Halfspace depth: motivation, computation, optimization

David Bremner

UNB
March 27, 2007

Perspectives
 Location Estimation
 Data Analysis
 Linear Inequality Systems

Approaches

Experimental Results

The Future

Bibliography

Wir sind Zentrum

Aberdeen

Newcastle-on-Tyne Copenhagen Helsinki Stockholm

Robustness

- The breakdown point of an estimator is the fraction of data that must be moved to infinity before the estimator is also moved to infinity.
- The breakdown point of the mean is $\frac{1}{n}$ (i.e. one error suffices to destroy the estimate).
- The median in \mathbb{R}^{1} has breakdown $1 / 2$.

Robustness

- The breakdown point of an estimator is the fraction of data that must be moved to infinity before the estimator is also moved to infinity.
- The breakdown point of the mean is $\frac{1}{n}$ (i.e. one error suffices to destroy the estimate).
- The median in \mathbb{R}^{1} has breakdown $1 / 2$.

Robustness

- The breakdown point of an estimator is the fraction of data that must be moved to infinity before the estimator is also moved to infinity.
- The breakdown point of the mean is $\frac{1}{n}$ (i.e. one error suffices to destroy the estimate).
- The median in \mathbb{R}^{1} has breakdown $1 / 2$.

Halfspace Depth

The halfspace depth of a point q with respect to $S \subset \mathbb{R}^{d}$ is defined as

$$
\operatorname{depth}_{S}(q)=\min _{a \in \mathbb{R}^{d} \backslash 0}|\{p \in S \mid\langle a, p\rangle \geq\langle a, q\rangle\}|
$$

Halfspace Depth

The halfspace depth of a point q with respect to $S \subset \mathbb{R}^{d}$ is defined as

$$
\operatorname{depth}_{S}(q)=\min _{a \in \mathbb{R}^{d} \backslash 0}|\{p \in S \mid\langle a, p\rangle \geq\langle a, q\rangle\}|
$$

- Space is decomposed into nested convex regions of same depth

Tukey Median

The Tukey Median $t(S)$ is defined as

$$
\left\{q \in S \mid \operatorname{depth}_{S}(q)=\max _{p \in S} \operatorname{depth}_{S}(p)\right\}
$$

depth 1

Tukey Median

The Tukey Median $t(S)$ is defined as

$$
\left\{q \in S \mid \operatorname{depth}_{S}(q)=\max _{p \in S} \operatorname{depth}_{S}(p)\right\}
$$

depth 1

Perspectives

Location Estimation

Data Analysis

Linear Inequality Systems

Approaches

Experimental Results

The Future

Bibliography

Depth of fit

- Statistical model with parameters $\vartheta=\left(\vartheta_{1} \ldots \vartheta_{p}\right) \in \Theta$
- Datapoints Z
- Criterial Functions $F_{z}: \Theta \rightarrow[0, \infty), z \in Z$

Definition

Model ϑ is weakly optimal if

$$
\forall \tilde{\vartheta} \in \Theta \exists z \in Z F_{z}(\tilde{\vartheta}) \geq F_{z}(\vartheta)
$$

Definition
The glohal depth of a model v is defined as

$$
d_{G}(\vartheta)=\min _{\tilde{\tilde{}}}\left|\left\{z \in Z \mid F_{z}(\tilde{\vartheta}) \geq F(\vartheta)\right\}\right|
$$

Depth of fit

- Statistical model with parameters $\vartheta=\left(\vartheta_{1} \ldots \vartheta_{p}\right) \in \Theta$
- Datapoints Z
- Criterial Functions $F_{z}: \Theta \rightarrow[0, \infty), z \in Z$

Definition

Model ϑ is weakly optimal if

$$
\forall \tilde{\vartheta} \in \Theta \exists z \in Z F_{z}(\tilde{\vartheta}) \geq F_{z}(\vartheta)
$$

Definition
The olohal depth of a model v is defined as

$$
d_{G}(\vartheta)=\min _{\tilde{\tilde{}}}\left|\left\{z \in Z \mid F_{z}(\tilde{\vartheta}) \geq F(\vartheta)\right\}\right|
$$

Depth of fit

- Statistical model with parameters $\vartheta=\left(\vartheta_{1} \ldots \vartheta_{p}\right) \in \Theta$
- Datapoints Z
- Criterial Functions $F_{z}: \Theta \rightarrow[0, \infty), z \in Z$

Definition

Model ϑ is weakly optimal if

$$
\forall \tilde{\vartheta} \in \Theta \exists z \in Z F_{z}(\tilde{\vartheta}) \geq F_{z}(\vartheta)
$$

Definition

The global depth of a model ϑ is defined as

$$
d_{G}(\vartheta)=\min _{\tilde{\vartheta}}\left|\left\{z \in Z \mid F_{z}(\tilde{\vartheta}) \geq F(\vartheta)\right\}\right|
$$

Linearization

Definition

For F_{z} differentiable, define the tangent depth of ϑ as

$$
d_{T}(\vartheta)=\min _{u \neq 0}\left|\left\{z \mid\left\langle u, \nabla F_{z}(\vartheta)\right\rangle \geq 0\right\}\right|
$$

Theorem (Mizera 2002)
If the F_{z} are differentiahle and convex, and $\Theta \subset \mathbb{R}^{P}$ is open and convex, then for any model $\vartheta \in \Theta$

Linearization

Definition

For F_{z} differentiable, define the tangent depth of ϑ as

$$
d_{T}(\vartheta)=\min _{u \neq 0}\left|\left\{z \mid\left\langle u, \nabla F_{z}(\vartheta)\right\rangle \geq 0\right\}\right|
$$

Theorem (Mizera 2002)
If the F_{z} are differentiable and convex, and $\Theta \subset \mathbb{R}^{p}$ is open and convex, then for any model $\vartheta \in \Theta$

$$
d_{G}(\vartheta)=d_{T}(\vartheta)
$$

Example: Two Factor ANOVA

- Two different experimental factors with levels in $N=\{1 \ldots n\}$ and $M=\{1 \ldots m\}$.
- For each experimental setting (i, j) we have r data points $z_{i, j, 1} \ldots z_{i, j, r}$ measuring outcomes.

For simplicity, here $r=1$

- The subset $\left\{z_{i, k} \mid k=1 \ldots r\right\}$ corresponding to an experimental scenario is fit to some linear function $f(\vartheta)=\mu_{i}+\nu_{j}$

Example: Two Factor ANOVA

- Two different experimental factors with levels in $N=\{1 \ldots n\}$ and $M=\{1 \ldots m\}$.
- For each experimental setting (i, j) we have r data points $z_{i, j, 1} \ldots z_{i, j, r}$ measuring outcomes.

	Fertilizer	
soil	1	2
1	2	1
2	5	5

For simplicity, here $r=1$

Example: Two Factor ANOVA

- Two different experimental factors with levels in $N=\{1 \ldots n\}$ and $M=\{1 \ldots m\}$.
- For each experimental setting (i, j) we have r data points $z_{i, j, 1} \ldots z_{i, j, r}$ measuring outcomes.

	Fertilizer	
soil	1	2
1	2	1
2	5	5

For simplicity, here $r=1$

- The subset $\left\{z_{i, j, k} \mid k=1 \ldots r\right\}$ corresponding to an experimental scenario is fit to some linear function $f(\vartheta)=\mu_{i}+\nu_{j}$.

ANOVA example continued: Criterial Functions

	Fertilizer	
soil	$\nu_{1}=1$	$\nu_{2}=2$
$\mu_{1}=1$	2	1
$\mu_{2}=2$	5	5

- Parameter vector $\vartheta=\left(\mu_{1} \ldots \mu_{n}, \nu_{1} \ldots \nu_{m}\right)$.
- Criterial functions

$$
F_{i, j, k}(\vartheta)=\frac{\left(z_{i, j, k}-\left(\mu_{i}+\nu_{j}\right)\right)^{2}}{2}
$$

- $\nabla F_{i, j, k}(\vartheta)=-\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)$

ANOVA example continued: scaled gradients

Scaling gradients

Recall $\nabla F_{i, j, k}(\vartheta)=-\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)$.
For purposes of computing depth, we may consider

$$
G_{i, j, k}(\vartheta)=-\operatorname{sign}\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)
$$

ANOVA example continued: scaled gradients

Scaling gradients

Recall $\nabla F_{i, j, k}(\vartheta)=-\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)$.
For purposes of computing depth, we may consider

$$
G_{i, j, k}(\vartheta)=-\operatorname{sign}\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)
$$

	Fertilizer	
soil	$\nu_{1}=1$	$\nu_{2}=2$
$\mu_{1}=1$	2	1
$\mu_{2}=2$	5	5

	j	
i	1	2
1	$(0,0,0,0)$	$(1,0,0,1)$
2	$-(0,1,1,0)$	$-(0,1,0,1)$

$\operatorname{depth}_{Z}(0)=1$

ANOVA example continued: scaled gradients

Scaling gradients

Recall $\nabla F_{i, j, k}(\vartheta)=-\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)$.
For purposes of computing depth, we may consider

$$
G_{i, j, k}(\vartheta)=-\operatorname{sign}\left(z_{i, j, k}-\mu_{i}-\mu_{j}\right)\left(e_{i}, e_{j}\right)
$$

	Fertilizer	
soil	$\nu_{1}=1$	$\nu_{2}=1$
$\mu_{1}=1$	2	1
$\mu_{2}=4$	5	5

$G_{i, j}(1,4,1,1)$		
	j	
i	1	2
1	$(0,0,0,0)$	$(1,0,0,1)$
2	$(0,0,0,0)$	$(0,0,0,0)$

$\operatorname{depth}_{Z}(0)=3$

Perspectives

Location Estimation Data Analysis
Linear Inequality Systems

Approaches

Experimental Results

The Future

Bibliography

Maximum feasible subsystem

- Maximum Feasible Subsystem

Given Infeasible system $A x<0$
Find A maximum subsystem of rows $\left\{\left\langle a_{i}, x\right\rangle<0 \mid i \in I\right\}$ that is feasible

- MaxFS APX-hard Amaldi and Kann, 1998
- MaxFS and halfspace depth are equivalent

Note condition $u \neq 0$ is unnecessary for strict MaxFS.

- Halfspace depth is APX-hard.

Maximum feasible subsystem

- Maximum Feasible Subsystem

Given Infeasible system $A x<0$
Find A maximum subsystem of rows $\left\{\left\langle a_{i}, x\right\rangle<0 \mid i \in I\right\}$ that is feasible

- MaxFS APX-hard Amaldi and Kann, 1998
- MaxFS and halfspace depth are equivalent

Note condition $u \neq 0$ is unnecessary for strict MaxFS.

- Halfspace depth is APX-hard.

Maximum feasible subsystem

- Maximum Feasible Subsystem

Given Infeasible system $A x<0$
Find A maximum subsystem of rows $\left\{\left\langle a_{i}, x\right\rangle<0 \mid i \in I\right\}$ that is feasible

- MaxFS APX-hard Amaldi and Kann, 1998
- MaxFS and halfspace depth are equivalent

$$
\min _{u \neq 0}|\{p \in S \mid\langle u, p\rangle \geq 0\}|=|S|-\max _{u} \mid\{p \in S \mid\langle u, p\rangle<0\}
$$

Note condition $u \neq 0$ is unnecessary for strict MaxFS.

- Halfspace depth is APX-hard.

Maximum feasible subsystem

- Maximum Feasible Subsystem

Given Infeasible system $A x<0$
Find A maximum subsystem of rows $\left\{\left\langle a_{i}, x\right\rangle<0 \mid i \in I\right\}$ that is feasible

- MaxFS APX-hard Amaldi and Kann, 1998
- MaxFS and halfspace depth are equivalent

$$
\min _{u \neq 0}|\{p \in S \mid\langle u, p\rangle \geq 0\}|=|S|-\max _{u} \mid\{p \in S \mid\langle u, p\rangle<0\}
$$

Note condition $u \neq 0$ is unnecessary for strict MaxFS.

- Halfspace depth is APX-hard.

Perspectives

Approaches
Enumeration without extra storage
Primal-Dual Algorithms
A Fixed Parameter Tractable Algorithm
Branch and Cut

Experimental Results

The Future

Bibliography

Traversing the dual arrangement

- $\operatorname{Adj}(X, j)$ is true iff negating sign j yields a cell. Test given polyhedron for interior. Solve via LP.

Moving towards the root

- Define a canonical interior point $i(X)$ for each cell. Same LP as before.
- Choose an arbitrary cell C.
- To find a closer cell to C "shoot a ray" from $i(X)$ to $i(C)$.

Moving towards the root

- Define a canonical interior point $i(X)$ for each cell. Same LP as before.
- Choose an arbitrary cell C.
- To find a closer cell to C "shoot a ray" from $i(X)$ to $i(C)$.

Reverse Search Summary

Theorem (FR04)

The halfspace depth of a point can be computed in $O(n \cdot \operatorname{LP}(n, d) \cdot(\#$ cells $))$ and $O(n d)$ space.

- Optimizations include
- Little information until enumeration terminates.

Reverse Search Summary

Theorem (FR04)

The halfspace depth of a point can be computed in $O(n \cdot \operatorname{LP}(n, d) \cdot(\#$ cells $))$ and $O(n d)$ space.

- Optimizations include
- Little information until enumeration terminates.

Reverse Search Summary

Theorem (FR04)

The halfspace depth of a point can be computed in $O(n \cdot \operatorname{LP}(n, d) \cdot(\#$ cells $))$ and $O(n d)$ space.

- Optimizations include
- Choosing a deep start cell
- Pruning the search.
- Little information until enumeration terminates.

Reverse Search Summary

Theorem (FR04)

The halfspace depth of a point can be computed in $O(n \cdot \operatorname{LP}(n, d) \cdot(\#$ cells $))$ and $O(n d)$ space.

- Optimizations include
- Choosing a deep start cell
- Pruning the search.
- Little information until enumeration terminates.

Perspectives

Approaches
Enumeration without extra storage

Primal-Dual Algorithms

A Fixed Parameter Tractable Algorithm Branch and Cut

Experimental Results

The Future

Bibliography

Primal-Dual Algorithms

- Update at a every step an upper bound and a lower bound for the depth.
- Terminate when (if) bounds are equal
- To ensure termination, fall back on enumeration after a fixed time limit.
- Generally, answers improve with time.

Primal-Dual Algorithms

- Update at a every step an upper bound and a lower bound for the depth.
- Terminate when (if) bounds are equal
- To ensure termination, fall back on enumeration after a fixed time limit.
- Generally, answers improve with time.

Primal-Dual Algorithms

- Update at a every step an upper bound and a lower bound for the depth.
- Terminate when (if) bounds are equal
- To ensure termination, fall back on enumeration after a fixed time limit.
- Generally, answers improve with time.

Upper Bounds via Random Walks

- Use Adj() oracle from enumeration algorithm
- Greedily try to reduce number of + in σ until local minimum reached.
- Repeat several times choosing a

Upper Bounds via Random Walks

- Use Adj() oracle from enumeration algorithm
- Greedily try to reduce number of + in σ until local minimum reached.
- Repeat several times choosing a

Upper Bounds via Random Walks

- Use Adj() oracle from enumeration algorithm
- Greedily try to reduce number of + in σ until local minimum reached.
- Repeat several times choosing a random starting cell.

Upper Bounds Via Chinneck's Heuristic

- Elasticize: $a_{i}^{T} x<0 \Rightarrow a_{i}^{T} x-\eta_{i}<0, \eta \geq 0$
- Solve LP, min SINF $=\sum \eta_{i}$
- For each constraint j with $\eta_{j}>0$, remove and resolve.
- Permanently remove the constraint that most improved SINF

Upper Bounds Via Chinneck's Heuristic

- Elasticize: $a_{i}^{T} x<0 \Rightarrow a_{i}^{T} x-\eta_{i}<0, \eta \geq 0$
- Solve LP, $\min \operatorname{SINF}=\sum \eta_{i}$
- For each constraint j with $\eta_{j}>0$, remove and resolve.
- Permanently remove the constraint that most improved SINF

Upper Bounds Via Chinneck's Heuristic

- Elasticize: $a_{i}^{T} x<0 \Rightarrow a_{i}^{T} x-\eta_{i}<0, \eta \geq 0$
- Solve LP, min SINF $=\sum \eta_{i}$
- For each constraint j with $\eta_{j}>0$, remove and resolve.
- Permanently remove the constraint that most improved SINF

Upper Bounds Via Chinneck's Heuristic

- Elasticize: $a_{i}^{T} x<0 \Rightarrow a_{i}^{T} x-\eta_{i}<0, \eta \geq 0$
- Solve LP, min SINF $=\sum \eta_{i}$
- For each constraint j with $\eta_{j}>0$, remove and resolve.
- Permanently remove the constraint that most improved SINF

Lower Bounds via Minimal Dominating Sets

Definition

A Minimal Dominating Set (MDS) for $p \in \mathbb{R}^{d}$ with respect to $S \subset \mathbb{R}^{d}$ is $R \subseteq S$ such that
$\Rightarrow p \in \operatorname{conv} R$

- if $R^{\prime} \subsetneq R$ then $p \notin \operatorname{conv} R^{\prime}$

Proposition
Let \triangle be the set of all MDS's for p with respect to S. Let T be a minimum transversal (hitting set) of Δ.

$$
|T|=\operatorname{depth}(p)
$$

Lower Bounds via Minimal Dominating Sets

Definition

A Minimal Dominating Set (MDS) for $p \in \mathbb{R}^{d}$ with respect to $S \subset \mathbb{R}^{d}$ is $R \subseteq S$ such that

- $p \in \operatorname{conv} R$
- if $R^{\prime} \subsetneq R$ then $p \notin$ conv R^{\prime}

Proposition

Let Δ be the set of all MDS's for p with respect to S. Let T be a minimum transversal (hitting set) of Δ.

$$
|T|=\operatorname{depth}(p)
$$

Lower Bounds via Minimal Dominating Sets

Definition

A Minimal Dominating Set (MDS) for $p \in \mathbb{R}^{d}$ with respect to $S \subset \mathbb{R}^{d}$ is $R \subseteq S$ such that

- $p \in \operatorname{conv} R$
- if $R^{\prime} \subsetneq R$ then $p \notin \operatorname{conv} R^{\prime}$.

Proposition

Let Δ be the set of all MDS's for p with respect to S. Let T be a minimum transversal (hitting set) of Δ.

$$
|T|=\operatorname{depth}(p)
$$

Generating Missed MDSs (cuts)

Definition

Given a partial traversal T for the MDS's of p w.r.t. S, define $\bar{S}=S \backslash T$. Define the auxiliary polytope $Q(p, T)$ as λ satisfying:

$$
\begin{aligned}
\lambda \bar{S} & =p \\
\sum_{i} \lambda_{i} & =1
\end{aligned}
$$

- Each vertex (basic solution) of $Q(p, T)$ defines an MDS missed by T.
- A single cut can be found by LP
- k cuts can be found via reverse search (or other pivoting method)

Generating Missed MDSs (cuts)

Definition

Given a partial traversal T for the MDS's of p w.r.t. S, define $\bar{S}=S \backslash T$. Define the auxiliary polytope $Q(p, T)$ as λ satisfying:

$$
\begin{aligned}
\lambda \bar{S} & =p \\
\sum_{i} \lambda_{i} & =1
\end{aligned}
$$

- Each vertex (basic solution) of $Q(p, T)$ defines an MDS missed by T.
- A single cut can be found by LP
$\rightarrow k$ cuts can be found via reverse search (or other pivoting method)

Generating Missed MDSs (cuts)

Definition

Given a partial traversal T for the MDS's of p w.r.t. S, define $\bar{S}=S \backslash T$. Define the auxiliary polytope $Q(p, T)$ as λ satisfying:

$$
\begin{aligned}
\lambda \bar{S} & =p \\
\sum_{i} \lambda_{i} & =1
\end{aligned} \quad \lambda_{i} \geq 0
$$

- Each vertex (basic solution) of $Q(p, T)$ defines an MDS missed by T.
- A single cut can be found by LP
- k cuts can be found via reverse search (or other pivoting method).

Primal-Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, Irslib

1. Find candidate cell in the dual arrangement by upper bound heuristic
2. Find obstructions (i.e. MDS's) to the optimality of this cell
3. If none found, report optimal (we have solved the global minimum transversal problem).
4. Otherwise solve the resulting (partial) hitting set problem (or just find lower bound)
5. If bored, switch to enumeration.

Primal-Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, Irslib

1. Find candidate cell in the dual arrangement by upper bound heuristic
2. Find obstructions (i.e. MDS's) to the optimality of this cell
3. If none found, report optimal (we have solved the global minimum transversal problem)
4. Otherwise solve the resulting (partial) hitting set problem (or just find lower bound)
5. If bored, switch to enumeration.

Primal-Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, Irslib

1. Find candidate cell in the dual arrangement by upper bound heuristic
2. Find obstructions (i.e. MDS's) to the optimality of this cell
3. If none found, report optimal (we have solved the global minimum transversal problem).
4. Otherwise solve the resulting (partial) hitting set problem (or just find lower bound)
5. If bored, switch to enumeration

Primal-Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, Irslib

1. Find candidate cell in the dual arrangement by upper bound heuristic
2. Find obstructions (i.e. MDS's) to the optimality of this cell
3. If none found, report optimal (we have solved the global minimum transversal problem).
4. Otherwise solve the resulting (partial) hitting set problem (or just find lower bound)
5. If bored, switch to enumeration

Primal-Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, Irslib

1. Find candidate cell in the dual arrangement by upper bound heuristic
2. Find obstructions (i.e. MDS's) to the optimality of this cell
3. If none found, report optimal (we have solved the global minimum transversal problem).
4. Otherwise solve the resulting (partial) hitting set problem (or just find lower bound)
5. If bored, switch to enumeration.

Perspectives

Approaches
Enumeration without extra storage Primal-Dual Algorithms
A Fixed Parameter Tractable Algorithm Branch and Cut

Experimental Results

The Future

Bibliography

Basic Infeasible Subsets

Definition

Let S be set of linear inequalities in ambient dimension d. A basic infeasible subsystem of S is a subset of at most $d+1$ inequalities that is infeasible.

Proposition
Let $\Lambda_{x} \geq b$ be an infeasible linear system. Any basic optimal solution to
subject to
defines a basic infeasible subsystem.

Basic Infeasible Subsets

Definition

Let S be set of linear inequalities in ambient dimension d. A basic infeasible subsystem of S is a subset of at most $d+1$ inequalities that is infeasible.

Proposition

Let $A x \geq b$ be an infeasible linear system. Any basic optimal solution to

$$
\begin{gathered}
\min \varepsilon \\
\text { subject to } \\
A x+\varepsilon \geq b
\end{gathered}
$$

defines a basic infeasible subsystem.

Bounded depth exhaustive search

Algorithm $\operatorname{MFS}(H$: halfspaces, k : integer)
$B \leftarrow \operatorname{BIS}(H)$
if $B=\emptyset$ then return true
if $k=0$ then return false
for $h \in B$ do
if $\operatorname{MFS}(H \backslash h, k-1)=$ true then return true
endfor
return false
end
Theorem (BCILM06)
The halfspace depth of a point p with respect to a set S of n points in \mathbb{R}^{d} can be computed in $O\left((d+1)^{k} L P(n, d-1)\right)$ time, where k is the value of the output.

Bounded depth exhaustive search

Algorithm $\operatorname{MFS}(H$: halfspaces, k : integer)

```
B\leftarrow\operatorname{BIS}(H)
if B=\emptyset then return true
if }k=0\mathrm{ then return false
for }h\inB\mathrm{ do
    if MFS(H\h,k-1)= true then return true
endfor
return false
end
```


Theorem (BCILM06)

The halfspace depth of a point p with respect to a set S of n points in \mathbb{R}^{d} can be computed in $O\left((d+1)^{k} L P(n, d-1)\right)$ time, where k is the value of the output.

Perspectives

Approaches
Enumeration without extra storage Primal-Dual Algorithms A Fixed Parameter Tractable Algorithm Branch and Cut

Experimental Results

The Future

Bibliography

Branch and Cut

MIP formulation

Max Feasible Subsystem Problem

$$
\max _{x}\left|\left\{a_{i} \in A \mid\left\langle a_{i}, x\right\rangle<0\right\}\right|
$$

Mixed Integer Program

MIP formulation

Max Feasible Subsystem Problem

$$
\max _{x}\left|\left\{a_{i} \in A \mid\left\langle a_{i}, x\right\rangle<0\right\}\right|
$$

Mixed Integer Program

$$
\begin{gathered}
\min \sum_{i} s_{i} \\
\text { subj. to } \\
\left\langle a_{i}, x\right\rangle-s_{i} M+\varepsilon \leq 0
\end{gathered}
$$

Branch and cut details

- Implementation by Dan Chen, using tools from COIN-OR.
- Chinneck's heuristic algorithm is used to find an initial upper bound
- MDS/BIS used as cutting planes.
- Binary-search version "eliminates" ε
- Various branching heuristics available.

Random Data

ANOVA Data

Future work

Refinements

- More benchmark data
- Numerical issues
- Making B\&C heuristics play nice together.
- Revisit primal-dual with better upper bounds
- Implement fixed parameter tractable algorithm, integrate with B\&C

Future work

Refinements

- More benchmark data
- Numerical issues
- Making B\&C heuristics play nice together.
- Revisit primal-dual with better upper bounds
- Implement fixed parameter tractable algorithm, integrate with B\&C

New directions

- Algorithms/Heuristics for centre
- Contours

Bibliography

David Bremner, Dan Chen, John lacono, Stefan Langerman, and Pat Morin.

Output-sensitive algorithms for Tukey depth and related problems.
Submitted, September 2006.
David Bremner, Komei Fukuda, and Vera Rosta.
Primal dual algorithms for data depth.
In Reginia Y. Liu, Robert Serfling, and Diane L. Souvaine, editors, Data Depth: Robust Multivariate Analysis,
Computational Geometry, and Applications, volume 72 of AMS DIMACS Book Series, pages 171-194. January 2006.
Dan Chen.
A branch and cut algorithm for the halfspace depth problem.
Master's thesis, UNB, 2007.
John Chinneck.
Fast heuristics for the maximum feasible subsystem problem.
INFORMS J. Computing, 13(3):210-223, 2001.
K. Fukuda and V. Rosta.

Exact parallel algorithms for the location depth and the maximum feasible subsystem problems.
In Frontiers in global optimization, volume 74 of Nonconvex Optim. Appl., pages 123-133. Kluwer Acad. Publ., Boston, MA, 2004.

Ivan Mizera.
On depth and deep points: a calculus.
Ann. Statist., 30(6):1681-1736, 2002.

