Succinct linear programs for easy problems

David Bremner

U. New Brunswick / visiting TU Berlin

$$
24-11-2014
$$

Joint Work with D. Avis, H.R. Tiwary, and O. Watanabe

Outline

(1) Matchings and Matching Polytopes
(2) Extension Complexity
(3) Weak extended formulations

4 From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Outline

(1) Matchings and Matching Polytopes

2 Extension Complexity
(3) Weak extended formulations

4 From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Edmonds' matching polytope EM_{n}

Matchings

Given graph $G=(V, E), M \subseteq E$ is a matching if every $v \in V$ is contained in at most one $e \in M . M$ is perfect if $|M|=|V| / 2$.

Edmonds' Matching Polytope

$\mathrm{EM}_{n}=\operatorname{conv}\left\{\left.\chi(M) \in\{0,1\}^{\binom{n}{2}} \right\rvert\, M\right.$ matching in $\left.K_{n}\right\}$. Linear description consists of degree bounds, and for every $W \subset V$, $|W|=2 k+1, k \geq 1$,

$$
\sum_{e \subset W} x_{e} \leq(|W|-1) / 2
$$

Edmonds' perfect matching polytope EP_{n}

Edmonds' perfect matching polytope EP_{n}

- $\mathrm{EP}_{n}=\mathrm{EM}_{n} \cap\left\{x \mid \mathbb{1}^{T} x=n / 2\right\}$
- Linear description has degree bounds and for every $W \subset V,|W|=2 k+1, k \geq 1$,

$$
\sum_{i \in W, j \notin W} x_{i j} \geq 1
$$

- Face of EM_{n} by definition.
- Not hard to see equivalance of two odd set constraints for binary values.

Another perfect matching polytope

$$
\begin{aligned}
& \psi(x)= \begin{cases}1 & x \text { char. vec. of graph with a perfect matching } \\
0 & \text { otherwise }\end{cases} \\
& \mathrm{PM}_{n}=\operatorname{conv}\left\{(x, \psi(x)): x \in\{0,1\}^{\binom{n}{2}}\right\}
\end{aligned}
$$

Proposition

EP_{n} is a face of PM_{n} and can be defined by

$$
\mathrm{EP}_{n}=\left\{x:(x, w) \in \mathrm{PM}_{n} \cap\left\{\mathbb{1}^{T} x+(1-w) n^{2}=\frac{n}{2}\right\}\right\}
$$

- The minimal graphs containing perfect matchings are the matchings themselves.

Outline

(1) Matchings and Matching Polytopes
(2) Extension Complexity
(3) Weak extended formulations

4 From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Extensions and extended formulations

Definition

Polyhedron $Q \in \mathbb{R}^{d+e}$ is an extension of $P \subset \mathbb{R}^{d}$ if $P=T Q$ for some linear transform T

Definition

An extended formulation (EF) of a polytope $P \subseteq \mathbb{R}^{d}$ is a linear system

$$
\begin{equation*}
E x+F y=g, \quad y \geqslant 0 \tag{1}
\end{equation*}
$$

such that $P=\{x \mid \exists y E x+F y=g\}$

- In both cases the size is the number of inequalities / facets.
- All but a small number of equations can be eliminated (in some sense non-constructive).

Slack matrices

Suppose

$$
\begin{aligned}
P_{\text {in }} & \subseteq P_{\text {out }} \subseteq \mathbb{R}^{n} \\
P_{\text {in }} & =\operatorname{conv}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right) \\
P_{\text {out }} & =\left\{x \in \mathbb{R}^{n} \mid a_{i}^{\top} x \leqslant b_{i}, 1 \leqslant i \leqslant m\right\}
\end{aligned}
$$

then

$$
\begin{aligned}
S_{i j}\left(P_{\text {out }}, P_{\text {in }}\right) & =b_{i}-a_{i}^{\top} v_{j} \\
S(P) & =S(P, P)
\end{aligned}
$$

Of course these matrices are generally huge!

Nonnegative rank

Definition

The nonnegative rank $\operatorname{rank}_{+}(S)$ of a matrix S is the smallest r such that there exist $T \in \mathbb{R}_{+}^{f \times r}, U \in \mathbb{R}_{+}^{r \times v}$ and $S=T U$

Theorem (Y91)

The following are equivalent

- $S(P)$ has non-negative rank at most r
- P has extension size at most r
- P has an EF of size at most r.

Symmetric Extended Formulations

- Extended formulation $Q(x, y)$ is symmetric if every permutation π of the coordinates of x extends to a permutation of y that preserves Q.

Theorem (Yanakakis91)

The matching polytope has no polynomial size symmetric extended formulation.

No extended formulation of EP_{n} is succinct

Theorem (Rothvoß2013)

Any extended formulation of the perfect matching polytope EP_{n} has complexity $2^{\Omega(n)}$.

- This takes as a starting point the idea of covering the support of the slack matrix with rectangles of 1 s (Y91).
- Slack matrices are also useful in proving the following, which shows that EP_{n} and PM_{n} also have exponential extension complexity.

No extended formulation of EP_{n} is succinct

Theorem (Rothvoß2013)

Any extended formulation of the perfect matching polytope EP_{n} has complexity $2^{\Omega(n)}$.

- This takes as a starting point the idea of covering the support of the slack matrix with rectangles of 1 s (Y91).
- Slack matrices are also useful in proving the following, which shows that EP_{n} and PM_{n} also have exponential extension complexity.

Lemma (FMPTW2012)

Let P, Q and F be polytopes. Then the following hold:

- if F is an extension of P, then $\mathrm{xc}(F) \geq x c(P)$
- if F is a face of Q, then $x c(Q) \geq x c(F)$.

Outline

(1) Matchings and Matching Polytopes
(2) Extension Complexity
(3) Weak extended formulations

4 From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Optimizing over PM_{n}

For a given input graph $G(\bar{x})=(V, E)$ we define $c=\left(c_{i j}\right)$ by:

$$
c_{i j}=1 \quad i j \in E \quad c_{i j}=-1 \quad i j \notin E \quad 1 \leqslant i<j \leqslant n
$$

Let d be a constant such that $0<d \leqslant 1 / 2$.

$$
\begin{gather*}
z^{*}=\max z=c^{T} x+d w \tag{2}\\
(x, w) \in \mathrm{PM}_{n}
\end{gather*}
$$

Proposition
For $\bar{x} \in\{0,1\}^{\binom{n}{2}}$, the optimum solution to (2) is unique, and

Optimizing over PM_{n}

For a given input graph $G(\bar{x})=(V, E)$ we define $c=\left(c_{i j}\right)$ by:

$$
c_{i j}=1 \quad i j \in E \quad c_{i j}=-1 \quad i j \notin E \quad 1 \leqslant i<j \leqslant n
$$

Let d be a constant such that $0<d \leqslant 1 / 2$.

$$
\begin{gather*}
z^{*}=\max z=c^{\top} x+d w \tag{2}\\
(x, w) \in \mathrm{PM}_{n}
\end{gather*}
$$

Proposition

For $\bar{x} \in\{0,1\}^{\binom{n}{2}}$, the optimum solution to (2) is unique, and

$$
z^{*}= \begin{cases}\mathbb{1}^{T} \bar{x}+d & \text { if } G(\bar{x}) \text { has a perfect matching } \\ \mathbb{1}^{T} \bar{x} & \text { otherwise }\end{cases}
$$

Polytopes for decision problems

Consider a decision problem defined by its characteristic function

$$
\psi(x)= \begin{cases}1 & x \text { char. vec. of YES instance } \\ 0 & \text { otherwise }\end{cases}
$$

For each input size q we can define a polytope

$$
P(\psi, q)=\operatorname{conv}\left\{(x, \psi(x)): x \in\{0,1\}^{q}\right\}
$$

To optimize, we will use $c^{T} x+d w, d$ small constant, $c=\phi(\bar{x})$

$$
\phi(x)_{i}=\left\{\begin{array}{cl}
1 & \text { if } x_{i}=1 \\
-1 & \text { if } x_{i}=0
\end{array}\right.
$$

0/1-property

Definition

Let $Q \subseteq[0,1]^{q+t}$ be a polytope. We say that Q has the $x-0 / 1$ property if

- For each x in $\{0,1\}^{q}$ there is a unique vertex (x, y) of Q, and
- $(x, y) \in\{0,1\}^{q+t}$.

Weak Extended Formulation

Definition

Define polytope Q by $x \in[0,1]^{q}$, $w \in[0,1], s \in[0,1]^{r}$ and

$$
A x+b w+C s \leqslant h
$$

For any $\bar{x} \in\{0,1\}^{q}, 0<d \leq 1 / 2$

$$
\begin{equation*}
z^{*}=\max \left\{\phi(\bar{x})^{T} x+d w:(x, w, s) \in Q\right\} \tag{3}
\end{equation*}
$$

Let $m=\mathbb{1}^{\top} \bar{x}$. Q is a weak extended formulation (WEF) of $P(\psi, q)$ if Q has the $x-0 / 1$ property, and

- For every YES instance the solution to (3) is unique and
- For every NO instance $z^{*}<m+d$ and for all sufficiently small $d, z^{*}=m$ and is the solution to (3) is unique.

Weak Extended Formulation

Definition

Define polytope Q by $x \in[0,1]^{q}$, $w \in[0,1], s \in[0,1]^{r}$ and

$$
A x+b w+C s \leqslant h
$$

For any $\bar{x} \in\{0,1\}^{q}, 0<d \leq 1 / 2$

$$
\begin{equation*}
z^{*}=\max \left\{\phi(\bar{x})^{T} x+d w:(x, w, s) \in Q\right\} \tag{3}
\end{equation*}
$$

Let $m=\mathbb{1}^{T} \bar{x}$. Q is a weak extended formulation (WEF) of $P(\psi, q)$ if Q has the $x-0 / 1$ property, and

- For every YES instance the solution to (3) is unique and $z^{*}=m+d$.
- For every $N O$ instance $z^{*}<m+d$ and for all sufficiently small $d, z^{*}=m$ and is the solution to (3) is unique.

Objective function gaps

- Let $\sigma=\max _{i, j} \operatorname{abs}\left(a_{i j}\right)$
- Using the Hadamard

Objective function gaps

Let $A \in \mathbb{Z}^{m \times n}, c \in \mathbb{Z}^{n}, b \in \mathbb{Z}^{m}$ define an LP.

- Let B_{1} and B_{2} be basis matrices
- $x_{i}=B_{i}^{-1} b$
- Cramer's rule, integrality, $x_{1} \neq x_{2}$

$$
\Delta=c^{T}\left(x_{1}-x_{2}\right) \geq \frac{1}{\left|B_{1}\right|\left|B_{2}\right|}
$$

- Using the Hadamard

Objective function gaps

Let $A \in \mathbb{Z}^{m \times n}, c \in \mathbb{Z}^{n}, b \in \mathbb{Z}^{m}$ define an LP.

- Let B_{1} and B_{2} be basis matrices
- $x_{i}=B_{i}^{-1} b$
- Cramer's rule, integrality, $x_{1} \neq x_{2}$

$$
\Delta=c^{T}\left(x_{1}-x_{2}\right) \geq \frac{1}{\left|B_{1}\right|\left|B_{2}\right|}
$$

A simple example

$$
\begin{aligned}
& \mathrm{PM}_{2}=\operatorname{conv}\{(0,0),(1,1)\} \\
& Q_{2}=\operatorname{conv}\{(0,0,0),(1,1,1), \\
&(1 / 4,1,1 / 2)\}
\end{aligned}
$$

$d=1 / 2$

- $\bar{x}=1: c_{12}=1$ and $z=c^{T} x+d w$ gets same on P_{2} and Q_{2}

A simple example

$$
\begin{aligned}
\mathrm{PM}_{2} & =\operatorname{conv}\{(0,0),(1,1)\} \\
Q_{2} & =\operatorname{conv}\{(0,0,0),(1,1,1), \\
& (1 / 4,1,1 / 2)\}
\end{aligned}
$$

$d=1 / 2$

- $\bar{x}=1: c_{12}=1$ and $z=c^{T} x+d w$ gets same on P_{2} and Q_{2}
- $\bar{x}=0: z^{*}=0=m$ over PM_{2} and $z^{*}=1 / 4<1 / 2=m+d$ over Q_{2}

A simple example

$$
\begin{aligned}
\mathrm{PM}_{2} & =\operatorname{conv}\{(0,0),(1,1)\} \\
Q_{2}= & \operatorname{conv}\{(0,0,0),(1,1,1), \\
& (1 / 4,1,1 / 2)\}
\end{aligned}
$$

$d=1 / 2$

- $\bar{x}=1: c_{12}=1$ and $z=c^{T} x+d w$ gets same on P_{2} and Q_{2}
- $\bar{x}=0: z^{*}=0=m$ over PM_{2} and $z^{*}=1 / 4<1 / 2=m+d$ over Q_{2}

$0<d<1 / 4$
$\bar{x}=0: z^{*}=0=m$ over both PM_{2} and Q_{2}

Outline

(1) Matchings and Matching Polytopes
(2) Extension Complexity
(3) Weak extended formulations
(4) From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Circuits

Definition

A (boolean) circuit with q input bits $x=\left(x_{1}, x_{2}, \ldots, x_{q}\right)$ is defined by a sequence of gates $x_{i}=x_{j} \circ x_{k}(\circ \in\{\vee, \wedge\})$ or $x_{i}=\neg x_{j}$ where $i>j, k, q$.

$P /$ Poly and P

Definition

$\mathbf{P} /$ Poly is the class of decision problems with polynomial sized circuits for each input size.

Definition

A family C_{n} of circuits is polynomial-time uniform if there exists a deterministic Turing machine M that on input 1^{n} generates C_{n} in polynomial time

Definition
\mathbf{P} is the class of decision problems with a polynomial-time uniform family of polynomial size circuits.

$P /$ Poly and P

Definition

$\mathbf{P} /$ Poly is the class of decision problems with polynomial sized circuits for each input size.

Definition

A family C_{n} of circuits is polynomial-time uniform if there exists a deterministic Turing machine M that on input 1^{n} generates C_{n} in polynomial time.

Definition

\mathbf{P} is the class of decision problems with a polynomial-time uniform family of polynomial size circuits.

Valiant's Construction I

$$
x_{i}=x_{j} \wedge x_{k}
$$

$$
\begin{array}{r}
x_{j}+x_{k}-x_{i} \leqslant 1 \\
-x_{j}+x_{i} \leqslant 0 \tag{AND}\\
-x_{k}+x_{i} \leqslant 0 \\
x_{i} \geqslant 0
\end{array}
$$

```
\(x_{i}=x_{j} \vee x_{k}\)
```

$$
\begin{align*}
-x_{j}-x_{k}+x_{i} & \leqslant 0 \\
x_{j}-x_{i} & \leqslant 0 \tag{OR}\\
x_{k}-x_{i} & \leqslant 0 \\
x_{i} & \leqslant 1
\end{align*}
$$

Valiant's Construction II

- Given circuit C of size t, let polytope $Q(C)$ be constructed using systems (AND) and (OR), and by substituting $x_{i}=\neg x_{j}$ by $1-x_{j}$.
- $Q(C)$ has $4 t$ inequalities and $q+t$ variables, and all coefficients $0, \pm 1$

Valiant's Construction II

- Given circuit C of size t, let polytope $Q(C)$ be constructed using systems (AND) and (OR), and by substituting $x_{i}=\neg x_{j}$ by $1-x_{j}$.
- $Q(C)$ has $4 t$ inequalities and $q+t$ variables, and all coefficients $0, \pm 1$

Lemma (Valiant1982)

Let C be a boolean circuit with q input bits $x=\left(x_{1}, x_{2}, \ldots, x_{q}\right)$ and t gate output bits $y=\left(y_{1}, y_{2}, \ldots, y_{t}\right) . Q(C)$ has the $x-0 / 1$ property and for every input x the value computed by C corresponds to the value of y_{t} in the unique extension $(x, y) \in Q$ of x.

WEFs from Circuits

Lemma

Let ψ be a decision problem. Let C_{n} be a (not necessarily uniform) family of circuits for $\psi . Q\left(C_{n}\right)$ is a weak extended formulation for $P(\psi, n)$.

Proposition

Every decision problem in \mathbf{P} /poly admits a weak extended formulation Q of polynomial size.

In

- Perfect Matching is in P, therefore we can construct one circuit C_{n} per input size
- From the circuit, we can construct $Q\left(C_{n}\right)$ which is a WEF for PM_{n}; no poly size extension exists

WEFs from Circuits

Lemma

Let ψ be a decision problem. Let C_{n} be a (not necessarily uniform) family of circuits for $\psi . Q\left(C_{n}\right)$ is a weak extended formulation for $P(\psi, n)$.

Proposition

Every decision problem in $\mathbf{P} /$ poly admits a weak extended formulation Q of polynomial size.

In principle, a matching polytope

- Perfect Matching is in \mathbf{P}, therefore we can construct one circuit C_{n} per input size.
- From the circuit, we can construct $Q\left(C_{n}\right)$ which is a WEF for PM_{n}; no poly size extension exists

Outline

(1) Matchings and Matching Polytopes

2 Extension Complexity
(3) Weak extended formulations
4. From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Polytopal sandwiches for languages

Switch to terminology of language

$$
\begin{aligned}
L & =\left\{x \in\{0,1\}^{*} \mid \psi(x)=1\right\} \\
L(n) & =\left\{x \in\{0,1\}^{n} \mid \psi(x)=1\right\}
\end{aligned}
$$

For $L \subseteq\{0,1\}^{*}$ define a pair of characteristic functions

$$
\begin{aligned}
\psi(x) & = \begin{cases}1 & \text { if } x \in L \\
0 & \text { if } x \notin L\end{cases} \\
\phi(x)_{i} & = \begin{cases}1 & \text { if } x_{i}=1 \\
-1 & \text { if } x_{i}=0\end{cases}
\end{aligned}
$$

And a pair of polytopes
$V(L(n))=\operatorname{conv}\left(\left\{(x, \psi(x)) \mid x \in\{0,1\}^{n}\right\}\right.$.

Polytopal sandwiches for languages

Switch to terminology of language

$$
\begin{aligned}
L & =\left\{x \in\{0,1\}^{*} \mid \psi(x)=1\right\} \\
L(n) & =\left\{x \in\{0,1\}^{n} \mid \psi(x)=1\right\}
\end{aligned}
$$

For $L \subseteq\{0,1\}^{*}$ define a pair of characteristic functions

$$
\begin{aligned}
\psi(x) & = \begin{cases}1 & \text { if } x \in L \\
0 & \text { if } x \notin L\end{cases} \\
\phi(x)_{i} & = \begin{cases}1 & \text { if } x_{i}=1 \\
-1 & \text { if } x_{i}=0\end{cases}
\end{aligned}
$$

And a pair of polytopes

$$
\begin{aligned}
& V(L(n))=\operatorname{conv}\left(\left\{(x, \psi(x)) \mid x \in\{0,1\}^{n}\right\}\right. \\
& H(L(n)):=\left\{(x, w) \left\lvert\, \begin{array}{ll}
\phi(a)^{\top} x+d w \leqslant a^{\top} \mathbb{1}+d & \forall a \in L(n) \\
\phi(a)^{\top} x+d w \leqslant a^{\top} \mathbb{1} & \forall a \notin L(n)
\end{array}\right.\right\}
\end{aligned}
$$

Slack matrices for languages

$$
M_{a, b}(L(n))=a^{\top} \mathbb{1}_{n}-2 a^{\top} b+\mathbb{1}^{\top} b+\alpha(a, b)
$$

where

$$
\begin{align*}
& \alpha(a, b)=\left\{\begin{array}{cc}
d & \text { if } a \in L, b \notin L \\
-d & \text { if } a \notin L, b \in L \\
0 & \text { otherwise }
\end{array}\right. \\
& M(L(n))=S(H(L(n)), V(L(n))) \tag{4}
\end{align*}
$$

Concise coordinates

Concise coordinates

- A matrix or vector X has concise coordinates with respect to $n(X$ is $\operatorname{cc}(n))$ if each element has a binary encoding bounded by a polynomial in n.
- A polytope is $\operatorname{cc}(n)$ if its vertex and facet matrices are.

Extended formulations with concise coordinates

- $\operatorname{rank}_{.}^{n}(M)$ denotes the minimum rank of a non-negative factorization $M=S T$ such that S and T are both $\operatorname{cc}(n)$ - $\mathrm{xc}^{n}(P)$ denotes the minimum number of inequalities in a $\operatorname{cc}(n)$ extended formulation of P.

Concise coordinates

Concise coordinates

- A matrix or vector X has concise coordinates with respect to $n(X$ is $\operatorname{cc}(n))$ if each element has a binary encoding bounded by a polynomial in n.
- A polytope is $\operatorname{cc}(n)$ if its vertex and facet matrices are.

Extended formulations with concise coordinates

- $\operatorname{rank}_{+}^{n}(M)$ denotes the minimum rank of a non-negative factorization $M=S T$ such that S and T are both cc (n).
- $\mathrm{xc}^{n}(P)$ denotes the minimum number of inequalities in a cc (n) extended formulation of P.

Optimizing over sandwiches

Lemma

Let P be a polytope such that $V(L(n)) \subseteq P \subseteq H(L(n))$.
Then, deciding whether a vector $a \in\{0,1\}^{n}$ is in L or not can be achieved by optimizing over P along the direction $(\phi(a), d)$ for some constant $0<d \leqslant 1 / 2$.

Main idea

Objective values for P are sandwiched between those for $V(L(n))$ and $H(L(n))$.

Rank of Sandwiches

Lemma

Let $P_{\text {in }}=\operatorname{conv}(V), P_{\text {out }}=\{x \mid A x \leq b\}$ be cc (n).
$\operatorname{rank}_{+}^{n}(S)=\min \left\{\mathrm{xc}^{n}(P) \mid P\right.$ is cc (n) and $\left.P_{\text {in }} \subseteq P \subseteq P_{\text {out }}\right\}$

Proof sketch.

$$
S^{\prime}:=\left[\begin{array}{cc}
S(P) & S\left(P, P_{\text {out }}\right) \\
S\left(P_{\text {in }}, P\right) & S\left(P_{\text {in }}, P_{\text {out }}\right)
\end{array}\right]
$$

$\operatorname{rank}_{+}^{n}\left(S\left(P_{\text {in }}, P_{\text {out }}\right)\right) \leq \operatorname{rank}_{+}^{n}\left(S^{\prime}\right)=\operatorname{rank}_{+}^{n}(S(P))=\operatorname{xc}^{n}(P)$

Rank of Sandwiches

Lemma

Let $P_{\text {in }}=\operatorname{conv}(V), P_{\text {out }}=\{x \mid A x \leq b\}$ be cc (n).
$\operatorname{rank}_{+}^{n}(S)=\min \left\{\mathrm{xc}^{n}(P) \mid P\right.$ is cc (n) and $\left.P_{\text {in }} \subseteq P \subseteq P_{\text {out }}\right\}$

Proof sketch.

$$
S^{\prime}:=\left[\begin{array}{cc}
S(P) & S\left(P, P_{\text {out }}\right) \\
S\left(P_{\text {in }}, P\right) & S\left(P_{\text {in }}, P_{\text {out }}\right)
\end{array}\right]
$$

$\operatorname{rank}_{+}^{n}\left(S\left(P_{\text {in }}, P_{\text {out }}\right)\right) \leq \operatorname{rank}_{+}^{n}\left(S^{\prime}\right)=\operatorname{rank}_{+}^{n}(S(P))=\mathrm{xc}^{n}(P)$

$$
\begin{align*}
S\left(P_{\text {in }}, P_{\text {out }}\right) & =T U \\
Q & =\{(x, y) \mid A x+T y=b, y \geq \mathbf{0}\} \\
P & =\{x \mid \exists(x, y) \in Q\} \\
P_{\text {in }} & \subseteq P \subseteq P_{\text {out }}
\end{align*}
$$

Rank of Sandwiches and P/Poly

Theorem

$L \in \mathbf{P} /$ Poly iff $\operatorname{rank}_{+}^{n}(M(L(n)))$ is polynomial in n

(only if).

- Small circuits C_{n} implies WEF $Q\left(C_{n}\right)$. Define $P=\operatorname{proj}_{(x, w)}\left(Q\left(C_{n}\right)\right)$
- $V(L(n)) \subseteq P \subseteq H(L(n))$
- $\operatorname{rank}_{+}^{n}(M(L(n)))=\operatorname{rank}_{+}^{n}(S(H(L(n)), V(L(n)))) \leq$ \#ineq(Q)
- Small rank $_{+}^{n}$ implies $\exists P V(L(n)) \subset P \subset H(L(n))$
- P has small extension Q. optimize over Q to decide L

Rank of Sandwiches and $\mathrm{P} /$ Poly

Theorem

$L \in \mathbf{P} /$ Poly iff $\operatorname{rank}_{+}^{n}(M(L(n)))$ is polynomial in n

(only if).

- Small circuits C_{n} implies WEF $Q\left(C_{n}\right)$. Define $P=\operatorname{proj}_{(x, w)}\left(Q\left(C_{n}\right)\right)$
- $V(L(n)) \subseteq P \subseteq H(L(n))$
- $\operatorname{rank}_{+}^{n}(M(L(n)))=\operatorname{rank}_{+}^{n}(S(H(L(n)), V(L(n)))) \leq$ $\#$ ineq (Q)
- Small rank ${ }_{+}^{n}$ implies $\exists P V(L(n)) \subset P \subset H(L(n))$
- P has small extension Q, optimize over Q to decide L.

Outline

(1) Matchings and Matching Polytopes
(2) Extension Complexity
(3) Weak extended formulations
4. From circuits to LPs
(5) Connections with non-negative rank

6 Constructing an LP from Pseudocode

Constructing Concrete Polytopes

- We want to construct actual polytopes for the perfect matching problem and other problems in P.
- Algorithms are typically expressed as pseudocode and not circuits; directly designing a circuit for Edmonds' algorithm seems nontrivial.
- We are currently writing a compiler from a simple procedural pseudocode to LPs.

Constructing Concrete Polytopes

- We want to construct actual polytopes for the perfect matching problem and other problems in P.
- Algorithms are typically expressed as pseudocode and not circuits; directly designing a circuit for Edmonds' algorithm seems nontrivial.
- We are currently writing a compiler from a simple procedural pseudocode to LPs.

Key ideas for compiling pseudocode to LPs

- Based on binary variables, with integrality guarantees propagated by induction, as in the circuit case.
- A step counter is modelled as a set of boolean variables, which enable and disable the constraints modelling each line of code.
- To support practical algorithms, arrays and simple integer arithmetic is supported.
- For more details, and a demo, come to Polymake Days on December 5, here at the TU

Key ideas for compiling pseudocode to LPs

- Based on binary variables, with integrality guarantees propagated by induction, as in the circuit case.
- A step counter is modelled as a set of boolean variables, which enable and disable the constraints modelling each line of code.
- To support practical algorithms, arrays and simple integer arithmetic is supported.
- For more details, and a demo, come to Polymake Days on December 5, here at the TU.

