Computational approaches to polytope diameter questions

David Bremner¹ Lars Schewe²

¹Faculty of Computer Science/Department of Mathematics University of New Brunswick

> ²Fachbereich Mathematik Technische Universität Darmstadt

> > August 21, 2008

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n-d.

Conjecture (Klee and Walkup, 1967)

 $\Delta(d,2d) \leqslant d$

Lemma (Klee and Walkup, 1967)

 $\Delta(d, d+k) \leqslant \Delta(k, 2k)$ with equality for $k \leqslant d$

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n - d.

Conjecture (Klee and Walkup, 1967)

$$\Delta(d,2d) \leqslant d$$

Lemma (Klee and Walkup, 1967)

$$\Delta(d, d + k) \leq \Delta(k, 2k)$$
 with equality for $k \leq d$

Hirsch and d-step

Conjecture (Hirsch, 1957)

The maximum diameter $\Delta(d, n)$ of a d-dimensional convex polytope with n facets is at most n - d.

Conjecture (Klee and Walkup, 1967)

$$\Delta(d,2d) \leqslant d$$

Lemma (Klee and Walkup, 1967)

$$\Delta(d, d + k) \leq \Delta(k, 2k)$$
 with equality for $k \leq d$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

- 1. $\Delta(3, n) = \left| \frac{2}{3}n \right| 1$
- 2. $\Delta(d, 2d + k) \leq \Delta(d 1, 2d + k 1) + \lfloor \frac{k}{2} \rfloor + 1$ for $0 \leq k \leq 3$
- 3. $\Delta(d, n) \leq 2(2d)^{\log_2(n)}$

Lemma (Goodey 1972)

- 1. $\Delta(4,10) = 5$ and $\Delta(5,11) = 6$
- 2. $\Delta(6, 13) \leq 9$ and $\Delta(7, 14) \leq 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

- 1. $\Delta(3, n) = \left| \frac{2}{3}n \right| 1$
- 2. $\Delta(d, 2d + k) \leq \Delta(d 1, 2d + k 1) + \lfloor \frac{k}{2} \rfloor + 1$ for $0 \leq k \leq 3$
- 3. $\Delta(d, n) \leq 2(2d)^{\log_2(n)}$

Lemma (Goodey 1972)

- 1. $\Delta(4,10) = 5$ and $\Delta(5,11) = 6$
- 2. $\Delta(6, 13) \leq 9$ and $\Delta(7, 14) \leq 10$

Bounds

Lemma (Klee and Walkup 67, Klee and Kleinschmidt 1987, Kalai 1992)

1.
$$\Delta(3, n) = \left| \frac{2}{3}n \right| - 1$$

2.
$$\Delta(d, 2d + k) \leq \Delta(d - 1, 2d + k - 1) + \lfloor \frac{k}{2} \rfloor + 1$$
 for $0 \leq k \leq 3$

3.
$$\Delta(d, n) \leq 2(2d)^{\log_2(n)}$$

Lemma (Goodey 1972)

1.
$$\Delta(4,10) = 5$$
 and $\Delta(5,11) = 6$

2.
$$\Delta(6, 13) \leq 9$$
 and $\Delta(7, 14) \leq 10$

Table: Bounds on $\Delta(d, n)$ circa 1972.

n-d				
d	4	5	6	7
4	4	5	5	{6,7}
5	4	5	6	[7,9]
6	4	5	{6,7}	[7,9]
7	4	5	{6,7}	[7, 10]

- ▶ Consider case with known upper bound $\Delta(n, d) \leq k$
- ▶ Find all possible combinatorial types of edge paths of length *k*.
- ▶ Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

- ▶ Consider case with known upper bound $\Delta(n, d) \leq k$
- \triangleright Find all possible combinatorial types of edge paths of length k.
- ▶ Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

- ▶ Consider case with known upper bound $\Delta(n, d) \leq k$
- \triangleright Find all possible combinatorial types of edge paths of length k.
- ▶ Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leqslant k 1$

Remark

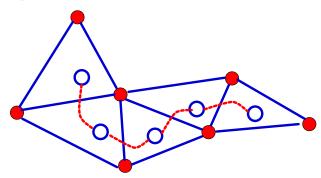
- ▶ Consider case with known upper bound $\Delta(n, d) \leq k$
- \triangleright Find all possible combinatorial types of edge paths of length k.
- ▶ Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leq k 1$

Remark

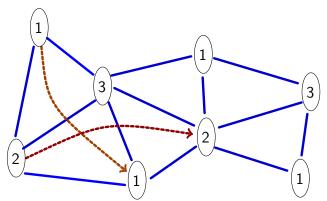
- ▶ Consider case with known upper bound $\Delta(n, d) \leq k$
- \triangleright Find all possible combinatorial types of edge paths of length k.
- ▶ Show that none of these is realizable as the diameter of an (n, d) polytope.
- ▶ It follows $\Delta(n, d) \leq k 1$

Remark

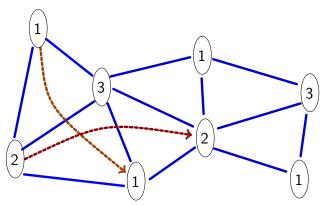
- ▶ facet paths
 - ► abstract simplicial complex
 - ▶ dual is a path
- pivot sequences



- ► facet paths
- pivot sequences
 - ► Label initial simplex
 - ► Label of entering=label of leaving

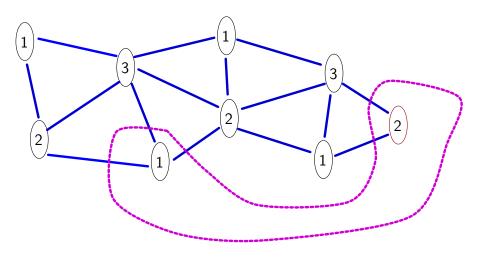


- ► facet paths
- pivot sequences
- ▶ labels do not repeat, w.l.o.g., occur in order

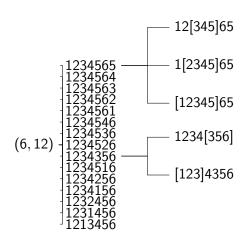


- ▶ facet paths
- pivot sequences
- ▶ labels do not repeat, w.l.o.g., occur in order \equiv restricted growth strings, d-1 symbols occur in order.

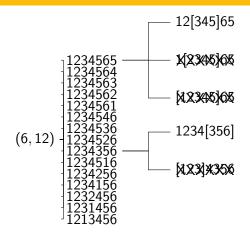
Single revisit paths via identifications



Single revisit paths via identifications



Single revisit paths via identifications



Lemma

Every combinatorial type of end-disjoint single revisit path has an encoding as pivot sequence without a revisit on the first facet.

Polytope boundary completion

Problem

Given abstract simplicial complex Δ , is there a simplicial polytope whose boundary complex contains Δ .

- ► NP Hard (Richter-Gebert)
- Algebraically difficult (arbitrary sets of polynomial inequalities).

Polytope boundary completion

Problem

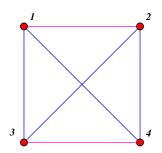
Given abstract simplicial complex Δ , is there a simplicial polytope whose boundary complex contains Δ .

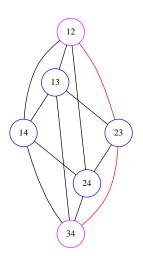
- ► NP Hard (Richter-Gebert)
- ▶ Algebraically difficult (arbitrary sets of polynomial inequalities).

Shortcuts

- ▶ pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- ▶ inclusion minimal paths: $\Pi = F_0, F_1, \dots F_k$, where no subset of Π is a path from F_0 to F_k

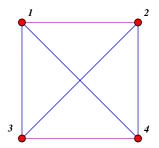
can be generated recursively

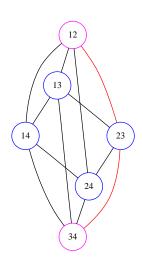




Shortcuts

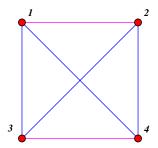
- pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- ▶ inclusion minimal paths: $\Pi = F_0, F_1, \dots F_k$, where no subset of Π is a path from F_0 to F_k .
 - can be generated recursively

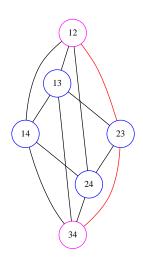




Shortcuts

- ▶ pivot graph: nodes ≡ (potential) facets, edges ≡ (potential) ridges
- ▶ inclusion minimal paths: $\Pi = F_0, F_1, \dots F_k$, where no subset of Π is a path from F_0 to F_k .
 - can be generated recursively





Geodesic Embedding

Problem

Given path complex Γ , and a set $\Pi_1 \dots \Pi_m$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ , but not any Π_i .

Remark

For a no answer, it suffices to find a contradiction with some valid set of constraints.

Geodesic Embedding

Problem

Given path complex Γ , and a set $\Pi_1 \dots \Pi_m$ of forbidden path complexes on the same ground set, is there a simplicial polytope whose boundary complex contains Γ , but not any Π_i .

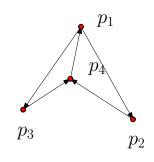
Remark

For a no answer, it suffices to find a contradiction with some valid set of constraints.

▶ Given $P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$,

$$\chi(i_1, \dots i_{d+1}) = \mathsf{sign}\,|p_{i_1}, \dots p_{i_{d+1}}|$$

- ► For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.



Remark

$$\chi(1,2,3) = -1$$
 $\chi(1,2,4) = -1$
 $\chi(1,3,4) = +1$
 $\chi(2,3,4) = -1$

▶ Given $P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$,

$$\chi(i_1, \dots i_{d+1}) = \mathsf{sign}\,|p_{i_1}, \dots p_{i_{d+1}}|$$

- ► For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.



Remark

$$\chi(1,2,3) = -1$$

$$\chi(1,2,4) = -1$$

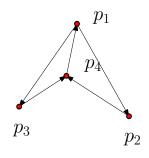
$$\chi(1,3,4) = +1$$

$$\chi(2,3,4) = -1$$

▶ Given $P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$,

$$\chi(i_1, \dots i_{d+1}) = \operatorname{sign} |p_{i_1}, \dots p_{i_{d+1}}|$$

- ► For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.



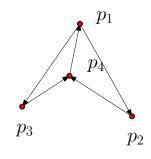
Remark

$$\chi(1,2,3) = -1$$
 $\chi(1,2,4) = -1$
 $\chi(1,3,4) = +1$
 $\chi(2,3,4) = -1$

▶ Given $P = \{(q_i, 1)\} \subset \mathbb{R}^{d+1}$,

$$\chi(i_1,\ldots i_{d+1}) = \operatorname{sign}|p_{i_1},\ldots p_{i_{d+1}}|$$

- ► For any set of points $\chi()$ obeys the Graßman-Plücker relations
- We call any alternating map χ obeying the G-P relations a *chirotope*.



Remark

$$\chi(1,2,3) = -1$$
 $\chi(1,2,4) = -1$
 $\chi(1,3,4) = +1$
 $\chi(2,3,4) = -1$

- ► Uniform case (no zero determinants)
- ▶ 3-term Graßmann-Plücker Constraints. For $\lambda \in N^{d-1}$, $a, b, c, d \in N \setminus \lambda$.

$$\begin{aligned} |P_{\lambda} \ p_{a} \ p_{b}||P_{\lambda} \ p_{c} \ p_{d}| - |P_{\lambda} \ p_{a} \ p_{c}||P_{\lambda} \ p_{b} \ p_{d}| + |P_{\lambda} \ p_{a} \ p_{d}||P_{\lambda} \ p_{b} \ p_{c}| = 0 \\ \neq \{\chi(\lambda \ a \ b) = \chi(\lambda \ c \ d), \chi(\lambda \ a \ c) \neq \chi(\lambda \ b \ d), \chi(\lambda \ a \ d) = \chi(\lambda \ b \ c)\} \end{aligned}$$
yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.

- ▶ Facet constraints can be dealt with in preprocessing.
- ▶ Forbidden short cuts \equiv one of $F_1, F_2, \dots F_k$ is not a facet; yields 2 CNF constraints per shortcut.

- ► Uniform case (no zero determinants)
- ▶ 3-term Graßmann-Plücker Constraints. For $\lambda \in N^{d-1}$, $a, b, c, d \in N \setminus \lambda$.

$$|P_{\lambda} p_{a} p_{b}||P_{\lambda} p_{c} p_{d}| - |P_{\lambda} p_{a} p_{c}||P_{\lambda} p_{b} p_{d}| + |P_{\lambda} p_{a} p_{d}||P_{\lambda} p_{b} p_{c}| = 0$$

$$\neq \{\chi(\lambda a b) = \chi(\lambda c d), \chi(\lambda a c) \neq \chi(\lambda b d), \chi(\lambda a d) = \chi(\lambda b c)\}$$

- yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints
- ► Facet constraints can be dealt with in preprocessing.
- ▶ Forbidden short cuts \equiv one of $F_1, F_2, \dots F_k$ is not a facet; yields 2 CNF constraints per shortcut.

- ► Uniform case (no zero determinants)
- ▶ 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- ► Facet constraints can be dealt with in preprocessing.
- ▶ Forbidden short cuts \equiv one of $F_1, F_2, \dots F_k$ is not a facet; yields 2 CNF constraints per shortcut.

- Uniform case (no zero determinants)
- ▶ 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- ► Facet constraints

$$\chi(Fa) = \chi(Fb) = \chi(Fc) \dots$$

can be dealt with in preprocessing.

▶ Forbidden short cuts \equiv one of $F_1, F_2, \dots F_k$ is not a facet; yields 2 CNF constraints per shortcut.

- ▶ Uniform case (no zero determinants)
- ▶ 3-term Graßmann-Plücker Constraints yields $16\binom{n}{d-1}\binom{n-d+1}{4}$ CNF constraints.
- ► Facet constraints can be dealt with in preprocessing.
- ▶ Forbidden short cuts \equiv one of $F_1, F_2, \dots F_k$ is not a facet;

$$\neq \{\chi(F_{1}a_{1}), \chi(F_{1}b_{1}) \dots \sigma_{12}\chi(F_{2}a_{2}), \sigma_{12}\chi(F_{2}b_{2})\}$$

yields 2 CNF constraints per shortcut.

Computational Results

- ► For (6, 12), 10 cases, each taking a few hours on a laptop.
- ► For (4, 11), 35 cases, each taking at most a few hours
- ► For (5, 12), 540 cases, 19 taking more than 48 hours

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

		n -	– d	
d	4	5	6	7
4	4	5	5	6
5	4	5	6	{7,8 }
6	4	5	6	[7,9]
7	4	5	6	[7, 10]

Computational Results

- ► For (6, 12), 10 cases, each taking a few hours on a laptop.
- ► For (4,11), 35 cases, each taking at most a few hours.
- ► For (5, 12), 540 cases, 19 taking more than 48 hours

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

	- d	n -		
7	6	5	4	d
6	5	5	4	4
{7,8 }	6	5	4	5
[7,9]	6	5	4	6
[7, 10]	6	5	4	7

Computational Results

- ► For (6, 12), 10 cases, each taking a few hours on a laptop.
- ► For (4,11), 35 cases, each taking at most a few hours.
- ► For (5, 12), 540 cases, 19 taking more than 48 hours.

Table: Summary of bounds for $\Delta(d, n)$. The bold entries are from the computations discussed in this talk.

	– d	n -		
7	6	5	4	d
6	5	5	4	4
{7,8 }	6	5	4	5
[7,9]	6	5	4	6
[7, 10]	6	5	4	7

Future work

- ► Machine Verification
- ► Counterexamples?
- ▶ Enumeration of path complexes is joint with Holt and Klee
- ▶ Thanks to Hausdorff Institute, Acenet, NSERC.

Future work

- ► Machine Verification
- ► Counterexamples?
- ► Enumeration of path complexes is joint with Holt and Klee
- ▶ Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- ► Machine Verification
- ► Counterexamples?
- ► Enumeration of path complexes is joint with Holt and Klee
- ▶ Thanks to Hausdorff Institute, Acenet, NSERC.

Future work and acknowledgements

- ► Machine Verification
- ► Counterexamples?
- ▶ Enumeration of path complexes is joint with Holt and Klee
- ▶ Thanks to Hausdorff Institute, Acenet, NSERC.