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Perspectives Location Estimation
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Perspectives Location Estimation

Robustness

I The breakdown point of an estimator is the fraction of data that must
be moved to infinity before the estimator is also moved to infinity.

I The breakdown point of the mean is 1
n (i.e. one error suffices to

destroy the estimate).

I The median in R1 has breakdown 1/2.

median

mean
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Perspectives Location Estimation

Halfspace Depth

The halfspace depth of a point q with respect to S ⊂ Rd is defined as

depthS(q) = min
a∈Rd\0

|{p ∈ S | 〈 a, p 〉 ≥ 〈 a, q 〉}|

depth(p) = 4

depth(q) = 1
q

p
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The halfspace depth of a point q with respect to S ⊂ Rd is defined as

depthS(q) = min
a∈Rd\0

|{p ∈ S | 〈 a, p 〉 ≥ 〈 a, q 〉}|

1

2

3
4

I Space is decomposed
into nested convex
regions of same depth
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Perspectives Location Estimation

Tukey Median

The Tukey Median t(S) is defined as

{q ∈ S | depthS(q) = max
p∈S

depthS(p)}

depth 1

depth 2

depth 5=
centre

I The Tukey median has
breakdown point at least
1/(d + 1) for points in general
position.
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Perspectives Data Analysis

Depth of fit

I Statistical model with parameters ϑ = (ϑ1 . . . ϑp) ∈ Θ
I Datapoints Z
I Criterial Functions Fz : Θ→ [0,∞), z ∈ Z

Definition

Model ϑ is weakly optimal if

∀ϑ̃ ∈ Θ ∃z ∈ Z Fz(ϑ̃) ≥ Fz(ϑ)

Definition

The global depth of a model ϑ is defined as

dG (ϑ) = min
ϑ̃
|{ z ∈ Z | Fz(ϑ̃) ≥ F (ϑ) }|
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Perspectives Data Analysis

Linearization

Definition

For Fz differentiable, define the tangent depth of ϑ as

dT (ϑ) = min
u 6=0
|{ z | 〈 u,∇Fz(ϑ) 〉 ≥ 0 }|

Theorem (Mizera 2002)

If the Fz are differentiable and convex, and Θ ⊂ Rp is open and convex,
then for any model ϑ ∈ Θ

dG (ϑ) = dT (ϑ)
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Perspectives Data Analysis

Example: Two Factor ANOVA

I Two different experimental factors with levels in N = { 1 . . . n } and
M = { 1 . . .m }.

I For each experimental setting (i , j) we have r data points
zi ,j ,1 . . . zi ,j ,r measuring outcomes.

Fertilizer
soil 1 2

1 2 1

2 5 5

For simplicity, here r = 1

I The subset { zi ,j ,k | k = 1 . . . r } corresponding to an experimental
scenario is fit to some linear function f (ϑ) = µi + νj .
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Perspectives Data Analysis

ANOVA example continued: Criterial Functions

Fertilizer
soil ν1 = 1 ν2 = 2

µ1 = 1 2 1

µ2 = 2 5 5

I Parameter vector ϑ = (µ1 . . . µn, ν1 . . . νm).

I Criterial functions

Fi ,j ,k(ϑ) =
(zi ,j ,k − (µi + νj))

2

2

I ∇Fi ,j ,k(ϑ) = −(zi ,j ,k − µi − µj)(ei , ej)
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Perspectives Data Analysis

ANOVA example continued: scaled gradients

Scaling gradients

Recall ∇Fi ,j ,k(ϑ) = −(zi ,j ,k − µi − µj)(ei , ej).
For purposes of computing depth, we may consider

Gi ,j ,k(ϑ) = − sign(zi ,j ,k − µi − µj)(ei , ej)

Fertilizer
soil ν1 = 1 ν2 =

µ1 = 1 2 1

µ2 = 5 5

Gi ,j(1, 2, 1, 2)
j

i 1 2

1 (0, 0, 0, 0) (1, 0, 0, 1)

2

depthZ (0) =

David Bremner (UNB) Halfspace Depth March 27, 2007 12 / 36



Perspectives Data Analysis

ANOVA example continued: scaled gradients

Scaling gradients

Recall ∇Fi ,j ,k(ϑ) = −(zi ,j ,k − µi − µj)(ei , ej).
For purposes of computing depth, we may consider

Gi ,j ,k(ϑ) = − sign(zi ,j ,k − µi − µj)(ei , ej)

Fertilizer
soil ν1 = 1 ν2 = 2

µ1 = 1 2 1

µ2 = 2 5 5

Gi ,j(1, 2, 1, 2)
j

i 1 2

1 (0, 0, 0, 0) (1, 0, 0, 1)

2 − (0, 1, 1, 0) − (0, 1, 0, 1)

depthZ (0) = 1

David Bremner (UNB) Halfspace Depth March 27, 2007 12 / 36



Perspectives Data Analysis

ANOVA example continued: scaled gradients

Scaling gradients

Recall ∇Fi ,j ,k(ϑ) = −(zi ,j ,k − µi − µj)(ei , ej).
For purposes of computing depth, we may consider

Gi ,j ,k(ϑ) = − sign(zi ,j ,k − µi − µj)(ei , ej)

Fertilizer
soil ν1 = 1 ν2 = 1

µ1 = 1 2 1

µ2 = 4 5 5

Gi ,j(1, 4, 1, 1)
j

i 1 2

1 (0, 0, 0, 0) (1, 0, 0, 1)

2 (0, 0, 0, 0) (0, 0, 0, 0)

depthZ (0) = 3
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Perspectives Linear Inequality Systems

Maximum feasible subsystem

I Maximum Feasible Subsystem

Given Infeasible system Ax < 0
Find A maximum subsystem of rows { 〈 ai , x 〉 < 0 | i ∈ I }

that is feasible

I MaxFS APX-hard Amaldi and Kann, 1998

I MaxFS and halfspace depth are equivalent

min
u 6=0
|{ p ∈ S | 〈 u, p 〉 ≥ 0 }| = |S | −max

u
|{ p ∈ S | 〈 u, p 〉 < 0 }

Note condition u 6= 0 is unnecessary for strict MaxFS.

I Halfspace depth is APX-hard.
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Approaches Enumeration without extra storage

Traversing the dual arrangement

I Adj(X , j) is true iff negating sign j yields a cell. Test given
polyhedron for interior. Solve via LP.

+ + ++

1
2

3

4

+ + +−

−+ +++ +−+

−+−+

−−++

Adj(+ + ++, 1) = true Adj(+ + ++, 2) = false
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Approaches Enumeration without extra storage

Moving towards the root

I Define a canonical interior point i(X ) for each cell. Same LP as
before.

I Choose an arbitrary cell C .

I To find a closer cell to C “shoot a ray” from i(X ) to i(C ).

1
2

3

4

i(C)i(X)

Y

f(X) = Y
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Approaches Enumeration without extra storage

Reverse Search Summary

Theorem (FR04)

The halfspace depth of a point can be computed in
O(n · LP(n, d) · (# cells)) and O(nd) space.

I Optimizations include
I Choosing a deep start cell
I Pruning the search.

I Little information until enumeration terminates.
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Approaches Primal–Dual Algorithms

Primal–Dual Algorithms

I Update at a every step an upper bound and a lower bound for the
depth.

I Terminate when (if) bounds are equal

I To ensure termination, fall back on enumeration after a fixed time
limit.

I Generally, answers improve with time.
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Approaches Primal–Dual Algorithms

Upper Bounds via Random Walks

I Use Adj() oracle from
enumeration algorithm

I Greedily try to reduce number of
+ in σ until local minimum
reached.

I Repeat several times choosing a
random starting cell.

Adj()

Adj()

1 2 3

4

5

+ + + + ++

+−+ + ++

+−−+ ++

−−−+ ++

6
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Approaches Primal–Dual Algorithms

Upper Bounds Via Chinneck’s Heuristic

I Elasticize: aT
i x < 0⇒ aT

i x − ηi < 0, η ≥ 0

I Solve LP, minSINF =
∑

ηi

I For each constraint j with ηj > 0, remove and resolve.

I Permanently remove the constraint that most improved SINF

η1

η2

η3
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Approaches Primal–Dual Algorithms

Lower Bounds via Minimal Dominating Sets

Definition

A Minimal Dominating Set (MDS) for
p ∈ Rd with respect to S ⊂ Rd is R ⊆ S
such that

I p ∈ conv R

I if R ′ ( R then p /∈ conv R ′.

p

Proposition

Let ∆ be the set of all MDS’s for p with respect to S. Let T be a
minimum transversal (hitting set) of ∆.

|T | = depth(p)
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Approaches Primal–Dual Algorithms

Generating Missed MDSs (cuts)

Definition

Given a partial traversal T for the MDS’s of p w.r.t. S , define S̄ = S \ T .
Define the auxiliary polytope Q(p,T ) as λ satisfying:

λS̄ = p∑
i

λi = 1 λi ≥ 0

I Each vertex (basic solution) of Q(p,T ) defines an MDS missed by T .

I A single cut can be found by LP

I k cuts can be found via reverse search (or other pivoting method).
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Approaches Primal–Dual Algorithms

Primal–Dual Algorithm

Implemented (BFR06) using ZRAM, cddlib, lrslib

1. Find candidate cell in the dual arrangement by upper bound heuristic

2. Find obstructions (i.e. MDS’s) to the optimality of this cell

3. If none found, report optimal (we have solved the global minimum
transversal problem).

4. Otherwise solve the resulting (partial) hitting set problem (or just find
lower bound)

5. If bored, switch to enumeration.
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Approaches A Fixed Parameter Tractable Algorithm

Basic Infeasible Subsets

Definition

Let S be set of linear inequalities in ambient dimension d . A basic
infeasible subsystem of S is a subset of at most d + 1 inequalities that is
infeasible.

Proposition

Let Ax ≥ b be an infeasible linear system. Any basic optimal solution to

min ε

subject to

Ax + ε ≥ b

defines a basic infeasible subsystem.
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Approaches A Fixed Parameter Tractable Algorithm

Bounded depth exhaustive search

Algorithm MFS(H : halfspaces, k : integer)

B ← BIS(H)
if B = ∅ then return true
if k = 0 then return false
for h ∈ B do

if MFS(H \ h, k − 1) = true then return true
endfor
return false

end

Theorem (BCILM06)

The halfspace depth of a point p with respect to a set S of n points in Rd

can be computed in O((d + 1)kLP(n, d − 1)) time, where k is the value of
the output.
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Approaches Branch and Cut

Branch and Cut

Root Node

Solving
LP

Solving
LP

Solving
LP

Solving
LP

Solving
LP

si = 1

sj = 0

si = 0

sj = 1

Adding Cuts

Adding Cuts

Adding Cuts Adding Cuts

Adding Cuts

x1

x2

cut

David Bremner (UNB) Halfspace Depth March 27, 2007 30 / 36



Approaches Branch and Cut

MIP formulation

Max Feasible Subsystem Problem

max
x
|{ ai ∈ A | 〈 ai , x 〉 < 0 }|

Mixed Integer Program

min
∑

i

si

subj. to

〈 ai , x 〉 − siM + ε ≤ 0
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Approaches Branch and Cut

Branch and cut details

I Implementation by Dan Chen, using tools from COIN-OR.

I Chinneck’s heuristic algorithm is used to find an initial upper bound

I MDS/BIS used as cutting planes.

I Binary-search version “eliminates” ε

I Various branching heuristics available.
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Experimental Results

Random Data

Comparison of the branch and cut,
 binary search, and primal−dual algorithm

 Data sets of 50 points

dataset (dimension / depth)
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Experimental Results

ANOVA Data
cp

ut
im

e

1s

10s

1m

4m

30m

0 5 10 15 20 25 30 35 40 45

4 x 4 x 2

4 x 4 x 3

4 x 4 x 4

6 x 6 x 2

6 x 6 x 3

6 x 6 x 4

David Bremner (UNB) Halfspace Depth March 27, 2007 34 / 36



The Future

Future work

Refinements

I More benchmark data

I Numerical issues

I Making B&C heuristics play nice together.

I Revisit primal–dual with better upper bounds

I Implement fixed parameter tractable algorithm, integrate with B&C

New directions

I Algorithms/Heuristics for centre

I Contours
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