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Matchings in graphs

Given G = (V ,E ), M ⊂ E is called a
matching

|{e ∈ M | v ∈ e}| ≤ 1 ∀v ∈ V

A matching M is a perfect matching
if |M | = |V |/2



Edmonds' Matching Polytope

Convex Hull Description

EMn = conv{χ(M) ∈ {0, 1}(
n
2
) | M matching in Kn}

Inequality Description

xe ≥ 0 e ∈ E∑
e3v

xe ≤ 1 v ∈ V∑
e⊂W

xe ≤ (|W | − 1)/2 W ⊂ V , |W | odd



Extended Formulation

De�nition
An extended formulation (EF) of a polytope P ⊆ Rd is a
linear system

Ex + Fy = g , y > 0

such that P = {x | ∃y Ex + Fy = g}

Theorem (Rothvoÿ2013)
Any extended formulation of Edmonds' matching polytope
EMn has 2Ω(n) inequalities.
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Polytopes for decision problems

Consider a decision problem de�ned
by its characteristic function

ψ(x) =

{
1 x char. vec. of YES instance

0 otherwise

For each input size q we can de�ne a
polytope

P(ψ, q) = conv{(x , ψ(x)) : x ∈ {0, 1}q}

(0, 0, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 0)



0/1-property

De�nition
Let Q ⊆ [0, 1]q+t be a polytope. We
say that Q has the x-0/1 property if

I For each x in {0, 1}q there is a
unique vertex (x , y) of Q, and

I (x , y) ∈ {0, 1}q+t .

x1

x2y



Weak Extended Formulation

Let Q ⊆ [0, 1]q+1+r . ∀x̄ ∈ {0, 1}q, 0 < δ ≤ 1/2, de�ne
ci = (2x̄i − 1),

z∗ = max
∑
i

cixi + δw − 1T x̄ (LP)

(x ,w , s) ∈ Q

Q is a weak extended formulation
(WEF) of P(ψ, q) if Q has the x-0/1
property, and

I If ψ(x̄) = 1 the solution to (??)
is unique and z∗ = δ.

I Otherwise z∗ < δ and
∀δ ≤ ε(q + r), z∗ = 0 and the
solution to (??) is unique.

(1, 1, 1)

(0, 0, 0)
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Integer Register machines (Cook and Reckhow)

Operations

I x ← y ± z

I x ← y [z ]

I x [y ]← z

I if x > 0 goto L (L is a constant line number)

Register size and costs

I registers can hold arbitrarily large/small integers

I cost of operations is proportional to log
2
of operand size
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Binary register machines

Bounding operand sizes

I assume running time is bounded by p(n)

I from cost model |x | ≤ 2p(n)

I often we know |x | ≤ M � 2p(n)

I de�ne a parameter β = log
2
M

Binary registers

I Arbitrary number of named β-bit integer registers

I Arbitrary number of named arrays of integer registers,
each containing at most 2β elements.
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Boolean registers and 2D arrays

Boolean registers

I operations on 1-bit registers turn out to be much easier

I E.g. sets can be represented arrays of booleans.

2D arrays

I Arbitrary number of named 2D arrays of boolean
registers, containing at most 2β × 2β elements

I handy for representing graphs
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ASM code

Boolean operations

I x ← y ◦ z
◦ ∈ {∨,∧,⊕,=}

I x ← y [j ], x ← y [j , k]

I x [i ]← z , x [i , j ]← y

Integer operations

I i ← j + 1

I x ← i = j

I i ← j [k]

I i [j ]← [k]

Control Flow

I if x goto L (L is a constant line number)

I goto L

I return w@v
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Block structured imperative language

SPARKS

I named after Horowitz-Sahni FORTRAN preprocessor

I close to traditional pseudocode

I generates easy to parse ASM code

Syntax

I control �ow: if-then-else/while/for

I compound expressions

I type/input/output declarations



if

input bool x

input bool y

output bool w

if x then

if y then

return w @ 1

else

return w @ 0

endif

else

return w @ 0

endif

. input bool x

. input bool y

. output bool w

. set guard0 copy x

. set guard0 not guard0

. if guard0 else0

. set guard1 copy y

. set guard1 not guard1

. if guard1 else1

2 return w copy 1

else1 nop

3 return w copy 0

else0 nop

4 return w copy 0



for

for i <- 1,3 do

nop

done

. set i copyw 1

. set sentinel0 copyw 3

. set sentinel0 incw sentinel0

for0 set test0 eqw i sentinel0

. if test0 done0

. nop

. set i incw i

. goto for0

done0 nop
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GMPL as target

I inequalities are output as Gnu Math Programming
Language

I preservation of names, array structure, helps debugging

I Can be solved directly by glpsol, or transformed to MPS /
matrix form.



Polytopes from ASM

Inspiration

I Modelled on proof of Cook's theorem from [HS-1978]

I reduction of simpli�ed SPARKS code to Boolean SAT

Inequality groups

I C initialization

I D begin at the beginning

I E one line at a time

I F control �ow

I G memory (non)-updates

Parameters

I From ASM code A(n, β),
polytopes Q(A(n, β)).
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Adding time dimension

I each variable is given an extra time dimension

bool x

int y

array A[10]

matrix M[7,7]

var x{0..tmax-1},>=0,<=1;

var y{0..bits-1,0..tmax-1},>=0,<=1;

var A{0..10,0..tmax-1},>=0,<=1;

var M{0..7,0..7,0..tmax-1},>=0,<=1;



The step counter

S [i , t] =

{
1 line i of A is being executed at time t

0 otherwise

1 var int i

2 set i copyw 1

3 nop

4 set temp2 eqw i 3

5 set test1 not temp2

6 set test1 not test1

7 if test1 10

8 set i incw i

9 goto 3

10 nop

3 7 9



Controlled 0/1 property

De�nition
Suppose

1. Cx + Dy 6 e has the x-0/1
property.

2. Cx + Dy 6 e + 1 is feasible for
all (x , y) ∈ {0, 1}q.

The system

1z + Cx + Dy 6 e + 1

has the (z) controlled x-0/1 property.

−2x + y ≤ 0

2x − y ≤ 1

y ≤ 1

−y ≤ 0



basic inequalities for the step counter

(D) Step counter initialization
Instruction 1 is executed at time t = 1.

S [1, 1] = 1

(E) Unique step execution
A unique instruction is executed at each time t.

l∑
j=1

S [i , t] = 1, 1 6 t 6 p(n)



(F) Inequalities for �ow control
Inequalities are generated for each t, 1 6 t 6 p(n), depending
on the instruction at line i

(i) (assignment statement) Go to the next instruction.

S [i , t]− S [i + 1, t + 1] 6 0

(ii) (go to k)
S [i , t]− S [k , t + 1] 6 0

(iii) (return) Loop on this line until time runs out.

S [i , t]− S [i , t + 1] 6 0

(iv) (if c goto k)

S [i , t] + c[t − 1]− S [k , t + 1] 6 1

S [i , t]− c[t − 1]− S [i + 1, t + 1] 6 0
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(G) assignment: s = x
For s = x we generate the two
inequalities:

S [i , t] + x [t − 1]− s[t] 6 1

S [i , t]− x [t − 1] + s[t] 6 1

I Note that 'x[t]' makes
sense in place of 's[t]'

I Every unmodi�ed variable
is �carried forward� using
these same inequalities.
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(G) Boolean exclusive or
s = x ⊕ y

S [i , t] + x [t − 1]− y [t − 1]− s[t] 6 1

S [i , t]− x [t − 1]− y [t − 1] + s[t] 6 1

S [i , t]− x [t − 1] + y [t − 1]− s[t] 6 1

S [i , t] + x [t − 1] + y [t − 1] + s[t] 6 3

S [i , t] = 1

+x [t − 1]− y [t − 1] 6 s[t] (10)

s[t] 6 x [t − 1] + y [t − 1] (00)

−x [t − 1] + y [t − 1] 6 s[t] (01)

s[t] 6 2− x [t − 1]− y [t − 1] (11)



(G) Boolean exclusive or
s = x ⊕ y

S [i , t] + x [t − 1]− y [t − 1]− s[t] 6 1

S [i , t]− x [t − 1]− y [t − 1] + s[t] 6 1

S [i , t]− x [t − 1] + y [t − 1]− s[t] 6 1

S [i , t] + x [t − 1] + y [t − 1] + s[t] 6 3

S [i , t] = 1

+x [t − 1]− y [t − 1] 6 s[t] (10)

s[t] 6 x [t − 1] + y [t − 1] (00)

−x [t − 1] + y [t − 1] 6 s[t] (01)

s[t] 6 2− x [t − 1]− y [t − 1] (11)



Integer increment q = q + 1

I a second integer variable r holds the carries

q[1, t] = q[1, t − 1]⊕ 1

r [1, t] = q[1, t − 1] ∧ 1

r [j , t] = q[j , t − 1] ∧ r [j − 1, t] 2 6 j 6 β

q[j , t] = q[j , t − 1]⊕ r [j − 1, t] 2 6 j 6 β

I Each of these equations is enforced with sets of
inequalities



array assignment 1/2

I x ← R[m], R has indicies 0..u

Comparison representation of index m

µ(j , t) =

{
0 m[t − 1] = j

1 otherwise

=

β∨
k=1

m[k , t − 1]⊕ bit(j , k)

For 0 ≤ j ≤ u

S [i , t] + µ(j , t)−Mi [j , t] 6 1

S [i , t]− µ(j , t) + Mi [j , t] 6 1



array assignment 2/2
inequalities

S [i , t] + x [t − 1]− R[j , t]−Mi [j , t] 6 1

S [i , t]− x [t − 1] + R[j , t]−Mi [j , t] 6 1

S [i , t] + R[j , t − 1]− R[j , t] + Mi [j , t] 6 2

S [i , t]− R[j , t − 1] + R[j , t] + Mi [j , t] 6 2

S [i , t] = 1

+x [t − 1]− R[j , t] 6 Mi [j , t]

−x [t − 1] + R[j , t] 6 Mi [j , t]

+R[j , t − 1]− R[j , t] 6 1−Mi [j , t]

−R[j , t − 1] + R[j , t] 6 1−Mi [j , t]

Main idea

I Mi [j , t] acts as a
switch between two
assignments
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Polytopes that compute

Proposition

I Let A(n, β) be an ASM code with input x ∈ [0, 1]n that
terminates by setting w = ψ(x).

I Let Q(n, β) be the constructed polytope with extra
variables si .

Then we have

1. Q(n, β) has size polynomial in the running time of A.

2. For any x∗ ∈ {0, 1}n, Q(n, β) has a unique vertex
(x∗,w ∗, s∗) with w ∗ = ψ(x∗).

Proof.
By induction on timestep t.
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Weak extended formulations

Proposition
Let A(n, β) be an ASM code which solves a decision problem
with characteristic function ψ : {0, 1}n → {0, 1}. The
corresponding polytope Q(n, β) is a weak extended
formulation for P(ψ, n).

I Q(n, β) has the x-0/1 property (previous proposition)

I The objective function z(x) =
∑

i(2x̄i − 1)xi + δ forces
the optimal solution (x̄ , ψ(x̄), s) for su�ciently small δ.

I Such a δ can be computed quickly.
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