of the pre-processing prior to the in-
vocation of the algorithm takes linear time. Also, the
algorithm itself takes linear time, which can seen from
the fact that each vertex is visited at most once.

4 Conclusions

We have presented a simple and efficient linear time al-
gorithm for computing the tool path of an externally
monotone polygon. This algorithm is relatively easy
to implement: a proof-of-concept implementation was

the subject of Zavlin’s master’s project [13]. An open
question is whether computing the outer tool path of
a simple polygon in linear time requires sophisticated
techniques like the medial axis and linear–time triangu-
lation.

References

[1] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor.
A Linear-time Algorithm for Computing the
Voronoi Diagram of a Convex Polygon. Disc. &
Comp. Geom., 4:591-604, 1989.

[2] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry: Algo-
rithms and Applications Springer-Verlag, 1998.

[3] D. Bremner and T. Shermer. Point visibility graphs
and O-convex cover. Int. J. of Comp. Geom. and
Appl., 10(1):55–71, 2000.

[4] B. Chazelle. Triangulating a Simple Polygon in
Linear Time. Disc. & Comp. Geom., 6:485–524,
1991.

[5] S-Y. Chou, T.C. Woo, L-L. Chen, K. Tang, and
S.Y. Shin. Scallop Hull and Its Offset. CAD,
26(7):537-542, 1994.

[6] F. Chin, J. Snoeyink, C. Wang. Finding the Medial
Axis of a Simple Polygon in Linear Time. Disc. &
Comp Geom., 21:405-420, 1999.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[8] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On
the Shape of a Set of Points in the Plane. IEEE
Trans. Inf. Theor., IT-29(4):11-30, 1989.

[9] M.R. Garey, D.S. Johnson, F.P. Preparata, and
R.E. Tarjan. Triangulating a Simple Polygon. Inf.
Proc. Letters, 7(4):175-179, 1978.

[10] R. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Inf. Proc.
Letters, 1:132-133, 1972.

[11] M. Held. On the Computational Geometry of
Pocket Machining. LNCS, vol. 500, Springer-
Verlag, 1992.

[12] A.A. Melkman. On-Line Construction of the Con-
vex Hull of a Simple Polyline. Inf. Proc. Letters,
25(1):11-12, 1987.

[13] B. Zavlin. Computing tools paths of externally
monotone polygons. Rutgers University Master’s
Essay. 1998.

88

