Building Algorithmic Polytopes

David Bremner

 with D. Avis, H.R. Tiwary, and O. WatanabeDecember 16, 2014

Outline

Matchings in graphs

Given $G=(V, E), M \subset E$ is called a matching

$$
|\{e \in M \mid v \in e\}| \leq 1 \quad \forall v \in V
$$

A matching M is a perfect matching if $|M|=|V| / 2$

Edmonds' Matching Polytope

Convex Hull Description

$$
\operatorname{EM}_{n}=\operatorname{conv}\left\{\chi(M) \in\{0,1\}\left(\begin{array}{l}
\binom{2}{2}
\end{array} M \text { matching in } K_{n}\right\}\right.
$$

Inequality Description

$$
\begin{array}{rlrl}
x_{e} & \geq 0 & e \in E \\
\sum_{e \ni v} x_{e} & \leq 1 & v \in V \\
\sum_{e \subset W} x_{e} & \leq(|W|-1) / 2 & W \subset V,|W| \text { odd }
\end{array}
$$

Extended Formulation

Definition
An extended formulation (EF) of a polytope $P \subseteq \mathbb{R}^{d}$ is a linear system

$$
E x+F y=g, \quad y \geqslant 0
$$

such that $P=\{x \mid \exists y E x+F y=g\}$

Extended Formulation

Definition
An extended formulation (EF) of a polytope $P \subseteq \mathbb{R}^{d}$ is a linear system

$$
E x+F y=g, \quad y \geqslant 0
$$

such that $P=\{x \mid \exists y E x+F y=g\}$

Theorem (Rothvoß2013)
Any extended formulation of Edmonds' matching polytope EM_{n} has $2^{\Omega(n)}$ inequalities.

Outline

Polytopes for decision problems

Consider a decision problem defined by its characteristic function

$$
\psi(x)= \begin{cases}1 & x \text { char. vec. of YES instance } \\ 0 & \text { otherwise }\end{cases}
$$

For each input size q we can define a polytope

$$
P(\psi, q)=\operatorname{conv}\left\{(x, \psi(x)): x \in\{0,1\}^{q}\right\}
$$

$(0,1,1)$

$(0,0,0)$

0/1-property

Definition

Let $Q \subseteq[0,1]^{q+t}$ be a polytope. We say that Q has the $x-0 / 1$ property if - For each x in $\{0,1\}^{q}$ there is a unique vertex (x, y) of Q, and

- $(x, y) \in\{0,1\}^{q+t}$.

Weak Extended Formulation

$$
\begin{aligned}
& \text { Let } Q \subseteq[0,1]^{q+1+r} . \forall \bar{x} \in\{0,1\}^{q}, 0<\delta \leq 1 / 2 \text {, define } \\
& c_{i}=\left(2 \bar{x}_{i}-1\right)^{\text {, }}
\end{aligned}
$$

$$
z^{*}=\max \sum_{i} c_{i} x_{i}+\delta w-\mathbb{1}^{T} \bar{x}
$$

$$
(x, w, s) \in Q
$$

Weak Extended Formulation

$$
\begin{aligned}
& \text { Let } Q \subseteq[0,1]^{q+1+r} . \forall \bar{x} \in\{0,1\}^{q}, 0<\delta \leq 1 / 2 \text {, define } \\
& c_{i}=\left(2 \bar{x}_{i}-1\right)^{\text {, }}
\end{aligned}
$$

$$
z^{*}=\max \sum_{i} c_{i} x_{i}+\delta w-\mathbb{1}^{T} \bar{x}
$$

$$
(x, w, s) \in Q
$$

Weak Extended Formulation

$$
\begin{aligned}
& \text { Let } Q \subseteq[0,1]^{q+1+r} . \forall \bar{x} \in\{0,1\}^{q}, 0<\delta \leq 1 / 2 \text {, define } \\
& c_{i}=\left(2 \bar{x}_{i}-1\right)^{\text {, }}
\end{aligned}
$$

$$
\begin{equation*}
z^{*}=\max \sum_{i} c_{i} x_{i}+\delta w-\mathbb{1}^{T} \bar{x} \tag{LP}
\end{equation*}
$$

$$
(x, w, s) \in Q
$$

Q is a weak extended formulation (WEF) of $P(\psi, q)$ if Q has the $x-0 / 1$ property, and

- If $\psi(\bar{x})=1$ the solution to (??) is unique and $z^{*}=\delta$.
- Otherwise $z^{*}<\delta$ and $\forall \delta \leq \epsilon(q+r), z^{*}=0$ and the solution to (??) is unique.

Outline

Integer Register machines (Cook and Reckhow)

Operations

- $x \leftarrow y \pm z$
- $x \leftarrow y[z]$
- $x[y] \leftarrow z$
- if $x>0$ goto L
(L is a constant line number)

Integer Register machines (Cook and Reckhow)

Operations

- $x \leftarrow y \pm z$
- $x \leftarrow y[z]$
- $x[y] \leftarrow z$
- if $x>0$ goto L
(L is a constant line number)

Register size and costs

- registers can hold arbitrarily large/small integers
- cost of operations is proportional to $\log _{2}$ of operand size

Binary register machines

Bounding operand sizes

- assume running time is bounded by $p(n)$
- from cost model $|x| \leq 2^{p(n)}$
- often we know $|x| \leq M \ll 2^{p(n)}$
- define a parameter $\beta=\log _{2} M$

Binary register machines

Bounding operand sizes

- assume running time is bounded by $p(n)$
- from cost model $|x| \leq 2^{p(n)}$
- often we know $|x| \leq M \ll 2^{p(n)}$
- define a parameter $\beta=\log _{2} M$

Binary registers

- Arbitrary number of named β-bit integer registers
- Arbitrary number of named arrays of integer registers, each containing at most 2^{β} elements.

Boolean registers and 2D arrays

Boolean registers

- operations on 1-bit registers turn out to be much easier
- E.g. sets can be represented arrays of booleans.

Boolean registers and 2D arrays

Boolean registers

- operations on 1-bit registers turn out to be much easier
- E.g. sets can be represented arrays of booleans.

2D arrays

- Arbitrary number of named 2D arrays of boolean registers, containing at most $2^{\beta} \times 2^{\beta}$ elements
- handy for representing graphs

ASM code

Boolean operations

- $x \leftarrow y \circ z$
$\circ \in\{\vee, \wedge, \oplus,=\}$
- $x \leftarrow y[j], x \leftarrow y[j, k]$
$\checkmark x[i] \leftarrow z, x[i, j] \leftarrow y$

ASM code

Boolean operations

- $x \leftarrow y \circ z$
$\circ \in\{\vee, \wedge, \oplus,=\}$
- $x \leftarrow y[j], x \leftarrow y[j, k]$
$\triangleright x[i] \leftarrow z, x[i, j] \leftarrow y$

Integer operations
$-i \leftarrow j+1$

- $x \leftarrow i=j$
- $i \leftarrow j[k]$
- $i[j] \leftarrow[k]$

ASM code

Boolean operations

- $x \leftarrow y \circ z$
$\circ \in\{\vee, \wedge, \oplus,=\}$
- $x \leftarrow y[j], x \leftarrow y[j, k]$
$-x[i] \leftarrow z, x[i, j] \leftarrow y$

Integer operations

- $i \leftarrow j+1$
- $x \leftarrow i=j$
$-i \leftarrow j[k]$
- $i[j] \leftarrow[k]$

Control Flow

- if x goto $L \quad(L$ is a constant line number)
- goto L
- return $w @ v$

Outline

Block structured imperative language

SPARKS

- named after Horowitz-Sahni FORTRAN preprocessor
- close to traditional pseudocode
- generates easy to parse ASM code

Syntax

- control flow: if-then-else/while/for
- compound expressions
- type/input/output declarations
input bool x
input bool y
output bool w
if x then
if y then return w @ 1
else return w @ 0
endif
else
return w © 0
endif
. input bool x
. input bool y
. output bool w
. set guard0 copy x
. set guard0 not guard0
- if guardO else0
. set guard1 copy y
. set guard1 not guard1
. if guard1 else1
2 return w copy 1
else1 nop
3 return w copy 0
else0 nop
4 return w copy 0
. set i copyw 1
. set sentinel0 copyw 3
. set sentinel0 incw sentinel0 for0 set test0 eqw i sentinel0
. if test0 done0
. nop
. set i incw i
- goto for0
done0 nop

Outline

GMPL as target

- inequalities are output as Gnu Math Programming Language
- preservation of names, array structure, helps debugging
- Can be solved directly by glpsol, or transformed to MPS / matrix form.

Polytopes from ASM

Inspiration

- Modelled on proof of Cook's theorem from [HS-1978]
- reduction of simplified SPARKS code to Boolean SAT

Inequality groups

- C initialization
- D begin at the beginning
- E one line at a time
- F control flow
- G memory (non)-updates

Polytopes from ASM

Inspiration

- Modelled on proof of Cook's theorem from [HS-1978]
- reduction of simplified SPARKS code to Boolean SAT

Inequality groups

- C initialization
- D begin at the beginning
- E one line at a time
- F control flow
- G memory (non)-updates

Parameters

- From ASM code A(n, β), polytopes $Q(A(n, \beta))$.

Adding time dimension

- each variable is given an extra time dimension

```
bool x
int y
array A[10]
matrix M[7,7]
```


The step counter

$S[i, t]= \begin{cases}1 & \text { line } i \text { of } \mathrm{A} \text { is being executed at time } t \\ 0 & \text { otherwise }\end{cases}$
1 var int i
2 set i copyw 1
3 nop
4 set temp2 eqw i 3
5 set test1 not temp2
6 set test1 not test1
7 if test1 10
8 set i incw i
9 goto 3
10 nop

Controlled 0/1 property

Definition

Suppose

1. $C x+D y \leqslant e$ has the $x-0 / 1$ property.
2. $C x+D y \leqslant e+\mathbb{1}$ is feasible for all $(x, y) \in\{0,1\}^{q}$.
The system

$$
1 z+C x+D y \leqslant e+\mathbb{1}
$$

has the (z) controlled $x-0 / 1$ property.

$$
\begin{aligned}
-2 x+y & \leq 0 \\
2 x-y & \leq 1 \\
y & \leq 1 \\
-y & \leq 0
\end{aligned}
$$

basic inequalities for the step counter

(D) Step counter initialization Instruction 1 is executed at time $t=1$.

$$
S[1,1]=1
$$

(E) Unique step execution

A unique instruction is executed at each time t.

$$
\sum_{j=1}^{\prime} S[i, t]=1, \quad 1 \leqslant t \leqslant p(n)
$$

(F) Inequalities for flow control

 Inequalities are generated for each $t, 1 \leqslant t \leqslant p(n)$, depending on the instruction at line i(i) (assignment statement) Go to the next instruction.

$$
S[i, t]-S[i+1, t+1] \leqslant 0
$$

(F) Inequalities for flow control

 Inequalities are generated for each $t, 1 \leqslant t \leqslant p(n)$, depending on the instruction at line i(i) (assignment statement) Go to the next instruction.

$$
S[i, t]-S[i+1, t+1] \leqslant 0
$$

(ii) (go to k)

$$
S[i, t]-S[k, t+1] \leqslant 0
$$

(F) Inequalities for flow control

 Inequalities are generated for each $t, 1 \leqslant t \leqslant p(n)$, depending on the instruction at line i(i) (assignment statement) Go to the next instruction.

$$
S[i, t]-S[i+1, t+1] \leqslant 0
$$

(ii) (go to k)

$$
S[i, t]-S[k, t+1] \leqslant 0
$$

(iii) (return) Loop on this line until time runs out.

$$
S[i, t]-S[i, t+1] \leqslant 0
$$

(F) Inequalities for flow control

 Inequalities are generated for each $t, 1 \leqslant t \leqslant p(n)$, depending on the instruction at line i(i) (assignment statement) Go to the next instruction.

$$
S[i, t]-S[i+1, t+1] \leqslant 0
$$

(ii) (go to k)

$$
S[i, t]-S[k, t+1] \leqslant 0
$$

(iii) (return) Loop on this line until time runs out.

$$
S[i, t]-S[i, t+1] \leqslant 0
$$

(iv) (if c goto k)

$$
\begin{aligned}
S[i, t]+c[t-1]-S[k, t+1] & \leqslant 1 \\
S[i, t]-c[t-1]-S[i+1, t+1] & \leqslant 0
\end{aligned}
$$

(G) assignment: $s=x$

For $s=x$ we generate the two inequalities:

$$
\begin{aligned}
& S[i, t]+x[t-1]-s[t] \leqslant 1 \\
& S[i, t]-x[t-1]+s[t] \leqslant 1
\end{aligned}
$$

(G) assignment: $s=x$

For $s=x$ we generate the two inequalities:

$$
\begin{aligned}
& S[i, t]+x[t-1]-s[t] \leqslant 1 \\
& S[i, t]-x[t-1]+s[t] \leqslant 1
\end{aligned}
$$

- Note that ' $x[t]$ ' makes sense in place of 's[t]'
- Every unmodified variable is "carried forward" using these same inequalities.
(G) Boolean exclusive or $s=x \oplus y$

$$
\begin{aligned}
& S[i, t]+x[t-1]-y[t-1]-s[t] \leqslant 1 \\
& S[i, t]-x[t-1]-y[t-1]+s[t] \leqslant 1 \\
& S[i, t]-x[t-1]+y[t-1]-s[t] \leqslant 1 \\
& S[i, t]+x[t-1]+y[t-1]+s[t] \leqslant 3
\end{aligned}
$$

(G) Boolean exclusive or $s=x \oplus y$

$$
\begin{aligned}
& S[i, t]+x[t-1]-y[t-1]-s[t] \leqslant 1 \\
& S[i, t]-x[t-1]-y[t-1]+s[t] \leqslant 1 \\
& S[i, t]-x[t-1]+y[t-1]-s[t] \leqslant 1 \\
& S[i, t]+x[t-1]+y[t-1]+s[t] \leqslant 3
\end{aligned}
$$

$S[i, t]=1$

$$
\begin{align*}
+x[t-1]-y[t-1] & \leqslant s[t] \tag{10}\\
s[t] & \leqslant x[t-1]+y[t-1] \tag{00}\\
-x[t-1]+y[t-1] & \leqslant s[t] \tag{01}\\
s[t] & \leqslant 2-x[t-1]-y[t-1] \tag{11}
\end{align*}
$$

Integer increment $q=q+1$

- a second integer variable r holds the carries

$$
\begin{aligned}
q[1, t] & =q[1, t-1] \oplus 1 & & \\
r[1, t] & =q[1, t-1] \wedge 1 & & \\
r[j, t] & =q[j, t-1] \wedge r[j-1, t] & & 2 \leqslant j \leqslant \beta \\
q[j, t] & =q[j, t-1] \oplus r[j-1, t] & & 2 \leqslant j \leqslant \beta
\end{aligned}
$$

- Each of these equations is enforced with sets of inequalities

array assignment $1 / 2$

$-x \leftarrow R[m], R$ has indicies $0 . . u$
Comparison representation of index m

$$
\begin{aligned}
\mu(j, t) & = \begin{cases}0 & m[t-1]=j \\
1 & \text { otherwise }\end{cases} \\
& =\bigvee_{k=1}^{\beta} m[k, t-1] \oplus \operatorname{bit}(j, k)
\end{aligned}
$$

For $0 \leq j \leq u$

$$
\begin{aligned}
& S[i, t]+\mu(j, t)-M_{i}[j, t] \leqslant 1 \\
& S[i, t]-\mu(j, t)+M_{i}[j, t] \leqslant 1
\end{aligned}
$$

array assignment 2/2

 inequalities$$
\begin{aligned}
S[i, t]+x[t-1]-R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]-x[t-1]+R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]+R[j, t-1]-R[j, t]+M_{i}[j, t] & \leqslant 2 \\
S[i, t]-R[j, t-1]+R[j, t]+M_{i}[j, t] & \leqslant 2
\end{aligned}
$$

array assignment 2/2

inequalities

$$
\begin{aligned}
S[i, t]+x[t-1]-R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]-x[t-1]+R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]+R[j, t-1]-R[j, t]+M_{i}[j, t] & \leqslant 2 \\
S[i, t]-R[j, t-1]+R[j, t]+M_{i}[j, t] & \leqslant 2
\end{aligned}
$$

$S[i, t]=1$

$$
+x[t-1]-R[j, t] \leqslant M_{i}[j, t]
$$

$$
-x[t-1]+R[j, t] \leqslant M_{i}[j, t]
$$

$$
+R[j, t-1]-R[j, t] \leqslant 1-M_{i}[j, t]
$$

$$
-R[j, t-1]+R[j, t] \leqslant 1-M_{i}[j, t]
$$

array assignment $2 / 2$

 inequalities$$
\begin{aligned}
S[i, t]+x[t-1]-R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]-x[t-1]+R[j, t]-M_{i}[j, t] & \leqslant 1 \\
S[i, t]+R[j, t-1]-R[j, t]+M_{i}[j, t] & \leqslant 2 \\
S[i, t]-R[j, t-1]+R[j, t]+M_{i}[j, t] & \leqslant 2
\end{aligned}
$$

$S[i, t]=1$

$$
+x[t-1]-R[j, t] \leqslant M_{i}[j, t] \quad \text { Main idea }
$$

$$
-x[t-1]+R[j, t] \leqslant M_{i}[j, t]
$$

$$
+R[j, t-1]-R[j, t] \leqslant 1-M_{i}[j, t]
$$

$$
-R[j, t-1]+R[j, t] \leqslant 1-M_{i}[j, t]
$$

- $M_{i}[j, t]$ acts as a switch between two assignments

Polytopes that compute

Proposition

- Let $\mathrm{A}(n, \beta)$ be an ASM code with input $x \in[0,1]^{n}$ that terminates by setting $w=\psi(x)$.
- Let $Q(n, \beta)$ be the constructed polytope with extra variables s_{i}.
Then we have

Polytopes that compute

Proposition

- Let $\mathrm{A}(n, \beta)$ be an ASM code with input $x \in[0,1]^{n}$ that terminates by setting $w=\psi(x)$.
- Let $Q(n, \beta)$ be the constructed polytope with extra variables s_{i}.
Then we have

1. $Q(n, \beta)$ has size polynomial in the running time of A .

Polytopes that compute

Proposition

- Let $\mathrm{A}(n, \beta)$ be an $A S M$ code with input $x \in[0,1]^{n}$ that terminates by setting $w=\psi(x)$.
- Let $Q(n, \beta)$ be the constructed polytope with extra variables s_{i}.
Then we have

1. $Q(n, \beta)$ has size polynomial in the running time of A .
2. For any $x^{*} \in\{0,1\}^{n}, Q(n, \beta)$ has a unique vertex $\left(x^{*}, w^{*}, s^{*}\right)$ with $w^{*}=\psi\left(x^{*}\right)$.

Polytopes that compute

Proposition

- Let $\mathrm{A}(n, \beta)$ be an ASM code with input $x \in[0,1]^{n}$ that terminates by setting $w=\psi(x)$.
- Let $Q(n, \beta)$ be the constructed polytope with extra variables s_{i}.
Then we have

1. $Q(n, \beta)$ has size polynomial in the running time of A .
2. For any $x^{*} \in\{0,1\}^{n}, Q(n, \beta)$ has a unique vertex $\left(x^{*}, w^{*}, s^{*}\right)$ with $w^{*}=\psi\left(x^{*}\right)$.

Proof.

By induction on timestep t.

Weak extended formulations

Proposition

Let $\mathrm{A}(n, \beta)$ be an ASM code which solves a decision problem with characteristic function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$. The corresponding polytope $Q(n, \beta)$ is a weak extended formulation for $P(\psi, n)$.

Weak extended formulations

Proposition

Let $\mathrm{A}(\mathrm{n}, \beta)$ be an ASM code which solves a decision problem with characteristic function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$. The corresponding polytope $Q(n, \beta)$ is a weak extended formulation for $P(\psi, n)$.

- $Q(n, \beta)$ has the $x-0 / 1$ property (previous proposition)

Weak extended formulations

Proposition

Let $\mathrm{A}(n, \beta)$ be an ASM code which solves a decision problem with characteristic function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$. The corresponding polytope $Q(n, \beta)$ is a weak extended formulation for $P(\psi, n)$.

- $Q(n, \beta)$ has the $x-0 / 1$ property (previous proposition)
- The objective function $z(x)=\sum_{i}\left(2 \bar{x}_{i}-1\right) x_{i}+\delta$ forces the optimal solution $(\bar{x}, \psi(\bar{x}), s)$ for sufficiently small δ.

Weak extended formulations

Proposition

Let $\mathrm{A}(n, \beta)$ be an ASM code which solves a decision problem with characteristic function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$. The corresponding polytope $Q(n, \beta)$ is a weak extended formulation for $P(\psi, n)$.

- $Q(n, \beta)$ has the $x-0 / 1$ property (previous proposition)
- The objective function $z(x)=\sum_{i}\left(2 \bar{x}_{i}-1\right) x_{i}+\delta$ forces the optimal solution $(\bar{x}, \psi(\bar{x}), s)$ for sufficiently small δ.
- Such a δ can be computed quickly.

