Computational approaches to polytope diameter questions

David Bremner ${ }^{1} \quad$ Lars Schewe ${ }^{2}$
${ }^{1}$ Faculty of Computer Science/Department of Mathematics University of New Brunswick
${ }^{2}$ Fachbereich Mathematik
Technische Universität Darmstadt

October 8, 2008

Linear Programming

A linear program

$$
\begin{aligned}
& \operatorname{maximize} \quad c^{\top} x \\
& \text { Such that } \\
& \qquad A x \leqslant b
\end{aligned}
$$

- $P=\{x \mid A x \leqslant b\}$ is called a (convex) polyhedron
- Bounded polyhedra are called (convex) polytopes.

Polytopes

- Face: \cap with supporting hyperplane
- Vertices: faces of dimension 0.
- Edges: faces of dimensions 1

The Simplex Method

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most $n-d$.

Conjecture (Klee and Walkup, 1967)

Lemma (Klee and Walkup, 1967)
$\Delta(d, d+k)<\Lambda(k, 2 k)$ with equality for $k \leqslant d$

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most $n-d$.

Conjecture (Klee and Walkup, 1967)
$\Delta(d, 2 d) \leqslant d$
Lemma (Klee and Walkup, 1967)
$\Delta(d, d+k)<\Lambda(k, 2 k)$ with equality for $k \leqslant d$

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most $n-d$.

Conjecture (Klee and Walkup, 1967)
$\Delta(d, 2 d) \leqslant d$
Lemma (Klee and Walkup, 1967)
$\Delta(d, d+k) \leqslant \Delta(k, 2 k)$ with equality for $k \leqslant d$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

$$
\begin{aligned}
& \text { 1. } \Delta(3, n)=\left\lfloor\frac{2}{3} n\right\rfloor-1 \\
& \text { 2. } \Delta(d, 2 d+k) \leqslant \\
& \Delta(d-1,2 d+k-1)+\left\lfloor\frac{k}{2}\right\rfloor+1 \text { for } \\
& 0 \leqslant k \leqslant 3 \\
& \text { 3. } \Delta(d, n) \leqslant 2(2 d)^{\log _{2}(n)}
\end{aligned}
$$

Lemma (Goodey 1972)

1. $\Delta(4,10)=5$ and $\Delta(5,11)=6$
2. $\Delta(6,13) \leqslant 9$ and $\Delta(7,14) \leqslant 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1. $\Delta(3, n)=\left\lfloor\frac{2}{3} n\right\rfloor-1$
2. $\Delta(d, 2 d+k) \leqslant$

$$
\Delta(d-1,2 d+k-1)+\left\lfloor\frac{k}{2}\right\rfloor+1 \text { for }
$$

$$
0 \leqslant k \leqslant 3
$$

3. $\Delta(d, n) \leqslant 2(2 d)^{\log _{2}(n)}$

Lemma (Goodey 1972)

1. $\Delta(4,10)=5$ and $\Delta(5,11)=6$
2. $\Delta(6,13) \leqslant 9$ and $\Delta(7,14) \leqslant 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1. $\Delta(3, n)=\left\lfloor\frac{2}{3} n\right\rfloor-1$
2. $\Delta(d, 2 d+k) \leqslant$ $\Delta(d-1,2 d+k-1)+\left\lfloor\frac{k}{2}\right\rfloor+1$ for $0 \leqslant k \leqslant 3$
3. $\Delta(d, n) \leqslant 2(2 d)^{\log _{2}(n)}$

Lemma (Goodey 1972)

1. $\Delta(4,10)=5$ and $\Delta(5,11)=6$
2. $\Delta(6,13) \leqslant 9$ and $\Delta(7,14) \leqslant 10$

Table: Bounds on $\Delta(d, n)$ circa 1972.

$n-d$						
d	4	5	6	7		
4	4	5	5	$\{6,7\}$		
5	4	5	6	$[7,9]$		
6	4	5	$\{6,7\}$	$[7,9]$		
7	4	5	6,7			$[7,10]$

A computational approach

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- It follows $\Delta(n, d) \leqslant k-1$ polytopes.

A computational approach

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- It follows $\Delta(n, d) \leqslant k-1$ polytopes.

A computational approach

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.

Remark
By a perturbation argument, we need only consider the diameter of simple polytopes.

A computational approach

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- It follows $\Delta(n, d) \leqslant k-1$

A computational approach

- Consider case with known upper bound $\Delta(n, d) \leqslant k$
- Find all possible combinatorial types of edge paths of length k.
- Show that none of these is realizable as the diameter of an (n, d) polytope.
- It follows $\Delta(n, d) \leqslant k-1$

Remark

By a perturbation argument, we need only consider the diameter of simple polytopes.

The polar view

- facet paths
- abstract simplicial complex
- dual is a path

- pivot sequences

The polar view

- facet paths
- pivot sequences
- Label initial simplex
- Label of entering=label of leaving

The polar view

- facet paths
- pivot sequences
- labels do not repeat, w.l.o.g., occur in order

The polar view

- facet paths
- pivot sequences
- labels do not repeat, w.l.o.g., occur in order \equiv restricted growth strings, $d-1$ symbols occur in order.
$r g s r k \mid r>k=[]$
rgs $1 k=[$ replicate k 1]
rgs $r k=$ new_sym + old_sym
where

$$
\begin{aligned}
& \text { new_sym }=[I+[r] \mid I \leftarrow r g s(r-1)(k-1)] ; \\
& \text { old_sym }=[I+[s] \mid I \leftarrow \operatorname{rgs} r(k-1), s \leftarrow[1 \ldots r]]
\end{aligned}
$$

Single revisit paths via identifications

Single revisit paths via identifications

Single revisit paths via identifications

Lemma

Every combinatorial type of end-disjoint single revisit path has an encoding as pivot sequence without a revisit on the first facet.

Polytope boundary completion

Problem

Given abstract simplicial complex Δ, is there a simplicial polytope whose boundary complex contains Δ.

- NP Hard (Richter-Gebert)
- Algebraically difficult (arbitrary sets of polynomial inequalities).

Polytope boundary completion

Problem

Given abstract simplicial complex Δ, is there a simplicial polytope whose boundary complex contains Δ.

- NP Hard (Richter-Gebert)
- Algebraically difficult (arbitrary sets of polynomial inequalities).

Shortcuts

- pivot graph: nodes \equiv (potential) facets, edges \equiv (potential) ridges
inclusion minimal paths: $\Pi=F_{0}, F_{1}, \ldots F_{k}$,
where no subset of Π is a path from F_{0} to F_{k}.

Shortcuts

- pivot graph: nodes \equiv (potential) facets, edges \equiv (potential) ridges
- inclusion minimal paths: $\Pi=F_{0}, F_{1}, \ldots F_{k}$, where no subset of Π is a path from F_{0} to F_{k}.
- can be generated recursively

Shortcuts

- pivot graph: nodes \equiv (potential) facets, edges \equiv (potential) ridges
- inclusion minimal paths: $\Pi=F_{0}, F_{1}, \ldots F_{k}$, where no subset of Π is a path from F_{0} to F_{k}.
- can be generated recursively

Geodesic Embedding

Problem

Given path complex Γ, and a set $\Pi_{1} \ldots \Pi_{m}$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ, but not any Π_{i}.

Remark
For a no answer, it suffices to find a contradiction with some valid set of constraints.

Geodesic Embedding

Problem

Given path complex Γ, and a set $\Pi_{1} \ldots \Pi_{m}$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ, but not any Π_{i}.

Remark

For a no answer, it suffices to find a contradiction with some valid set of constraints.

Realizability and Chirotopes

- Given $P=\left\{\left(q_{i}, 1\right)\right\} \subset \mathbb{R}^{d+1}$,

$$
\chi\left(i_{1}, \ldots i_{d+1}\right)=\operatorname{sign}\left|p_{i_{1}}, \ldots p_{i_{d+1}}\right|
$$

- For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map λ obeying the G-P
 relations a chirotope.

$$
\begin{aligned}
& \chi(1,2,3)=-1 \\
& \chi(1,2,4)=-1 \\
& \chi(1,3,4)=+1 \\
& \chi(2,3,4)=-1
\end{aligned}
$$

Realizability and Chirotopes

- Given $P=\left\{\left(q_{i}, 1\right)\right\} \subset \mathbb{R}^{d+1}$,

$$
\chi\left(i_{1}, \ldots i_{d+1}\right)=\operatorname{sign}\left|p_{i_{1}}, \ldots p_{i_{d+1}}\right|
$$

- For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P

$$
\begin{aligned}
& \chi(1,2,3)=-1 \\
& \chi(1,2,4)=-1 \\
& \chi(1,3,4)=+1 \\
& \chi(2,3,4)=-1
\end{aligned}
$$

Realizability and Chirotopes

- Given $P=\left\{\left(q_{i}, 1\right)\right\} \subset \mathbb{R}^{d+1}$,

$$
\chi\left(i_{1}, \ldots i_{d+1}\right)=\operatorname{sign}\left|p_{i_{1}}, \ldots p_{i_{d+1}}\right|
$$

- For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P p_{3} relations a chirotope.
$\chi(1,2,3)=-1$
$\chi(1,2,4)=-1$
$\chi(1,3,4)=+1$
$\chi(2,3,4)=-1$

Realizability and Chirotopes

- Given $P=\left\{\left(q_{i}, 1\right)\right\} \subset \mathbb{R}^{d+1}$,

$$
\chi\left(i_{1}, \ldots i_{d+1}\right)=\operatorname{sign}\left|p_{i_{1}}, \ldots p_{i_{d+1}}\right|
$$

- For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P p_{3} relations a chirotope.

Remark

No chirotope for some constraints means no point set for those constraints.
$\chi(1,2,3)=-1$
$\chi(1,2,4)=-1$
$\chi(1,3,4)=+1$
$\chi(2,3,4)=-1$

Chirotopes and SAT

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints. For $\lambda \in N^{d-1}$, $a, b, c, d \in N \backslash \lambda$.
$\left|P_{\lambda} p_{a} p_{b}\left\|P_{\lambda} p_{c} p_{d}\left|-\left|P_{\lambda} p_{a} p_{c} \| P_{\lambda} p_{b} p_{d}\right|+\left|P_{\lambda} p_{a} p_{d}\right|\right| P_{\lambda} p_{b} p_{c} \mid=0\right.\right.$
$\neq\{\chi(\lambda a b)=\chi(\lambda c d), \chi(\lambda a c) \neq \chi(\lambda b d), \chi(\lambda a d)=\chi(\lambda b c)\}$
yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts \equiv one of $F_{1}, F_{2}, \ldots F_{k}$ is not a facet; yields 2 CNF constraints per shortcut.

Chirotopes and SAT

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints. For $\lambda \in N^{d-1}$, $a, b, c, d \in N \backslash \lambda$.
$\left|P_{\lambda} p_{a} p_{b}\left\|P_{\lambda} p_{c} p_{d}\left|-\left|P_{\lambda} p_{a} p_{c} \| P_{\lambda} p_{b} p_{d}\right|+\left|P_{\lambda} p_{a} p_{d}\right|\right| P_{\lambda} p_{b} p_{c} \mid=0\right.\right.$
$\neq\{\chi(\lambda a b)=\chi(\lambda c d), \chi(\lambda a c) \neq \chi(\lambda b d), \chi(\lambda a d)=\chi(\lambda b c)\}$
- Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts \equiv one of $F_{1}, F_{2}, \ldots F_{k}$ is not a facet; yields 2 CNF constraints per shortcut.

Chirotopes and SAT

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts \equiv one of $F_{1}, F_{2}, \ldots F_{k}$ is not a facet; yields 2 CNF constraints per shortcut.

Chirotopes and SAT

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- Facet constraints

$$
\chi(F a)=\chi(F b)=\chi(F c) \ldots
$$

F
can be dealt with in preprocessing.

Chirotopes and SAT

- Uniform case (no zero determinants)
- 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- Facet constraints can be dealt with in preprocessing.
- Forbidden short cuts \equiv one of $F_{1}, F_{2}, \ldots F_{k}$ is not a facet;

$$
\neq\left\{\chi\left(F_{1} a_{1}\right), \chi\left(F_{1} b_{1}\right) \ldots \sigma_{12} \chi\left(F_{2} a_{2}\right), \sigma_{12} \chi\left(F_{2} b_{2}\right)\right\}
$$

yields 2 CNF constraints per shortcut.

Computational Results

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

$n-d$				
d	4	5	6	7
4	4	5	5	$\mathbf{6}$
5	4	5	6	$\{\mathbf{7 , 8}\}$
6	4	5	$\mathbf{6}$	$[7,9]$
7	4	5	$\mathbf{6}$	$[7,10]$

Computational Results

- For $(6,12), 10$ cases, each taking a few hours on a laptop.
- For $(4,11), 35$ cases, each taking at most a few hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

$n-d$				
d	4	5	6	7
4	4	5	5	$\mathbf{6}$
5		5	6	$\{\mathbf{7 , 8}\}$
6	4	5	$\mathbf{6}$	$[7,9]$
7	4	5	$\mathbf{6}$	$[7,10]$

Computational Results

- For $(6,12), 10$ cases, each taking a few hours on a laptop.
- For $(4,11), 35$ cases, each taking at most a few hours.
- For $(5,12), 540$ cases, 19 taking more than 48 hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

$n-d$				
d	4	5	6	7
4	4	5	5	$\mathbf{6}$
5		5	6	$\{\mathbf{7 , 8}\}$
6	4	5	$\mathbf{6}$	$[7,9]$
7	4	5	$\mathbf{6}$	$[7,10]$

Future work

- Machine Verification
- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee - Thanks to Hausdorff Institute, Acenet, NSERC.

Future work

- Machine Verification
- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee - Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- Machine Verification
- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee
- Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- Machine Verification
- Counterexamples?
- Enumeration of path complexes is joint with Holt and Klee
- Thanks to Hausdorff Institute, Acenet, NSERC.

