The duality between maximum separation and minimum distance

David Bremner ${ }^{1}$
UNB
June 19, 2008

${ }^{1}$ Joint work with Peter Gritzmann and Thomas Burger

Outline

Margin: separation quantified

Margin as a metric problem

A dual formulation via norm minimization

The separable (convex) case

The inseparable case

Conclusions

Outline

Margin: separation quantified

Margin as a metric problem

A dual formulation via norm minimization

The separable (convex) case

The inseparable case

Conclusions

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Roughly speaking

We want to maximize γ / γ^{*}, where γ^{*} is a best possible margin for some family $\mathcal{F} \ni f$

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Toy example

- $P, Q \subset[0,1]$

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Toy example

- $P, Q \subset[0,1]$
- $\mathcal{F}=\{x \rightarrow x, x \rightarrow-x\}$

$$
\gamma=1 / 2
$$

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Toy example

- $P, Q \subset[0,1]$
- $\mathcal{F}=\{x \rightarrow x, x \rightarrow-x\}$

- $\gamma^{*}=1$

$$
\gamma=1 / 2
$$

Margin

Definition

Given $P, Q \subset \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ classifies P and Q with margin γ if

$$
\gamma=\inf _{p \in P} f(p)-\sup _{q \in Q} f(q)=\inf _{p \in P, q \in Q} f(p)-f(q)
$$

Toy example

- $P, Q \subset[0,1]$
- $\mathcal{F}=\{x \rightarrow x, x \rightarrow-x\}$

- $\gamma^{*}=1$

$$
\gamma=-1 / 4
$$

Linear Classifiers and Support Functionals

Linear Classifiers

$$
f(x)=\langle z, x\rangle:=\sum_{i=1}^{n} z_{i} x_{i}
$$

Support Functionals

Linear Classifiers and Support Functionals

Linear Classifiers

$$
f(x)=\langle z, x\rangle:=\sum_{i=1}^{n} z_{i} x_{i}
$$

Support Functionals

For $K \subset \mathbb{R}^{d}, w \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\sup (K ; w)
$$

$$
\begin{aligned}
\sup (K ; w) & :=\sup _{k \in K}\langle w, k\rangle \quad \text { (upper) } \\
\inf (K ; w) & =\inf _{k \in K}\langle w, k\rangle \\
& =-\sup (K ;-w)
\end{aligned}
$$

Linear Classifiers and Support Functionals

$$
\sup (K ; w)
$$

Linear Classifiers

$$
f(x)=\langle z, x\rangle:=\sum_{i=1}^{n} z_{i} x_{i}
$$

Support Functionals

For $K \subset \mathbb{R}^{d}, w \in\left(\mathbb{R}^{d}\right)^{*}$,

$$
\begin{aligned}
\sup (K ; w) & :=\sup _{k \in K}\langle w, k\rangle \\
\inf (K ; w) & =\inf _{k \in K}\langle w, k\rangle \\
& =-\sup (K ;-w)
\end{aligned}
$$

W.I.o.g, K is convex

$$
\sup (X ; w)=\sup (\operatorname{conv}(X) ; w)
$$

Linear Margin

Margin optimization

$$
\begin{aligned}
\operatorname{maxinf}(P ; z) & -\sup (Q ; z) \quad \text { such that } \\
z & \in\left(\mathbb{R}^{d}\right)^{*}
\end{aligned}
$$

Linear Margin

Margin optimization

$$
\begin{gathered}
\operatorname{maxinf}(P ; z)-\sup (Q ; z) \quad \text { such that } \\
z \in\left(\mathbb{R}^{d}\right)^{*}
\end{gathered}
$$

If $\inf (P ; z)-\sup (Q ; z)=\gamma$ then for $\tau \geq 0$,

$$
\inf (P ; \tau z)-\sup (Q ; \tau z)=\tau \gamma
$$

Linear Margin

Margin optimization

$$
\begin{gathered}
\operatorname{maxinf}(P ; z)-\sup (Q ; z) \quad \text { such that } \\
z \in \mathbb{B}^{*}
\end{gathered}
$$

If $\inf (P ; z)-\sup (Q ; z)=\gamma$ then for $\tau \geq 0$,

$$
\inf (P ; \tau z)-\sup (Q ; \tau z)=\tau \gamma
$$

Scaling up

So that margin (P, Q) is not always $+\infty, z \in \mathbb{B}^{*}, \mathbb{B}^{*}$ bounded.

Linear Margin

Margin optimization

$$
\begin{gathered}
\operatorname{maxinf}(P ; z)-\sup (Q ; z) \quad \text { such that } \\
z \in \mathbb{B}^{*} \backslash L
\end{gathered}
$$

If $\inf (P ; z)-\sup (Q ; z)=\gamma$ then for $\tau \geq 0$,

$$
\inf (P ; \tau z)-\sup (Q ; \tau z)=\tau \gamma
$$

Scaling down

For some region $\overrightarrow{0} \in L \subset \mathbb{B}^{*}, z \notin L$

Linear Margin

Margin optimization

$$
\begin{gathered}
\operatorname{maxinf}(P ; z)-\sup (Q ; z) \quad \text { such that } \\
z \in \mathbb{B}^{*} \backslash L
\end{gathered}
$$

Without much loss of generality

- W.l.o.g. \mathbb{B}^{*} is a convex body, i.e. convex, has interior.
- It seems natural then to choose $L=$ int \mathbb{B}^{*}

Linear Margin

Margin optimization

$$
\begin{aligned}
\max \inf (P ; z) & -\sup (Q ; z) \quad \text { such that } \\
z & \in \operatorname{bd} \mathbb{B}^{*}
\end{aligned}
$$

Without much loss of generality

- W.l.o.g. \mathbb{B}^{*} is a convex body, i.e. convex, has interior.
- It seems natural then to choose $L=\operatorname{int} \mathbb{B}^{*}$.

Outline

Margin: separation quantified
 Margin as a metric problem
 A dual formulation via norm minimization
 The separable (convex) case
 The inseparable case

Conclusions

Minkowski Norms

- $X \subset \mathbb{R}^{d}$ is centrally symmetric if $x \in X \Rightarrow-x \in X$.
- For any centrally symmetric convex body \mathbb{B}, the Minkowski Norm

- For any $K \subset \mathbb{R}^{d}$, the polar $K^{*}=\left\{y \in \mathbb{R}^{n} \mid \sup (K ; y) \leq 1\right\}$.

Minkowski Norms

- $X \subset \mathbb{R}^{d}$ is centrally symmetric if $x \in X \Rightarrow-x \in X$.
- For any centrally symmetric convex body \mathbb{B}, the Minkowski Norm

$$
\|x\|_{\mathbb{B}}:=\inf _{\lambda \geq 0}\{\lambda \geq 0 \mid x \in \lambda \mathbb{B}\}
$$

Minkowski Norms

- $X \subset \mathbb{R}^{d}$ is centrally symmetric if $x \in X \Rightarrow-x \in X$.
- For any centrally symmetric convex body \mathbb{B}, the Minkowski Norm

$$
\|x\|_{\mathbb{B}}:=\inf _{\lambda \geq 0}\{\lambda \geq 0 \mid x \in \lambda \mathbb{B}\}
$$

- For any $K \subset \mathbb{R}^{d}$, the polar $K^{*}=\left\{y \in \mathbb{R}^{n} \mid \sup (K ; y) \leq 1\right\}$.

$$
\|\cdot\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}} \underset{\substack{\|\cdot\|_{\infty}=\\ \max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)}}{E_{2}}\|\cdot\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|
$$

Minkowski Norms

- $X \subset \mathbb{R}^{d}$ is centrally symmetric if $x \in X \Rightarrow-x \in X$.
- For any centrally symmetric convex body \mathbb{B}, the Minkowski Norm

$$
\|x\|_{\mathbb{B}}:=\inf _{\lambda \geq 0}\{\lambda \geq 0 \mid x \in \lambda \mathbb{B}\}
$$

- For any $K \subset \mathbb{R}^{d}$, the polar $K^{*}=\left\{y \in \mathbb{R}^{n} \mid \sup (K ; y) \leq 1\right\}$.

$$
\begin{aligned}
\mathbb{S} & =\left\{x \in \mathbb{B}:\|x\|_{\mathbb{B}}=1\right\} & & =\mathrm{bd} \mathbb{B} \\
\mathbb{S}^{*} & =\left\{z \in \mathbb{B}^{*}:\|z\|_{\mathbb{B}^{*}}=1\right\} & & =\mathrm{bd} \mathbb{B}^{*}
\end{aligned}
$$

Minkowski Norms

- $X \subset \mathbb{R}^{d}$ is centrally symmetric if $x \in X \Rightarrow-x \in X$.
- For any centrally symmetric convex body \mathbb{B}, the Minkowski Norm

$$
\|x\|_{\mathbb{B}}:=\inf _{\lambda \geq 0}\{\lambda \geq 0 \mid x \in \lambda \mathbb{B}\}
$$

- For any $K \subset \mathbb{R}^{d}$, the polar $K^{*}=\left\{y \in \mathbb{R}^{n} \mid \sup (K ; y) \leq 1\right\}$.

$$
\begin{aligned}
\mathbb{S} & =\left\{x \in \mathbb{B}:\|x\|_{\mathbb{B}}=1\right\} & & =\mathrm{bd} \mathbb{B} \\
\mathbb{S}^{*} & =\left\{z \in \mathbb{B}^{*}:\|z\|_{\mathbb{B}^{*}}=1\right\} & & =\mathrm{bd} \mathbb{B}^{*}
\end{aligned}
$$

- Choose $z \in \operatorname{bd} \mathbb{B}^{*}$

$$
\begin{aligned}
\max \inf (P ; z) & -\sup (Q ; z) \\
z & \in \mathbb{S}^{*}
\end{aligned}
$$

Norm duality

Polarity of unit balls connects norms:

$$
\|x\|_{\mathbb{B}}=\sup \left(\mathbb{B}^{*} ; x\right)
$$

(ND)

Norm duality

Polarity of unit balls connects norms:

$$
\begin{equation*}
\|x\|_{\mathbb{B}}=\sup \left(\mathbb{B}^{*} ; x\right) \tag{ND}
\end{equation*}
$$

Norms define metrics

- Define

$$
\begin{aligned}
\operatorname{dist}_{\mathbb{B}}(x, y) & :=\|x-y\|_{\mathbb{B}} \\
\operatorname{dist}_{\mathbb{B}}(X, Y) & :=\inf _{x \in X, y \in Y}\|x-y\|_{\mathbb{B}} \\
H(z, \varphi) & =\left\{x \in \mathbb{R}^{n} \mid\langle z, x\rangle=\varphi\right\}
\end{aligned}
$$

- Where \mathbb{B} is clear from context, we write $\|\cdot\|$, and $\operatorname{dist}(\cdot, \cdot)$.
- From (ND), we have for all $z \in \mathbb{S}^{*}$,

$$
\operatorname{dist}\left(H\left(z, \mu_{1}\right), H\left(z, \mu_{2}\right)\right)=\left|\mu_{1}-\mu_{2}\right|
$$

Norms define metrics

- Define

$$
\begin{aligned}
\operatorname{dist}_{\mathbb{B}}(x, y) & :=\|x-y\|_{\mathbb{B}} \\
\operatorname{dist}_{\mathbb{B}}(X, Y) & :=\inf _{x \in X, y \in Y}\|x-y\|_{\mathbb{B}} \\
H(z, \varphi) & =\left\{x \in \mathbb{R}^{n} \mid\langle z, x\rangle=\varphi\right\}
\end{aligned}
$$

- Where \mathbb{B} is clear from context, we write $\|\cdot\|$, and $\operatorname{dist}(\cdot, \cdot)$.

$$
\operatorname{dist}\left(H\left(z, \mu_{1}\right), H\left(z, \mu_{2}\right)\right)=\left|\mu_{1}-\mu_{2}\right|
$$

Norms define metrics

- Define

$$
\begin{aligned}
\operatorname{dist}_{\mathbb{B}}(x, y) & :=\|x-y\|_{\mathbb{B}} \\
\operatorname{dist}_{\mathbb{B}}(X, Y) & :=\inf _{x \in X, y \in Y}\|x-y\|_{\mathbb{B}} \\
H(z, \varphi) & =\left\{x \in \mathbb{R}^{n} \mid\langle z, x\rangle=\varphi\right\}
\end{aligned}
$$

- Where \mathbb{B} is clear from context, we write $\|\cdot\|$, and $\operatorname{dist}(\cdot, \cdot)$.
- From (ND), we have for all $z \in \mathbb{S}^{*}$,

$$
\begin{equation*}
\operatorname{dist}\left(H\left(z, \mu_{1}\right), H\left(z, \mu_{2}\right)\right)=\left|\mu_{1}-\mu_{2}\right| \tag{1}
\end{equation*}
$$

Separability

Separable

$P, Q \subset \mathbb{R}^{d}$ are separable if $\exists z \neq \overrightarrow{0}$ such that $\sup (Q ; z) \leq \inf (P ; z)$.
Theorem (The Separating Hyperplane Theorem)
Given convex sets P and Q with $\operatorname{aff}(P \cup Q)=\mathbb{R}^{d}$, relint $S \cap$ relint $T \neq \emptyset$ if and only if P and Q are not separable.

Separability

Separable

$P, Q \subset \mathbb{R}^{d}$ are separable if $\exists z \neq \overrightarrow{0}$ such that $\sup (Q ; z) \leq \inf (P ; z)$.
Theorem (The Separating Hyperplane Theorem)
Given convex sets P and Q with $\operatorname{aff}(P \cup Q)=\mathbb{R}^{d}$, relint $S \cap$ relint $T \neq \emptyset$ if and only if P and Q are not separable.

Separability

Separable

$P, Q \subset \mathbb{R}^{d}$ are separable if $\exists z \neq \overrightarrow{0}$ such that $\sup (Q ; z) \leq \inf (P ; z)$.
Theorem (The Separating Hyperplane Theorem)
Given convex sets P and Q with $\operatorname{aff}(P \cup Q)=\mathbb{R}^{d}$, relint $S \cap$ relint $T \neq \emptyset$ if and only if P and Q are not separable.

$$
\operatorname{sep}(P, Q):= \begin{cases}1 & P \text { and } Q \text { separable } \\ -1 & \text { otherwise }\end{cases}
$$

Separability

Theorem (The Separating Hyperplane Theorem)

Given convex sets P and Q with $\operatorname{aff}(P \cup Q)=\mathbb{R}^{d}$, relint $S \cap$ relint $T \neq \emptyset$ if and only if P and Q are not separable.

$$
\operatorname{sep}(P, Q):= \begin{cases}1 & P \text { and } Q \text { separable } \\ -1 & \text { otherwise }\end{cases}
$$

Corollary

For P, Q convex polyhedra, $\operatorname{sep}(P, Q)$ is computable in polynomial time.

Margin as distance between parallel hyperplanes

Dual Unit Ball Formulation

$$
\begin{aligned}
\operatorname{maxinf}(P ; z) & -\sup (Q ; z) \\
z & \in \mathbb{S}^{*}
\end{aligned}
$$

Parallel Hyperplane Distance

$\operatorname{maxsen}(P Q) \cdot \operatorname{dist}(H(z, \inf (P ; z)) \cdot H(z, \sup (Q ; z)))$

Margin as distance between parallel hyperplanes

Dual Unit Ball Formulation

$$
\begin{aligned}
& \operatorname{maxinf}(P ; z)-\sup (Q ; z) \\
& z \in \mathbb{S}^{*}
\end{aligned}
$$

Parallel Hyperplane Distance

$$
\begin{aligned}
\max \operatorname{sep}(P, Q) & \cdot \operatorname{dist}(H(z, \inf (P ; z)), H(z, \sup (Q ; z))) \\
z & \neq \overrightarrow{0}
\end{aligned}
$$

Margin as distance between parallel hyperplanes

Dual Unit Ball Formulation

$$
\begin{aligned}
\operatorname{maxinf}(P ; z) & -\sup (Q ; z) \\
z & \in \mathbb{S}^{*}
\end{aligned}
$$

Parallel Hyperplane Distance

$$
\begin{gathered}
\max \operatorname{sep}(P, Q) \cdot \operatorname{dist}(H(z, \inf (P ; z)), H(z, \sup (Q ; z))) \\
z \neq \overrightarrow{0}
\end{gathered}
$$

Outline

Margin: separation quantified
Margin as a metric problem
A dual formulation via norm minimization
The separable (convex) case
The inseparable case
Conclusions

Minkowski Sums

The Minkowski sum and Minkowski difference of $P, Q \subset \mathbb{R}^{n}$ is defined as

$$
\begin{aligned}
P+Q & =\{x+y \mid x \in P \text { and } y \in Q\} \\
P-Q=P+(-Q) & =\{x-y \mid x \in P \text { and } y \in Q\}
\end{aligned}
$$

Support is Minkowski-additive

$$
\sup (P+Q ; w)=\sup (P ; w)+\sup (Q ; w)
$$

Define margin (P, Q) as the optimal value of

$\operatorname{maxinf}(P-Q ; w)$

Minkowski Sums

The Minkowski sum and Minkowski difference of $P, Q \subset \mathbb{R}^{n}$ is defined as

$$
\begin{aligned}
P+Q & =\{x+y \mid x \in P \text { and } y \in Q\} \\
P-Q=P+(-Q) & =\{x-y \mid x \in P \text { and } y \in Q\}
\end{aligned}
$$

Support is Minkowski-additive

$$
\begin{equation*}
\sup (P+Q ; w)=\sup (P ; w)+\sup (Q ; w) \tag{2}
\end{equation*}
$$

Define margin (P, Q) as the optimal value of
$\operatorname{maxinf}(P-Q ; w)$

Minkowski Sums

The Minkowski sum and Minkowski difference of $P, Q \subset \mathbb{R}^{n}$ is defined as

$$
\begin{array}{r}
P+Q=\{x+y \mid x \in P \text { and } y \in Q\} \\
P-Q=P+(-Q)=\{x-y \mid x \in P \text { and } y \in Q\}
\end{array}
$$

Support is Minkowski-additive

$$
\begin{equation*}
\sup (P+Q ; w)=\sup (P ; w)+\sup (Q ; w) \tag{2}
\end{equation*}
$$

Define margin (P, Q) as the optimal value of

$$
\begin{array}{r}
\operatorname{maxinf}(P-Q ; w) \\
w \in \mathbb{S}^{*}
\end{array}
$$

(MARGIN)

Outer Normal Cones

For a convex set $K \subset \mathbb{R}^{n}$ and a point $x \in K$ the outer normal cone of K at x is defined as

$$
N(K, x):=\left\{z \in\left(\mathbb{R}^{d}\right)^{*} \mid\langle z, x\rangle=\sup (K ; z)\right\} .
$$

Margin by translation

$$
\begin{align*}
\min & \|p-q\| \\
\sup (P ; z) & =\inf (Q+(p-q) ; z) \tag{3}\\
z \neq \overrightarrow{0}, \quad q & \in Q, \quad p \in P
\end{align*}
$$

Margin by translation

$$
\begin{align*}
\min & \|p-q\| \\
\sup (P ; z) & =\inf (Q+(p-q) ; z) \tag{3}\\
z \neq \overrightarrow{0}, \quad q & \in Q, \quad p \in P
\end{align*}
$$

Margin by translation

$$
\begin{align*}
\min & \|p-q\| \\
\sup (P ; z) & =\inf (Q+(p-q) ; z) \tag{3}\\
z \neq \overrightarrow{0}, \quad q & \in Q, \quad p \in P
\end{align*}
$$

- Minkowski additivity of support, twice.

Margin by translation

$$
\begin{align*}
\min & \|p-q\| \\
\sup (P-Q ; z) & =\langle z, p-q\rangle \tag{3}\\
z \neq \overrightarrow{0}, \quad q & \in Q, \quad p \in P
\end{align*}
$$

- Minkowski additivity of support, twice.
- $\overrightarrow{0} \neq z \in N(K, r)$ iff $r \in b d K$.

Define $\operatorname{shift}(P, Q)$ as the solution to the following

$$
\begin{align*}
& \min \|r\| \\
& r \in \operatorname{bd} P-Q \tag{NORM}
\end{align*}
$$

Margin by translation

$$
\begin{gather*}
\min \quad\|p-q\| \\
z \in \vec{z} \in N(P-Q ; p-q) \tag{3}\\
z \neq \overrightarrow{0}, \quad q \in Q, \quad p \in P
\end{gather*}
$$

Define $\operatorname{shift}(P, Q)$ as the solution to the following

$$
\begin{aligned}
& \min \|r\| \\
& r \in \operatorname{bd} P-Q
\end{aligned}
$$

Proposition

For convex polyhedra P and Q, shift (P, Q) is computable in polynomial time given a polynomial sized facet representation for $P-Q$

Outline

Margin: separation quantified
 Margin as a metric problem
 A dual formulation via norm minimization

The separable (convex) case

The inseparable case

Conclusions

Finding the minimum translation in the separable case

Proposition

Let P, Q be convex bodies. If $\overrightarrow{0} \notin \operatorname{int}(P-Q)$, then

$$
\operatorname{shift}(P, Q)=\min _{r \in \operatorname{bd}(P-Q)}\|k\|=\min _{r \in(P-Q)}\|k\|
$$

Relaxing (MARGIN)

Proposition

Let P and Q be separable convex bodies.
$\sup _{w \in \mathbb{S}^{*}} \inf (P-Q, w)=\sup _{w \in \mathbb{B}^{*}} \inf (P-Q, w)$ $w \in \mathbb{S}^{*}$ $w \in \mathbb{B}^{*}$

Relaxing (MARGIN)

Proposition

Let P and Q be separable convex bodies.

$$
\sup _{w \in \mathbb{S}^{*}} \inf (P-Q, w)=\sup _{w \in \mathbb{B}^{*}} \inf (P-Q, w)
$$

Proof.

Let $w^{\prime}:=\operatorname{argmax}_{w \in \mathbb{B}^{*}} \inf (P-Q ; w)$.

$$
0 \leq \inf \left(P-Q ; w^{\prime}\right)
$$

Relaxing (MARGIN)

Proposition

Let P and Q be separable convex bodies.

$$
\sup _{w \in \mathbb{S}^{*}} \inf (P-Q, w)=\sup _{w \in \mathbb{B}^{*}} \inf (P-Q, w)
$$

Proof.

Let $w^{\prime}:=\operatorname{argmax}_{w \in \mathbb{B}^{*}} \inf (P-Q ; w)$.

$$
\begin{aligned}
0 & \leq \inf \left(P-Q ; w^{\prime}\right) \\
\inf \left(P-Q ; w^{\prime}\right) & \leq \inf \left(P-Q ; w^{\prime} /\left\|w^{\prime}\right\|_{\mathbb{B}^{*}}\right)
\end{aligned}
$$

Weak Duality

Proposition

Let $r \in P-Q, z \in \mathbb{B}^{*}$

$$
\begin{equation*}
\|r\| \geq \inf (P-Q ; z) \tag{4}
\end{equation*}
$$

Proof.

Since $z \in \mathbb{B}^{*}$, from (ND),

$$
\|r\|=\sup \left(\mathbb{B}^{*} ; r\right) \geq\langle z, r\rangle \geq \inf (P-Q ; z)
$$

Weak Duality

Proposition

Let $r \in P-Q, z \in \mathbb{B}^{*}$

$$
\begin{equation*}
\|r\| \geq \inf (P-Q ; z) \tag{4}
\end{equation*}
$$

Proof.

Since $z \in \mathbb{B}^{*}$, from (ND),

$$
\|r\|=\sup \left(\mathbb{B}^{*} ; r\right) \geq\langle z, r\rangle \geq \inf (P-Q ; z)
$$

Weak Duality

Proposition

Let $r \in P-Q, z \in \mathbb{B}^{*}$

$$
\begin{equation*}
\|r\| \geq \inf (P-Q ; z) \tag{4}
\end{equation*}
$$

Proof.

Since $z \in \mathbb{B}^{*}$, from (ND),

$$
\|r\|=\sup \left(\mathbb{B}^{*} ; r\right) \geq\langle z, r\rangle \geq \inf (P-Q ; z)
$$

Duality of convex relaxations

Theorem

Let P and Q be separable convex bodies.
Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair for (MARGIN) and (NORM) iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Duality of convex relaxations

Theorem

Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Necessity

- $r=\operatorname{argmin}_{x \in P-Q}\|x\|$,

$$
z=\operatorname{argmax}_{w \in \mathbb{B}^{*}} \inf (P-Q ; w)
$$

Duality of convex relaxations

Theorem

Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Necessity

- $r=\operatorname{argmin}_{x \in P-Q}\|x\|$,
$z=\operatorname{argmax}_{w \in \mathbb{B}^{*}} \inf (P-Q ; w)$
- We argue $\|r\|_{\mathbb{B}}=\langle z, r\rangle$.

Duality of convex relaxations

Theorem

Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Necessity

- We argue $\|r\|_{\mathbb{B}}=\langle z, r\rangle$.

- int $\|r\| \mathbb{B} \cap(P-Q)=\emptyset$

Duality of convex relaxations

Theorem

Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Necessity

- int $\|r\| \mathbb{B} \cap(P-Q)=\emptyset$

- By optimality of z,

$$
\begin{aligned}
\inf \left(P-Q ; z^{\prime}\right) & \leq \inf (P-Q ; z) \\
& \leq\langle z, r\rangle
\end{aligned}
$$

By the S.H.T. $\exists z^{\prime} \in \mathbb{S}^{*}$,

$$
\begin{aligned}
\|r\| & =\sup \left(\|r\| \mathbb{B} ; z^{\prime}\right) \\
& \leq \inf \left(P-Q ; z^{\prime}\right)
\end{aligned}
$$

Duality of convex relaxations

Theorem

Vectors $r \in P-Q$ and $z \in \mathbb{B}^{*}$ form a primal-dual optimal pair iff

$$
\|r\|_{\mathbb{B}}=\langle z, r\rangle \quad-z \in N(P-Q, r)
$$

Necessity

- By optimality of z,

$$
\begin{aligned}
\inf \left(P-Q ; z^{\prime}\right) & \leq \inf (P-Q ; z) \\
& \leq\langle z, r\rangle
\end{aligned}
$$

By the S.H.T. $\exists z^{\prime} \in \mathbb{S}^{*}$,

$$
\begin{aligned}
\|r\| & =\sup \left(\|r\| \mathbb{B} ; z^{\prime}\right) \\
& \leq \inf \left(P-Q ; z^{\prime}\right)
\end{aligned}
$$

- Now apply Weak Duality.

Outline

Margin: separation quantified
 Margin as a metric problem
 A dual formulation via norm minimization
 The separable (convex) case

The inseparable case

Conclusions

Width of convex bodies

For convex body K, define

$$
\begin{aligned}
\operatorname{length}_{s}(K) & :=\sup \{\tau \mid[x, x+\tau s] \subset K\} \\
\operatorname{breadth}_{w}(K) & :=\sup _{x, y \in K}\langle w, x-y\rangle=\sup (K-K ; w)
\end{aligned}
$$

Width of convex bodies

For convex body K, define

$$
\begin{aligned}
\operatorname{length}_{s}(K) & :=\sup \{\tau \mid[x, x+\tau s] \subset K\} \\
\operatorname{breadth}_{w}(K) & :=\sup _{x, y \in K}\langle w, x-y\rangle=\sup (K-K ; w)
\end{aligned}
$$

Proposition (Gritzmann-Klee 1992)

$$
\text { width }(X):=\inf _{w \in \mathbb{S}^{*}} \operatorname{breadth}_{w}(X)=\inf _{s \in \mathbb{S}} \operatorname{length}_{s}(X)
$$

Width of convex bodies

For convex body K, define

$$
\begin{aligned}
\operatorname{length}_{s}(K) & :=\sup \{\tau \mid[x, x+\tau s] \subset K\} \\
\operatorname{breadth}_{w}(K) & :=\sup _{x, y \in K}\langle w, x-y\rangle=\sup (K-K ; w)
\end{aligned}
$$

Proposition (Gritzmann-Klee 1992)

$$
\operatorname{width}(X):=\inf _{w \in \mathbb{S}^{*}} \operatorname{breadth}_{w}(X)=\inf _{s \in \mathbb{S}} \operatorname{length}_{s}(X)
$$

Proposition

width $(X)=-\operatorname{margin}(X, X)$

Computing Width is NP-Hard

Theorem (Gritzmann-Klee 1992)
Computing width (K) is NP-hard, for K a simplex, in at least the L_{2} and L_{∞} norms.

Corollary
Computing margin (P, Q) is NP-hard in at least the L_{2} and L_{∞} norms.

Corollary (GK92, new proof)
Computing width(.) is solvable in polynomial time for centrally symmetric polytopes given by their facets.

Computing Width is NP-Hard

Theorem (Gritzmann-Klee 1992)
Computing width (K) is NP-hard, for K a simplex, in at least the L_{2} and L_{∞} norms.

Corollary

Computing margin (P, Q) is NP-hard in at least the L_{2} and L_{∞} norms.

Corollary (GK92, new proof)
 Computing width(.) is solvable in polynomial time for centrally symmetric polytopes given by their facets.

Computing Width is NP-Hard

Theorem (Gritzmann-Klee 1992)

Computing width (K) is NP-hard, for K a simplex, in at least the L_{2} and L_{∞} norms.

Corollary

Computing margin (P, Q) is NP-hard in at least the L_{2} and L_{∞} norms.

Corollary (GK92, new proof)

Computing width (\cdot) is solvable in polynomial time for centrally symmetric polytopes given by their facets.

Duality in the inseparable case

Proposition

For convex body K with $\overrightarrow{0} \in K$,

$$
\begin{equation*}
\inf _{k \in b d K}\|k\|=\inf _{w \in \mathbb{S}^{*}} \sup (K ; w) \tag{5}
\end{equation*}
$$

Duality in the inseparable case

Proposition

For convex body K with $\overrightarrow{0} \in K$,

$$
\begin{equation*}
\inf _{k \in b d K}\|k\|=\inf _{w \in \mathbb{S}^{*}} \sup (K ; w) \tag{5}
\end{equation*}
$$

- $\forall k \in \operatorname{bd} K \exists w \in \mathbb{S}^{*} \cap N(K, k)$

$$
\|k\| \geq\langle w, k\rangle=\sup (K ; w)
$$

Duality in the inseparable case

Proposition

For convex body K with $\overrightarrow{0} \in K$,

$$
\begin{equation*}
\inf _{k \in \operatorname{bd} K}\|k\|=\inf _{w \in \mathbb{S}^{*}} \sup (K ; w) \tag{5}
\end{equation*}
$$

- $\forall k \in \operatorname{bd} K \exists w \in \mathbb{S}^{*} \cap N(K, k)$

$$
\|k\| \geq\langle w, k\rangle=\sup (K ; w)
$$

- $\forall w \in \mathbb{S}^{*} \exists x \in N\left(\mathbb{B}^{*}, w\right) \cap$ bd K

$$
\sup (K ; w) \geq\langle x, w\rangle=\|x\|
$$

Duality in the inseparable case

Proposition

For convex body K with $\overrightarrow{0} \in K$,

$$
\begin{equation*}
\inf _{k \in \operatorname{bd} K}\|k\|=\inf _{w \in \mathbb{S}^{*}} \sup (K ; w) \tag{5}
\end{equation*}
$$

Corollary

If $\overrightarrow{0} \in(P-Q)$ then $\operatorname{shift}(P, Q)=-\operatorname{margin}(P, Q)$

Outline

```
Margin: separation quantified
Margin as a metric problem
A dual formulation via norm minimization
The separable (convex) case
The inseparable case
```

Conclusions

Conclusions

- There is a dual relationship between minimum distance, and maximimum margin summarized as

$$
\operatorname{shift}(P, Q)=\operatorname{sep}(P, Q) \cdot \operatorname{margin}(P, Q)
$$

- In the separable case, both functions are computable by convex minimization in polynomial time, (essentially) arbitrary Minkowski metrics.
- The general (possibly) problem is NP-hard, and only special cases are polynomially solvable (unless $\mathrm{P}=\mathrm{NP}$).

Conclusions

- There is a dual relationship between minimum distance, and maximimum margin summarized as

$$
\operatorname{shift}(P, Q)=\operatorname{sep}(P, Q) \cdot \operatorname{margin}(P, Q)
$$

- In the separable case, both functions are computable by convex minimization in polynomial time, (essentially) arbitrary Minkowski metrics.
- The general (possibly) problem is NP-hard, and only special cases are polynomially solvable (unless $\mathrm{P}=\mathrm{NP}$).

Conclusions

- There is a dual relationship between minimum distance, and maximimum margin summarized as

$$
\operatorname{shift}(P, Q)=\operatorname{sep}(P, Q) \cdot \operatorname{margin}(P, Q)
$$

- In the separable case, both functions are computable by convex minimization in polynomial time, (essentially) arbitrary Minkowski metrics.
- The general (possibly) problem is NP-hard, and only special cases are polynomially solvable (unless $\mathrm{P}=\mathrm{NP}$).

