Computational approaches to polytope diameter questions

David Bremner¹ Lars Schewe²

¹Faculty of Computer Science/Department of Mathematics University of New Brunswick

> ²Fachbereich Mathematik Technische Universität Darmstadt

> > October 8, 2008

A linear program

 $\begin{array}{ll} \text{maximize} & c^T x \\ \text{Such that} \\ & Ax \leqslant b \end{array}$

- $P = \{x \mid Ax \leq b\}$ is called a (convex) *polyhedron*
- ► Bounded polyhedra are called (convex) *polytopes*.

Polytopes

- ► Face: ∩ with supporting hyperplane
- ► Vertices: faces of dimension 0.
- ► Edges: faces of dimensions 1

The Simplex Method

Diameter

 d(u, v) ≡ length of the shortest edge-path from u to v.

• diameter
$$\equiv \max_{(u,v)} d(u,v)$$

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n - d.

Conjecture (Klee and Walkup, 1967)

 $\Delta(d, 2d) \leqslant d$

Lemma (Klee and Walkup, 1967)

 $\Delta(d,d+k)\leqslant\Delta(k,2k)$ with equality for $k\leqslant d$

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n - d.

Conjecture (Klee and Walkup, 1967)

 $\Delta(d, 2d) \leq d$

Lemma (Klee and Walkup, 1967)

 $\Delta(d,d+k) \leqslant \Delta(k,2k)$ with equality for $k \leqslant d$

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n - d.

Conjecture (Klee and Walkup, 1967)

 $\Delta(d, 2d) \leq d$

Lemma (Klee and Walkup, 1967)

 $\Delta(d,d+k)\leqslant\Delta(k,2k)$ with equality for $k\leqslant d$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1.
$$\Delta(3, n) = \lfloor \frac{2}{3}n \rfloor - 1$$

2.
$$\Delta(d, 2d + k) \leq \Delta(d - 1, 2d + k - 1) + \lfloor \frac{k}{2} \rfloor + 1 \text{ for } 0 \leq k \leq 3$$

3.
$$\Delta(d, n) \leq 2(2d)^{\log_2(n)}$$

Lemma (Goodey 1972)

1.
$$\Delta(4, 10) = 5$$
 and $\Delta(5, 11) = 6$
2. $\Delta(6, 13) \leq 9$ and $\Delta(7, 14) \leq 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1.
$$\Delta(3, n) = \lfloor \frac{2}{3}n \rfloor - 1$$

2.
$$\Delta(d, 2d + k) \leq \Delta(d - 1, 2d + k - 1) + \lfloor \frac{k}{2} \rfloor + 1 \text{ for } 0 \leq k \leq 3$$

3.
$$\Delta(d, n) \leq 2(2d)^{\log_2(n)}$$

Lemma (Goodey 1972)

1.
$$\Delta(4, 10) = 5$$
 and $\Delta(5, 11) = 6$
2. $\Delta(6, 13) \leq 9$ and $\Delta(7, 14) \leq 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1.
$$\Delta(3, n) = \lfloor \frac{2}{3}n \rfloor - 1$$

2.
$$\Delta(d, 2d + k) \leq \Delta(d - 1, 2d + k - 1) + \lfloor \frac{k}{2} \rfloor + 1 \text{ for } 0 \leq k \leq 3$$

3.
$$\Delta(d, n) \leq 2(2d)^{\log_2(n)}$$

Lemma (Goodey 1972)

1.
$$\Delta(4, 10) = 5$$
 and $\Delta(5, 11) = 6$
2. $\Delta(6, 13) \leq 9$ and $\Delta(7, 14) \leq 10$

Table: Bounds on $\Delta(d, n)$ circa 1972.

• Consider case with known upper bound $\Delta(n, d) \leqslant k$

- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- It follows $\Delta(n,d) \leqslant k-1$

Remark

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- ► Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n,d) \leqslant k-1$

Remark

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

- Consider case with known upper bound $\Delta(n,d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

- Consider case with known upper bound $\Delta(n,d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

- ► facet paths
 - abstract simplicial complex
 - dual is a path

pivot sequences

- ► facet paths
- pivot sequences
 - Label initial simplex
 - Label of entering=label of leaving

- ► facet paths
- pivot sequences
- labels do not repeat, w.l.o.g., occur in order

- facet paths
- pivot sequences
- Iabels do not repeat, w.l.o.g., occur in order ≡ restricted growth strings, d − 1 symbols occur in order.

$$rgs \ r \ k \mid r > k = []$$

$$rgs \ 1 \ k = [replicate \ k \ 1]$$

$$rgs \ r \ k = new_sym + old_sym$$
where
$$new_sym = [I + [r] \mid I \leftarrow rgs \ (r - 1) \ (k - 1)];$$

$$old_sym = [I + [s] \mid I \leftarrow rgs \ r \ (k - 1), s \leftarrow [1 \dots r]];$$

Single revisit paths via identifications

Single revisit paths via identifications

Single revisit paths via identifications

Lemma

Every combinatorial type of end-disjoint single revisit path has an encoding as pivot sequence without a revisit on the first facet.

Bremner and Schewe (UNB and Darmstadt)

Polytope diameter and SAT

Problem

Given abstract simplicial complex Δ , is there a simplicial polytope whose boundary complex contains Δ .

NP Hard (Richter-Gebert)

Algebraically difficult (arbitrary sets of polynomial inequalities).

Problem

Given abstract simplicial complex Δ , is there a simplicial polytope whose boundary complex contains Δ .

- NP Hard (Richter-Gebert)
- ► Algebraically difficult (arbitrary sets of polynomial inequalities).

Shortcuts

- ▶ pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- ▶ inclusion minimal paths: Π = F₀, F₁, ..., F_k, where no subset of Π is a path from F₀ to F_k.

can be generated recursively

Shortcuts

- ▶ pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- Inclusion minimal paths: Π = F₀, F₁, ..., F_k, where no subset of Π is a path from F₀ to F_k.

can be generated recursively

Shortcuts

- ▶ pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- ▶ inclusion minimal paths: Π = F₀, F₁, ..., F_k, where no subset of Π is a path from F₀ to F_k.
 - can be generated recursively

Problem

Given path complex Γ , and a set $\Pi_1 \dots \Pi_m$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ , but not any Π_i .

Remark

For a no answer, it suffices to find a contradiction with some valid set of constraints.

Problem

Given path complex Γ , and a set $\Pi_1 \dots \Pi_m$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ , but not any Π_i .

Remark

For a no answer, it suffices to find a contradiction with some valid set of constraints.

• Given
$$P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$$
,

$$\chi(i_1,\ldots,i_{d+1}) = \operatorname{sign} |p_{i_1},\ldots,p_{i_{d+1}}|$$

- For any set of points χ() obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.

Remark

No chirotope for some constraints means no point set for those constraints.

• Given
$$P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$$
,

$$\chi(i_1,\ldots,i_{d+1}) = \operatorname{sign} |p_{i_1},\ldots,p_{i_{d+1}}|$$

- For any set of points χ() obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.

Remark

No chirotope for some constraints means no point set for those constraints.

• Given
$$P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$$
,

$$\chi(i_1,\ldots,i_{d+1}) = \operatorname{sign} |p_{i_1},\ldots,p_{i_{d+1}}|$$

- For any set of points χ() obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.

Remark

No chirotope for some constraints means no point set for those constraints.

• Given
$$P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$$
,

$$\chi(i_1,\ldots,i_{d+1}) = \operatorname{sign} |p_{i_1},\ldots,p_{i_{d+1}}|$$

- For any set of points χ() obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.

Remark

No chirotope for some constraints means no point set for those constraints.

- Uniform case (no zero determinants)
- S-term Graßmann-Plücker Constraints. For λ ∈ N^{d-1}, a, b, c, d ∈ N \ λ.

 $|P_{\lambda} p_{a} p_{b}||P_{\lambda} p_{c} p_{d}| - |P_{\lambda} p_{a} p_{c}||P_{\lambda} p_{b} p_{d}| + |P_{\lambda} p_{a} p_{d}||P_{\lambda} p_{b} p_{c}| = 0$

 $\neq \{\chi(\lambda \ \text{a} \ b) = \chi(\lambda \ c \ d), \chi(\lambda \ \text{a} \ c) \neq \chi(\lambda \ b \ d), \chi(\lambda \ \text{a} \ d) = \chi(\lambda \ b \ c)\}$

yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.

- ► Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts ≡ one of F₁, F₂,...F_k is not a facet; yields 2 CNF constraints per shortcut.

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints. For λ ∈ N^{d-1}, a, b, c, d ∈ N \ λ.

$$|P_{\lambda} p_{a} p_{b}||P_{\lambda} p_{c} p_{d}| - |P_{\lambda} p_{a} p_{c}||P_{\lambda} p_{b} p_{d}| + |P_{\lambda} p_{a} p_{d}||P_{\lambda} p_{b} p_{c}| = 0$$

$$\neq \{\chi(\lambda a b) = \chi(\lambda c d), \chi(\lambda a c) \neq \chi(\lambda b d), \chi(\lambda a d) = \chi(\lambda b c)\}$$

yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.

- ▶ Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts ≡ one of F₁, F₂,...F_k is not a facet; yields 2 CNF constraints per shortcut.

- Uniform case (no zero determinants)
- ► 3-term Graßmann-Plücker Constraints yields 16 ⁿ_{d-1} ^(n-d+1) CNF constraints.
- ► Facet constraints can be dealt with in preprocessing.
- ▶ Forbidden short cuts \equiv one of F_1, F_2, \ldots, F_k is not a facet; yields 2 CNF constraints per shortcut.

Chirotopes and SAT

- Uniform case (no zero determinants)
- ► 3-term Graßmann-Plücker Constraints yields 16 ⁿ_{d-1} ^(n-d+1) CNF constraints.
- Facet constraints

$$\chi(Fa) = \chi(Fb) = \chi(Fc) \dots$$

can be dealt with in preprocessing.

Forbidden short cuts ≡ one of F₁, F₂,...F_k is not a facet; yields 2 CNF constraints per shortcut.

Bremner and Schewe (UNB and Darmstadt)

Polytope diameter and SAT

- Uniform case (no zero determinants)
- ► 3-term Graßmann-Plücker Constraints yields 16 ⁿ_{d-1} ^(n-d+1)₄ CNF constraints.
- ► Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts \equiv one of $F_1, F_2, \ldots F_k$ is not a facet;

 $\neq \{\chi(F_1a_1), \chi(F_1b_1) \dots \sigma_{12}\chi(F_2a_2), \sigma_{12}\chi(F_2b_2)\}$

yields 2 CNF constraints per shortcut.

- For (6, 12), 10 cases, each taking a few hours on a laptop.
- For (4, 11), 35 cases, each taking at most a few hours.
- ► For (5,12), 540 cases, 19 taking more than 48 hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

- For (6, 12), 10 cases, each taking a few hours on a laptop.
- For (4, 11), 35 cases, each taking at most a few hours.
- ▶ For (5, 12), 540 cases, 19 taking more than 48 hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

- For (6, 12), 10 cases, each taking a few hours on a laptop.
- For (4, 11), 35 cases, each taking at most a few hours.
- ► For (5, 12), 540 cases, 19 taking more than 48 hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

Machine Verification

- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee
- ► Thanks to Hausdorff Institute, Acenet, NSERC.

- Machine Verification
- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee
- ► Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- Machine Verification
- Counterexamples?
- ► Enumeration of path complexes is joint with Holt and Klee
- ► Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- Machine Verification
- Counterexamples?
- ► Enumeration of path complexes is joint with Holt and Klee
- ► Thanks to Hausdorff Institute, Acenet, NSERC.