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Estimators of Location

centre Given a set of vectors, return a vector which
“best describes” the set.

depth measure Rank a set of vectors such that vectors
of maximum rank define one or more centre
vectors.

City halfplane depth-1

Frankfurt, Germany 19
Brussels, Belgium 17
Munich, Germany 16
Amsterdam, Netherlands 15
Zürich, Switzerland 13
London, England 13
Prague, Czech Republic 12
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Robustness

I The breakdown point of an estimator is the fraction
of data that must be moved to infinity before the
estimator is also moved to infinity.

I The breakdown point of the mean is 1
n

(i.e. one
error suffices to destroy the estimate).

I The median in R1 has breakdown 1/2.

median

mean
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What makes a good depth measure?

Affine Invariant i.e. independant of coordinate system

Robustness A high breakdown point. For affine
invariant measures in Rd ,

breakdown ≤ 1/d

Nesting Let DX ,k denote the points of Rd at depth
k with respect to X . We want

k > j =⇒ DX ,k ⊆ conv DX ,j
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Halfspace Depth

The halfspace depth of a point q with respect to
S ⊂ Rd is defined as

depthS(q) = min
a∈Rd\0

|{p ∈ S | 〈 a, p 〉 ≥ 〈 a, q 〉}|

depth(p) = 4

depth(q) = 1
q

p
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Halfspace Depth

The halfspace depth of a point q with respect to
S ⊂ Rd is defined as

depthS(q) = min
a∈Rd\0

|{p ∈ S | 〈 a, p 〉 ≥ 〈 a, q 〉}|
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Tukey Median

The Tukey Median t(S) is defined as

{q ∈ S | depthS(q) = max
p∈S

depthS(p)}

depth 1

depth 2

depth 5=
centre

I Halfspace depth is
nested

I The Tukey median has
breakdown point at
least 1/(d + 1) for
points in general
position.
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Complexity results

I Halfspace depth is NP-complete, Johnson and
Preparata 1978

I Densest Open and Closed Hemisphere problem

I Halfspace depth APX-hard Amaldi and Kahn, 1998

I Maximum Feasible Subsystem
I A 2-approximation of MFS is possible.
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The Dual Arrangement

p̂3 = 1

〈p̂, x〉 = 1

++

+−

−+

p̂ = (p, 1) ∈ Rd+1

h(p) = {x ∈ Rd+1 | 〈 p̂i , x 〉 = 0}
Ap = {h(q) | q ∈ S \ {p}} ∩ {x | 〈 p̂, x 〉 = 1}
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The Dual Arrangement

p̂3 = 1

〈p̂, x〉 = 1

++

+−

−+

Ap = {h(q) | q ∈ S \ {p}} ∩ {x | 〈 p̂, x 〉 = 1}
σ(x) = (σ1 . . . σn)

where σi = sign(〈 p̂, x 〉)



Primal–Dual
Algorithms for

Halfspace Depth

David Bremner,
Komei Fukuda,

Vera Rosta

Depth Measures

Motivation

Good Measures

Algorithms and
Complexity

Halfspace depth is
hard

Enumeration

Primal–Dual
Algorithms

Implementation
and Experiments

Software

Experimental Results

Reverse Search

I reverse search requires two
problem specific functions.

I The adjacency oracle
Adj() returns the
neighbouring cells

I The local search function
f (·) satisfies

∃C ∀X ∃k f k(X ) = C

CAdj

Adj

Adj

f ()

X

Y
f (Adj(X, j)) = X
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Adjacency Oracle

I X ≡ σ(x) is flippable at position j if negating sign j
yields a cell.

I Adj(X , j) is true iff X is flippable at position j .
Solve via LP.

+ + ++

1
2

3

4

+ + +−

−+ +++ +−+

−+−+

−−++

Adj(+ + ++, 1) = true Adj(+ + ++, 2) = false
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Local Search Function
I Define a canonical interior point i(X ) for each cell.

I Choose an arbitrary cell C .
I To find a closer cell to C “shoot a ray” from i(X )

to i(C ).
I Requires a single LP for i(C ). i(X ) can be

computed by flipping test.

1
2

3

4

i(C)i(X)

Y

f(X) = Y
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Reverse Search Summary

I Time Complexity O(n · LP(n, d) · |cells|).

I Space complexity O(nd).

I Optimizations include

I Choosing a shallow start cell
I Pruning the search.

I Implementation uses ZRAM for reverse-search
framework, cddlib to solve small, dense LPs.

I Parallelization is no extra implementation effort
with ZRAM, and speedup is linear.

I Little information until enumeration terminates.
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Primal–Dual Algorithms

I Update at a every step an upper bound and a lower
bound for the depth.

I Terminate when (if) bounds are equal

I To ensure termination, fall back on enumeration
after a fixed time limit.

I Generally, answers improve with time.
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Upper Bounds via Random Walks

I Use Adj() oracle from
enumeration algorithm

I Greedily try to reduce
number of + in σ until
local minimum reached.

I Repeat several times
choosing a random
starting cell.

Adj()

Adj()

1 2 3

4

5

+ + + + ++

+−+ + ++

+−−+ ++

−−−+ ++

6
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Minimal Dominating Sets

Definition
A Minimal Dominating Set
(MDS) for p ∈ Rd with respect to
S ⊂ Rd is R ⊆ S such that

I p ∈ conv R

I if R ′ ( R then p /∈ conv R ′.

An MDS might also be called a
Charathéodory set

.

p
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Lower bounds via MDS’s

Proposition
Let ∆ be the set of all MDS’s for p with respect to S.
Let T be a minimum transversal (hitting set) of ∆.

|T | = depth(p)
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Lower bounds via MDS’s

Proposition
Let ∆ be the set of all MDS’s for p with respect to S.
Let T be a minimum transversal (hitting set) of ∆.

|T | = depth(p)

|T | ≤ depth(p)

Each MDS intersects both closed sides of any hyperplane
through p.

p
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Lower bounds via MDS’s

Proposition
Let ∆ be the set of all MDS’s for p with respect to S.
Let T be a minimum transversal (hitting set) of ∆.

|T | = depth(p)

Suppose |T | < depth(p)

if T is separable from p, there is an uncovered MDS.

p

T
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Lower bounds via MDS’s

Proposition
Let ∆ be the set of all MDS’s for p with respect to S.
Let T be a minimum transversal (hitting set) of ∆.

|T | = depth(p)

Suppose |T | < depth(p)

if T is not separable from P , there is a totally
covered MDS.

p

T
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Generating Missed MDSs (cuts)

Definition
Given a partial traversal T for the MDS’s of p w.r.t. S
Define S̄ = S \T . Define the auxiliary polytope Q(p, T )
as λ satisfying:

λS̄ = p∑
i

λi = 1 λi ≥ 0

I Each vertex (basic solution) of Q(p, T ) defines an
MDS missed by T .

I A single cut can be found by LP

I k cuts can be found via reverse search (or other
pivoting method).
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Primal–Dual Algorithm

1. Walk in the dual arrangement to find a cell with
minimal positive support

2. Find obstructions (i.e. MDS’s) to the optimality of
this cell via the “auxiliary polytope”

3. If none found, report optimal (we have solved the
global minimum transversal problem).

4. Otherwise solve the resulting (partial) transversal
problem via integer programming.

5. If bored, switch to enumeration.
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Software

Software Where Purpose

cdd http://www.ifor.

math.ethz.ch/
∼fukuda/cdd home

Solving
Dense LPs

COIN http://www.

coin-or.org

Simplex
Solver, cut
generation

lrs http://cgm.cs.

mcgill.ca/∼avis/

MDS gen-
eration.

SYMPHONY http://www.

branchandcut.org

Branch
and Cut

ZRAM http://www.cs.

unb.ca/∼bremner/

zram

Parallel
reverse
search

http://www.ifor.math.ethz.ch/~fukuda/cdd_home
http://www.ifor.math.ethz.ch/~fukuda/cdd_home
http://www.ifor.math.ethz.ch/~fukuda/cdd_home
http://www.coin-or.org
http://www.coin-or.org
http://cgm.cs.mcgill.ca/~avis/
http://cgm.cs.mcgill.ca/~avis/
http://www.branchandcut.org
http://www.branchandcut.org
http://www.cs.unb.ca/~bremner/zram
http://www.cs.unb.ca/~bremner/zram
http://www.cs.unb.ca/~bremner/zram
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Conclusions

I Row generation is crucial to solve the IPs.

I Restarting IP solver should be avoided, integrate
cut generation.

I Better upper bounds would nice.
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