Succinct linear programs for easy problems

David Bremner

U. New Brunswick / visiting TU Berlin

24-11-2014

Joint Work with D. Avis, H.R. Tiwary, and O. Watanabe

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

1 Matchings and Matching Polytopes

- 2 Extension Complexity
- Weak extended formulations
- 4 From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Matchings and Matching Polytopes

- 2 Extension Complexity
- Weak extended formulations
- From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

ション ふゆ アメリア メリア しょうくしゃ

Edmonds' matching polytope EM_n

Matchings

Given graph G = (V, E), $M \subseteq E$ is a matching if every $v \in V$ is contained in at most one $e \in M$. M is perfect if |M| = |V|/2.

Edmonds' Matching Polytope

 $\operatorname{EM}_n = \operatorname{conv} \{ \chi(M) \in \{0, 1\}^{\binom{n}{2}} \mid M \text{ matching in } K_n \}.$ Linear description consists of degree bounds, and for every $W \subset V$, $|W| = 2k + 1, \ k \ge 1$,

$$\sum_{e \subset W} x_e \leq (|W| - 1)/2$$

ション ふゆ く 山 マ チャット しょうくしゃ

Edmonds' perfect matching polytope EP_n

Edmonds' perfect matching polytope EP_n

•
$$\operatorname{EP}_n = \operatorname{EM}_n \cap \{x \mid \mathbb{1}^T x = n/2\}$$

• Linear description has degree bounds and for every $W \subset V$, |W| = 2k + 1, $k \ge 1$,

$$\sum_{i\in W, j\notin W} x_{ij} \ge 1$$

- Face of EM_n by definition.
- Not hard to see equivalance of two odd set constraints for binary values.

ション ふゆ く 山 マ チャット しょうくしゃ

Another perfect matching polytope

$$\psi(x) = \begin{cases} 1 & x \text{ char. vec. of graph with a perfect matching} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathrm{PM}_n = \mathrm{conv}\{(x,\psi(x)) : x \in \{0,1\}^{\binom{n}{2}}\}$

Proposition

 EP_n is a face of PM_n and can be defined by

$$\operatorname{EP}_{n} = \{ x : (x, w) \in \operatorname{PM}_{n} \cap \{ \mathbb{1}^{T} x + (1 - w)n^{2} = \frac{n}{2} \} \}$$

• The minimal graphs containing perfect matchings are the matchings themselves.

Outline

1 Matchings and Matching Polytopes

2 Extension Complexity

- Weak extended formulations
- From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

ション ふゆ アメリア メリア しょうくしゃ

Extensions and extended formulations

Definition

Polyhedron $Q \in \mathbb{R}^{d+e}$ is an *extension* of $P \subset \mathbb{R}^d$ if P = TQ for some linear transform T

Definition

An extended formulation (EF) of a polytope $P \subseteq \mathbb{R}^d$ is a linear system

$$Ex + Fy = g, \ y \ge 0 \tag{1}$$

such that $P = \{x \mid \exists y \ Ex + Fy = g\}$

- In both cases the size is the number of inequalities / facets.
- All but a small number of equations can be eliminated (in some sense non-constructive).

Slack matrices

Suppose

$$P_{in} \subseteq P_{out} \subseteq \mathbb{R}^n$$
$$P_{in} = conv(\{v_1, \dots, v_k\})$$
$$P_{out} = \{x \in \mathbb{R}^n \mid a_i^{\mathsf{T}} x \leq b_i, 1 \leq i \leq m\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

then

$$S_{ij}(P_{\text{out}}, P_{\text{in}}) = b_i - a_i^{\mathsf{T}} v_j$$

 $S(P) = S(P, P)$

Of course these matrices are generally huge!

Nonnegative rank

Definition

The nonnegative rank rank₊(S) of a matrix S is the smallest r such that there exist $T \in \mathbb{R}^{f \times r}_+$, $U \in \mathbb{R}^{r \times v}_+$ and S = TU

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Y91)

The following are equivalent

- S(P) has non-negative rank at most r
- P has extension size at most r
- P has an EF of size at most r.

Symmetric Extended Formulations

 Extended formulation Q(x, y) is symmetric if every permutation π of the coordinates of x extends to a permutation of y that preserves Q.

Theorem (Yanakakis91)

The matching polytope has no polynomial size symmetric extended formulation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No extended formulation of EP_n is succinct

Theorem (Rothvoß2013)

Any extended formulation of the perfect matching polytope EP_n has complexity $2^{\Omega(n)}$.

- This takes as a starting point the idea of covering the support of the slack matrix with rectangles of 1s (Y91).
- Slack matrices are also useful in proving the following, which shows that EP_n and PM_n also have exponential extension complexity.

(ロ)、(型)、(E)、(E)、 E

_emma (FMPTW2012)

Let P, Q and F be polytopes. Then the following hold:

- if F is an extension of P, then $xc(F) \ge xc(P)$
- if F is a face of Q, then $xc(Q) \ge xc(F)$.

No extended formulation of EP_n is succinct

Theorem (Rothvoß2013)

Any extended formulation of the perfect matching polytope EP_n has complexity $2^{\Omega(n)}$.

- This takes as a starting point the idea of covering the support of the slack matrix with rectangles of 1s (Y91).
- Slack matrices are also useful in proving the following, which shows that EP_n and PM_n also have exponential extension complexity.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Lemma (FMPTW2012)

Let P, Q and F be polytopes. Then the following hold:

- if F is an extension of P, then $xc(F) \ge xc(P)$
- if F is a face of Q, then $xc(Q) \ge xc(F)$.

Outline

- Matchings and Matching Polytopes
- 2 Extension Complexity
- Weak extended formulations
- From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

ション ふゆ アメリア メリア しょうくの

Optimizing over PM_n

For a given input graph $G(\bar{x}) = (V, E)$ we define $c = (c_{ij})$ by:

$$c_{ij} = 1$$
 $ij \in E$ $c_{ij} = -1$ $ij \notin E$ $1 \leq i < j \leq n$

Let *d* be a constant such that $0 < d \leq 1/2$.

$$z^* = \max z = c^T x + dw$$
(2)
(x, w) $\in PM_n$

Proposition

For $\bar{x} \in \{0,1\}^{\binom{n}{2}}$, the optimum solution to (2) is unique, and

 $z^{*} = \begin{cases} \mathbb{1}^{T} \bar{x} + d & \text{if } G(\bar{x}) \text{ has a perfect matching} \\ \mathbb{1}^{T} \bar{x} & \text{otherwise} \end{cases}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

Optimizing over PM_n

For a given input graph $G(\bar{x}) = (V, E)$ we define $c = (c_{ij})$ by:

$$c_{ij} = 1$$
 $ij \in E$ $c_{ij} = -1$ $ij \notin E$ $1 \leq i < j \leq n$

Let d be a constant such that $0 < d \leq 1/2$.

$$z^* = \max z = c^T x + dw$$
(2)
(x, w) $\in PM_n$

Proposition

For $\bar{x} \in \{0,1\}^{\binom{n}{2}}$, the optimum solution to (2) is unique, and

$$z^{*} = \begin{cases} \mathbb{1}^{T} \bar{x} + d & \text{if } G(\bar{x}) \text{ has a perfect matching} \\ \mathbb{1}^{T} \bar{x} & \text{otherwise} \end{cases}$$

Polytopes for decision problems

Consider a decision problem defined by its *characteristic function*

$$\psi(x) = egin{cases} 1 & x ext{ char. vec. of YES instance} \ 0 & ext{otherwise} \end{cases}$$

For each input size q we can define a polytope

$$P(\psi,q) = \operatorname{conv}\{(x,\psi(x)) : x \in \{0,1\}^q\}$$

To optimize, we will use $c^T x + dw$, d small constant, $c = \phi(\bar{x})$

ション ふゆ アメリア メリア しょうくの

$$\phi(\mathbf{x})_i = \begin{cases} 1 & \text{if } x_i = 1 \\ -1 & \text{if } x_i = 0 \end{cases}$$

0/1-property

Definition

Let $Q \subseteq [0,1]^{q+t}$ be a polytope. We say that Q has the x-0/1 property if

- For each x in {0, 1}^q there is a unique vertex (x, y) of Q, and
- $(x, y) \in \{0, 1\}^{q+t}$.

< ロ > < 得 > < 回 > < 回 >

3

Weak Extended Formulation

Definition

Define polytope Q by $x \in [0,1]^q$, $w \in [0,1]$, $s \in [0,1]^r$ and

 $Ax + bw + Cs \leq h$

For any $ar{x} \in \{0,1\}^q$, $0 < d \leq 1/2$

$$z^* = \max \{\phi(\bar{x})^T x + dw : (x, w, s) \in Q\}$$
(3)

Let $m = \mathbb{1}^T \bar{x}$. Q is a weak extended formulation (WEF) of $P(\psi, q)$ if Q has the x-0/1 property, and

- For every YES instance the solution to (3) is unique and $z^* = m + d$.
- For every NO instance z* < m + d and for all sufficiently small d, z* = m and is the solution to (3) is unique.

Weak Extended Formulation

Definition

Define polytope Q by $x \in [0,1]^q$, $w \in [0,1]$, $s \in [0,1]^r$ and

 $Ax + bw + Cs \leq h$

For any $ar{x} \in \{0,1\}^q$, $0 < d \leq 1/2$

$$z^* = \max \{\phi(\bar{x})^T x + dw : (x, w, s) \in Q\}$$
(3)

Let $m = \mathbb{1}^T \bar{x}$. Q is a weak extended formulation (WEF) of $P(\psi, q)$ if Q has the x-0/1 property, and

- For every YES instance the solution to (3) is unique and $z^* = m + d$.
- For every *NO* instance $z^* < m + d$ and for all sufficiently small *d*, $z^* = m$ and is the solution to (3) is unique.

Objective function gaps

・ロト ・個ト ・ヨト ・ヨト 三日

Objective function gaps

Objective function gaps

・ロト ・回ト ・ヨト ・ヨト

A simple example

$$\begin{split} \mathrm{PM}_2 &= \mathrm{conv}\{(0,0),(1,1)\}\\ Q_2 &= \mathrm{conv}\{(0,0,0),(1,1,1),\\ &(1/4,1,1/2)\} \end{split}$$

d = 1/2

- $\bar{x} = 1$: $c_{12} = 1$ and $z = c^T x + dw$ gets same on P_2 and Q_2
- $\bar{x} = 0$: $z^* = 0 = m$ over PM_2 and $z^* = 1/4 < 1/2 = m + d$ over Q_2

0 < d < 1/4

 $\bar{x} = 0$: $z^* = 0 = m$ over both PM_2 and Q_2

A simple example

$$\begin{split} \mathrm{PM}_2 &= \mathrm{conv}\{(0,0),(1,1)\}\\ Q_2 &= \mathrm{conv}\{(0,0,0),(1,1,1),\\ &(1/4,1,1/2)\} \end{split}$$

d = 1/2

- \$\bar{x} = 1\$: \$c_{12} = 1\$ and \$z = c^T x + dw\$ gets same on \$P_2\$ and \$Q_2\$
- $\bar{x} = 0$: $z^* = 0 = m$ over PM_2 and $z^* = 1/4 < 1/2 = m + d$ over Q_2

0 < d < 1/4

 $\bar{x} = 0$: $z^* = 0 = m$ over both PM_2 and Q_2

A simple example

$$\begin{split} \mathrm{PM}_2 &= \mathrm{conv}\{(0,0),(1,1)\}\\ Q_2 &= \mathrm{conv}\{(0,0,0),(1,1,1),\\ &(1/4,1,1/2)\} \end{split}$$

d = 1/2

 \$\bar{x} = 1\$: \$c_{12} = 1\$ and \$z = c^T x + dw\$ gets same on \$P_2\$ and \$Q_2\$

•
$$\bar{x} = 0$$
: $z^* = 0 = m$ over
 PM_2 and
 $z^* = 1/4 < 1/2 = m + d$
over Q_2

$$0 < d < 1/4$$

 $ar{x} = 0: \ z^* = 0 = m ext{ over both }$
 $ext{PM}_2 ext{ and } Q_2$

Outline

- Matchings and Matching Polytopes
- 2 Extension Complexity
- Weak extended formulations
- From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

ション ふゆ アメリア メリア しょうくの

Circuits

Definition

A (boolean) circuit with q input bits $x = (x_1, x_2, ..., x_q)$ is defined by a sequence of gates $x_i = x_j \circ x_k$ ($\circ \in \{\lor, \land\}$) or $x_i = \neg x_j$ where i > j, k, q.

P/Poly and P

Definition

 ${\sf P}/{\sf Poly}$ is the class of decision problems with polynomial sized circuits for each input size.

Definition

A family C_n of circuits is *polynomial-time uniform* if there exists a deterministic Turing machine M that on input 1^n generates C_n in polynomial time.

Definition

P is the class of decision problems with a polynomial-time uniform family of polynomial size circuits.

P/Poly and P

Definition

 ${\sf P}/{\sf Poly}$ is the class of decision problems with polynomial sized circuits for each input size.

Definition

A family C_n of circuits is *polynomial-time uniform* if there exists a deterministic Turing machine M that on input 1^n generates C_n in polynomial time.

Definition

P is the class of decision problems with a polynomial-time uniform family of polynomial size circuits.

Valiant's Construction |

$$egin{aligned} & x_j + x_k - x_i \leqslant 1 \ & -x_j & + x_i \leqslant 0 \ & -x_k + x_i \leqslant 0 \ & x_i \geqslant 0 \end{aligned}$$
 (AND)

 $x_i = x_j \vee x_k$

 $x_i = x_j \wedge x_k$

$$-x_{j} - x_{k} + x_{i} \leq 0$$

$$x_{j} - x_{i} \leq 0$$

$$x_{k} - x_{i} \leq 0$$

$$x_{i} \leq 1$$
(OR)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の�?

Valiant's Construction ||

- Given circuit C of size t, let polytope Q(C) be constructed using systems (AND) and (OR), and by substituting x_i = ¬x_j by 1 − x_j.
- Q(C) has 4t inequalities and q + t variables, and all coefficients 0, ±1

_emma (Valiant1982)

Let C be a boolean circuit with q input bits $x = (x_1, x_2, ..., x_q)$ and t gate output bits $y = (y_1, y_2, ..., y_t)$. Q(C) has the x-0/1 property and for every input x the value computed by C corresponds to the value of y_t in the unique extension $(x, y) \in Q$ of x.

Valiant's Construction ||

- Given circuit C of size t, let polytope Q(C) be constructed using systems (AND) and (OR), and by substituting x_i = ¬x_j by 1 − x_j.
- Q(C) has 4t inequalities and q + t variables, and all coefficients 0, ±1

Lemma (Valiant1982)

Let C be a boolean circuit with q input bits $x = (x_1, x_2, ..., x_q)$ and t gate output bits $y = (y_1, y_2, ..., y_t)$. Q(C) has the x-0/1 property and for every input x the value computed by C corresponds to the value of y_t in the unique extension $(x, y) \in Q$ of x.

WEFs from Circuits

Lemma

Let ψ be a decision problem. Let C_n be a (not necessarily uniform) family of circuits for ψ . $Q(C_n)$ is a weak extended formulation for $P(\psi, n)$.

Proposition

Every decision problem in P/poly admits a weak extended formulation Q of polynomial size.

In principle, a matching polytope

- Perfect Matching is in **P**, therefore we can construct one circuit *C_n* per input size.
- From the circuit, we can construct Q(C_n) which is a WEF for PM_n; no poly size extension exists

+ロト + 国 ト + 国 ト + 国 ・ の Q ()

WEFs from Circuits

Lemma

Let ψ be a decision problem. Let C_n be a (not necessarily uniform) family of circuits for ψ . $Q(C_n)$ is a weak extended formulation for $P(\psi, n)$.

Proposition

Every decision problem in P/poly admits a weak extended formulation Q of polynomial size.

In principle, a matching polytope

- Perfect Matching is in **P**, therefore we can construct one circuit *C_n* per input size.
- From the circuit, we can construct $Q(C_n)$ which is a WEF for PM_n ; no poly size extension exists

Outline

- Matchings and Matching Polytopes
- 2 Extension Complexity
- Weak extended formulations
- From circuits to LPs
- S Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

ション ふゆ アメリア メリア しょうくの

Polytopal sandwiches for languages Switch to terminology of *language*

$$L = \{x \in \{0, 1\}^* \mid \psi(x) = 1\}$$
$$L(n) = \{x \in \{0, 1\}^n \mid \psi(x) = 1\}$$

For $L \subseteq \{0,1\}^*$ define a pair of *characteristic functions*

$$\psi(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases},$$
$$\phi(x)_i = \begin{cases} 1 & \text{if } x_i = 1 \\ -1 & \text{if } x_i = 0 \end{cases}$$

And a pair of polytopes

 $V(L(n)) = \operatorname{conv}(\{(x,\psi(x)) \mid x \in \{0,1\}^n\}.$ $H(L(n)) := \left\{ (x,w) \middle| \begin{array}{c} \phi(a)^{\mathsf{T}}x + dw \leqslant a^{\mathsf{T}}\mathbb{1} + d & \forall a \in L(n) \\ \phi(a)^{\mathsf{T}}x + dw \leqslant a^{\mathsf{T}}\mathbb{1} & \forall a \notin L(n) \end{array} \right\}$

Polytopal sandwiches for languages Switch to terminology of *language*

$$L = \{x \in \{0, 1\}^* \mid \psi(x) = 1\}$$
$$L(n) = \{x \in \{0, 1\}^n \mid \psi(x) = 1\}$$

For $L \subseteq \{0,1\}^*$ define a pair of *characteristic functions*

$$\psi(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases},$$
$$\phi(x)_i = \begin{cases} 1 & \text{if } x_i = 1 \\ -1 & \text{if } x_i = 0 \end{cases}$$

And a pair of polytopes

$$V(L(n)) = \operatorname{conv}(\{(x, \psi(x)) \mid x \in \{0, 1\}^n\}.$$

$$H(L(n)) := \left\{ (x, w) \middle| \begin{array}{c} \phi(a)^{\mathsf{T}} x + dw \leqslant a^{\mathsf{T}} \mathbb{1} + d & \forall a \in L(n) \\ \phi(a)^{\mathsf{T}} x + dw \leqslant a^{\mathsf{T}} \mathbb{1} & \forall a \notin L(n) \end{array} \right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Slack matrices for languages

where

$$M_{a,b}(L(n)) = a^{\mathsf{T}} \mathbb{1}_n - 2a^{\mathsf{T}} b + \mathbb{1}^{\mathsf{T}} b + \alpha(a, b)$$
$$\alpha(a, b) = \begin{cases} d & \text{if } a \in L, b \notin L \\ -d & \text{if } a \notin L, b \in L \\ 0 & \text{otherwise} \end{cases}$$

$$M(L(n)) = S(H(L(n)), V(L(n)))$$
(4)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Concise coordinates

Concise coordinates

- A matrix or vector X has concise coordinates with respect to n (X is cc(n)) if each element has a binary encoding bounded by a polynomial in n.
- A polytope is cc(n) if its vertex and facet matrices are.

Extended formulations with concise coordinates

- rankⁿ₊(M) denotes the minimum rank of a non-negative factorization M = ST such that S and T are both cc(n).
- $xc^n(P)$ denotes the minimum number of inequalities in a cc(n) extended formulation of *P*.

Concise coordinates

Concise coordinates

- A matrix or vector X has concise coordinates with respect to n (X is cc(n)) if each element has a binary encoding bounded by a polynomial in n.
- A polytope is cc(n) if its vertex and facet matrices are.

Extended formulations with concise coordinates

- rankⁿ₊(M) denotes the minimum rank of a non-negative factorization M = ST such that S and T are both cc(n).
- xcⁿ(P) denotes the minimum number of inequalities in a cc(n) extended formulation of P.

Optimizing over sandwiches

Lemma

Let P be a polytope such that $V(L(n)) \subseteq P \subseteq H(L(n))$. Then, deciding whether a vector $a \in \{0, 1\}^n$ is in L or not can be achieved by optimizing over P along the direction $(\phi(a), d)$ for some constant $0 < d \leq 1/2$.

Main idea

Objective values for P are sandwiched between those for V(L(n)) and H(L(n)).

ション ふゆ く 山 マ チャット しょうくしゃ

Rank of Sandwiches

Lemma

Let
$$P_{\text{in}} = \operatorname{conv}(V)$$
, $P_{\text{out}} = \{x \mid Ax \leq b\}$ be $\operatorname{cc}(n)$.

 $\operatorname{rank}_{+}^{n}(S) = \min\{\operatorname{xc}^{n}(P) \mid P \text{ is } \operatorname{cc}(n) \text{ and } P_{\operatorname{in}} \subseteq P \subseteq P_{\operatorname{out}}\}$

Proof sketch.

$$S' := \begin{bmatrix} S(P) & S(P, P_{\text{out}}) \\ S(P_{\text{in}}, P) & S(P_{\text{in}}, P_{\text{out}}) \end{bmatrix} \quad (\leq)$$
$$\operatorname{rank}_{+}^{n}(S(P_{\text{in}}, P_{\text{out}})) \leq \operatorname{rank}_{+}^{n}(S') = \operatorname{rank}_{+}^{n}(S(P)) = \operatorname{xc}^{n}(P)$$

$$\begin{split} S(P_{\text{in}},P_{\text{out}}) &= TU\\ Q &= \{(x,y) \mid Ax + Ty = b, y \geq 0\} \quad (\geq)\\ P &= \{x \mid \exists (x,y) \in Q\}\\ P_{\text{in}} \subseteq P \subseteq P_{\text{out}} \end{split}$$

Rank of Sandwiches

Lemma

Let
$$P_{\text{in}} = \operatorname{conv}(V)$$
, $P_{\text{out}} = \{x \mid Ax \leq b\}$ be $\operatorname{cc}(n)$.

 $\operatorname{rank}_{+}^{n}(S) = \min\{\operatorname{xc}^{n}(P) \mid P \text{ is } \operatorname{cc}(n) \text{ and } P_{\operatorname{in}} \subseteq P \subseteq P_{\operatorname{out}}\}$

Proof sketch.

$$S' := \begin{bmatrix} S(P) & S(P, P_{\text{out}}) \\ S(P_{\text{in}}, P) & S(P_{\text{in}}, P_{\text{out}}) \end{bmatrix} \quad (\leq)$$
$$\operatorname{rank}_{+}^{n}(S(P_{\text{in}}, P_{\text{out}})) \leq \operatorname{rank}_{+}^{n}(S') = \operatorname{rank}_{+}^{n}(S(P)) = \operatorname{xc}^{n}(P)$$

$$\begin{split} S(P_{\mathrm{in}},P_{\mathrm{out}}) &= TU\\ Q &= \{(x,y) \mid Ax + Ty = b, y \geq \mathbf{0}\} \qquad (\geq)\\ P &= \{x \mid \exists (x,y) \in Q\}\\ P_{\mathrm{in}} \subseteq P \subseteq P_{\mathrm{out}} \end{split}$$

Rank of Sandwiches and P/Poly

Theorem

$L \in \mathbf{P}/\mathbf{Poly}$ iff $\operatorname{rank}^n_+(M(L(n)))$ is polynomial in n

(only if).

- Small circuits C_n implies WEF Q(C_n). Define
 P = proj_(x,w)(Q(C_n))
- $V(L(n)) \subseteq P \subseteq H(L(n))$
- $\operatorname{rank}_{+}^{n}(M(L(n))) = \operatorname{rank}_{+}^{n}(S(H(L(n)), V(L(n)))) \leq$ #ineq(Q)

(if).

- Small rankⁿ₊ implies $\exists P \ V(L(n)) \subset P \subset H(L(n))$
- P has small extension Q, optimize over Q to decide L.

Rank of Sandwiches and P/Poly

Theorem

$L \in \mathbf{P}/\mathbf{Poly}$ iff $\operatorname{rank}^n_+(M(L(n)))$ is polynomial in n

(only if).

- Small circuits C_n implies WEF $Q(C_n)$. Define $P = \text{proj}_{(x,w)}(Q(C_n))$
- $V(L(n)) \subseteq P \subseteq H(L(n))$
- $\operatorname{rank}_+^n(M(L(n))) = \operatorname{rank}_+^n(S(H(L(n)), V(L(n)))) \le$ #ineq(Q)

(if).

- Small rank_+^n implies $\exists P \ V(L(n)) \subset P \subset H(L(n))$
- P has small extension Q, optimize over Q to decide L.

Outline

- Matchings and Matching Polytopes
- 2 Extension Complexity
- Weak extended formulations
- From circuits to LPs
- 5 Connections with non-negative rank
- 6 Constructing an LP from Pseudocode

Constructing Concrete Polytopes

- We want to construct actual polytopes for the perfect matching problem and other problems in *P*.
- Algorithms are typically expressed as pseudocode and not circuits; directly designing a circuit for Edmonds' algorithm seems nontrivial.

ション ふゆ く 山 マ チャット しょうくしゃ

• We are currently writing a compiler from a simple procedural pseudocode to LPs.

Constructing Concrete Polytopes

- We want to construct actual polytopes for the perfect matching problem and other problems in *P*.
- Algorithms are typically expressed as pseudocode and not circuits; directly designing a circuit for Edmonds' algorithm seems nontrivial.

ション ふゆ く 山 マ チャット しょうくしゃ

• We are currently writing a compiler from a simple procedural pseudocode to LPs.

Key ideas for compiling pseudocode to LPs

- Based on binary variables, with integrality guarantees propagated by induction, as in the circuit case.
- A *step counter* is modelled as a set of boolean variables, which enable and disable the constraints modelling each line of code.
- To support practical algorithms, arrays and simple integer arithmetic is supported.
- For more details, and a demo, come to Polymake Days on December 5, here at the TU.

ション ふゆ く 山 マ チャット しょうくしゃ

Key ideas for compiling pseudocode to LPs

- Based on binary variables, with integrality guarantees propagated by induction, as in the circuit case.
- A *step counter* is modelled as a set of boolean variables, which enable and disable the constraints modelling each line of code.
- To support practical algorithms, arrays and simple integer arithmetic is supported.
- For more details, and a demo, come to Polymake Days on December 5, here at the TU.

ション ふゆ く 山 マ チャット しょうくしゃ