Facet Generation and Symmetric Triangulation

David Bremner
UNB
June 19, 2008

with Achill Schürmann, Mathieu Dutour Sikirić

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone (V) if

$$
\{A v \mid v \in V\}=V
$$

$\overline{\operatorname{Aut}}(V)$ denotes the group of restricted automorphisms of cone (V).

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone (V) if

$$
\{A v \mid v \in V\}=V
$$

$\overline{\operatorname{Aut}}(V)$ denotes the group of restricted automorphisms of cone (V).

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone (V) if

$$
\{A v \mid v \in V\}=V
$$

$\overline{\operatorname{Aut}}(V)$ denotes the group of restricted automorphisms of cone (V).

Problem

Given $V \subseteq \mathbb{R}^{d}, \overline{\operatorname{Aut}}(V)$.
Find One representative of each orbit of facet defining inequalities for cone(V).

Bases and Orbits

basis $(r-1)$ rays (d vertices) spanning a facet.
orbits $\overline{\operatorname{Aut}}(P)$ acts on bases

Bases and Orbits

basis ($r-1$) rays (d vertices) spanning a facet. orbits $\overline{\operatorname{Aut}}(P)$ acts on bases

Bases and Orbits

basis $(r-1)$ rays (d vertices) spanning a facet. orbits $\overline{\operatorname{Aut}}(P)$ acts on bases

Exploring the Basis Graph

pivot $C^{\prime}=C \backslash\{1\} \cup\{e\}$ such that C^{\prime} is a basis.

basis graph nodes = bases, edges $=$ pivots

Exploring the Basis Graph

$$
\text { pivot } C^{\prime}=C \backslash\{I\} \cup\{e\}
$$ such that C^{\prime} is a basis. basis graph nodes $=$ bases, edges $=$ pivots

Exploring the Basis Graph

$$
\text { pivot } C^{\prime}=C \backslash\{I\} \cup\{e\}
$$ such that C^{\prime} is a basis. basis graph nodes $=$ bases, edges $=$ pivots

Exploring the Basis Graph

$$
\text { pivot } C^{\prime}=C \backslash\{I\} \cup\{e\}
$$ such that C^{\prime} is a basis. basis graph nodes $=$ bases, edges $=$ pivots

Exploring the Basis Graph

$$
\text { pivot } C^{\prime}=C \backslash\{I\} \cup\{e\}
$$ such that C^{\prime} is a basis. basis graph nodes $=$ bases, edges

$$
=\text { pivots }
$$

Wreath products

Wreath products

Let $P=\operatorname{conv}\left(v_{1} \ldots v_{m}\right) \subset \mathbb{R}^{d}$. Let
$Q=\operatorname{conv}\left(w_{1} \ldots w_{n}\right) \subset \mathbb{R}^{e}$.
$P \backslash Q=\operatorname{conv}\left[\begin{array}{ccccc}P & 0 & 0 & & 0 \\ 0 & P & 0 & & 0 \\ 0 & 0 & P & & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & & P \\ w_{1} & w_{2} & w_{3} & & w_{n}\end{array}\right]$

Wreath products

Roughly, $\overline{\operatorname{Aut}}(Q)$ acts on "big columns" and $\overline{\operatorname{Aut}}(P)$ within them.

Wreath products

$$
\begin{aligned}
& \text { Let } P=\operatorname{conv}\left(v_{1} \ldots v_{m}\right) \subset \mathbb{R}^{d} \text {. Let } \\
& Q=\operatorname{conv}\left(w_{1} \ldots w_{n}\right) \subset \mathbb{R}^{e} .
\end{aligned}
$$

$P \backslash Q=\operatorname{conv}\left[\begin{array}{ccccc}P & 0 & 0 & & 0 \\ 0 & P & 0 & & 0 \\ 0 & 0 & P & & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & & P \\ w_{1} & w_{2} & w_{3} & & w_{n}\end{array}\right]$

Wreath products

Roughly, $\overline{\operatorname{Aut}}(Q)$ acts on "big columns" and $\overline{\operatorname{Aut}}(P)$ within them.

Wreath products

Let $P=\operatorname{conv}\left(v_{1} \ldots v_{m}\right) \subset \mathbb{R}^{d}$. Let $Q=\operatorname{conv}\left(w_{1} \ldots w_{n}\right) \subset \mathbb{R}^{e}$.
$P \backslash Q=\operatorname{conv}\left[\begin{array}{ccccc}P & 0 & 0 & & 0 \\ 0 & P & 0 & & 0 \\ 0 & 0 & P & & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & & P \\ w_{1} & w_{2} & w_{3} & & w_{n}\end{array}\right]$

Wreath Products of Cross Polytopes

Example

Let $C_{k}=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{k}\right\}$. Let $P=C_{d} \backslash C_{e}$.

- P has dimension $D=2 d e+e$ and $4 d e \sim 2 D$ vertices
- P has $2^{(d+1) e}$ facets, each containing $3 d e \sim 1.5 D$ vertices
- P has one orbit of vertices, facets, and $(D-1)$-bases.

Wreath Products of Cross Polytopes

Example

Let $C_{k}=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{k}\right\}$. Let $P=C_{d} \backslash C_{e}$.

- P has dimension $D=2 d e+e$ and $4 d e \sim 2 D$ vertices
- P has $2^{(d+1) e}$ facets, each containing $3 d e \sim 1.5 D$ vertices
- P has one orbit of vertices, facets, and ($D-1$)-bases.

Wreath Products of Cross Polytopes

Example

Let $C_{k}=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{k}\right\}$. Let $P=C_{d} \backslash C_{e}$.

- P has dimension $D=2 d e+e$ and $4 d e \sim 2 D$ vertices
- P has $2^{(d+1) e}$ facets, each containing $3 d e \sim 1.5 D$ vertices
- P has one orbit of vertices, facets, and ($D-1$)-bases.

Wreath Products of Cross Polytopes

Example

Let $C_{k}=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{k}\right\}$. Let $P=C_{d} \backslash C_{e}$.

Orbitwise Degenerate Polytopes

	Dimension	Triangulation $\Delta \mathrm{s}$	Basis Orbits
Cut	$10(n=5)$	496	2
	$15(n=6)$	186636	6300
Cubes	4	48	4
	5	240	17
	6	1440	237
	7	10080	9892
	8	80640	>209000

Valid Perturbation

Definition

\widetilde{V} is a valid perturbation of V if $\exists \nu(\cdot): V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,
> 1. If $\nu(W)$ is linearly dependent then W is.
> 2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Valid Perturbation

Definition

\widetilde{V} is a valid perturbation of V if $\exists \nu(\cdot): V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

1. If $\nu(W)$ is linearly dependent then W is.
2. If $\nu(W)$ is extreme for V then W is
extreme for V.

Valid Perturbation

Definition

\widetilde{V} is a valid perturbation of V if $\exists \nu(\cdot): V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

1. If $\nu(W)$ is linearly dependent then W is.
2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Valid Perturbation

Definition

\widetilde{V} is a valid perturbation of V if $\exists \nu(\cdot): V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

1. If $\nu(W)$ is linearly dependent then W is.
2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Symmetry preserving perturbation

Proposition

- Let $V \subset \mathbb{R}^{d} . V_{1}, \ldots, V_{k}$ the orbits of V under H , and u be a fixed point for H ,
- There exists $\varepsilon_{1} \gg \cdots>\varepsilon_{k} \geq 0$ such that

Symmetry preserving perturbation

Proposition

- Let $V \subset \mathbb{R}^{d} . V_{1}, \ldots, V_{k}$ the orbits of V under H, and u be a fixed point for H,
- There exists $\varepsilon_{1} \gg \cdots \gg \varepsilon_{k} \geq 0$ such that

$$
V^{\prime}=\bigcup_{j}\left(V_{j} \pm \varepsilon_{j} u\right)
$$

is a valid perturbation of V and $H \leq \overline{\operatorname{Aut}}\left(V^{\prime}\right)$.

Symmetry preserving perturbation

Proposition

- Let $V \subset \mathbb{R}^{d} . V_{1}, \ldots, V_{k}$ the orbits of V under H, and u be a fixed point for H,
- There exists $\varepsilon_{1} \gg \cdots \gg \varepsilon_{k} \geq 0$ such that

$$
V^{\prime}=\bigcup_{j}\left(V_{j} \pm \varepsilon_{j} u\right)
$$

is a valid perturbation of V and $H \leq \overline{\operatorname{Aut}}\left(V^{\prime}\right)$.

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear

Affine Name

$$
\begin{array}{lll}
(p, 1)+\varepsilon(0, \ldots, 0,1) & \frac{p}{1+\varepsilon} & \text { push } \\
(p, 1)-\varepsilon(0, \ldots, 0,1) & \frac{p}{1-\varepsilon} & \text { pull }
\end{array}
$$

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear

$$
\begin{array}{lll}
(p, 1)+\varepsilon(0, \ldots, 0,1) & \frac{p}{1+\varepsilon} & \text { push } \\
(p, 1)-\varepsilon(0, \ldots, 0,1) & \frac{p}{1-\varepsilon} & \text { pull }
\end{array}
$$

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear

$(p, 1)+\varepsilon(0, \ldots, 0,1) \frac{p}{1+\varepsilon} \quad$ push $(p, 1)-\varepsilon(0, \ldots, 0,1) \quad \frac{p}{1-\varepsilon} \quad$ pull

Linear Ordering Triangulation

Definition

- Let $I^{d}=[-1,1]^{d}$. Let $\mathbf{e}=(1, \ldots, 1)$.
- For each $\rho \in \operatorname{Sym}(d)$, there is a path $[\rho]$ from $-\mathbf{e}$ to \mathbf{e}.
- Define \wedge as conv $[\rho]$.
- The linear ordering triangulation of bdy I^{d} is the intersection of bdy I^{d} with all Δ_{ρ}

$H_{d}=\operatorname{stab}\left(\overline{\operatorname{Aut}}\left(I^{d}\right),\{-\mathbf{e}, \mathbf{e}\}\right)$ acts transitively on the l.o.t. of bdy Id

Linear Ordering Triangulation

Definition

$(1,1,1)$

- Let $I^{d}=[-1,1]^{d}$. Let $\mathbf{e}=(1, \ldots, 1)$.
- For each $\rho \in \operatorname{Sym}(d)$, there is a path $[\rho$] from $-\mathbf{e}$ to \mathbf{e}.
- Define Δ_{ρ} as conv $[\rho]$.
- The linear ordering triangulation of bdy I^{d} is the intersection of bdy I^{d} with all Δ_{ρ}

Proposition

$H_{d}=\operatorname{stab}\left(\overline{\operatorname{Aut}}\left(I^{d}\right),\{-\mathbf{e}, \mathbf{e}\}\right)$ acts transitively on the l.o.t. of bdy Id .

[(1,2,3)]

Linear Ordering Triangulation

Definition

$(1,1,1)$

- Let $I^{d}=[-1,1]^{d}$. Let $\mathbf{e}=(1, \ldots, 1)$.
- For each $\rho \in \operatorname{Sym}(d)$, there is a path $[\rho$] from $-\mathbf{e}$ to \mathbf{e}.
- Define Δ_{ρ} as conv $[\rho]$.

The linear ordering triangulation of bdy I^{d} is the intersection of bdy I^{d} with all Δ_{ρ}

Proposition

$H_{d}=\operatorname{stab}\left(\overline{\operatorname{Aut}}\left(I^{d}\right),\{-\mathbf{e}, \mathbf{e}\}\right)$ acts transitively on the l.o.t. of bdy I ${ }^{d}$.

Linear Ordering Triangulation

Definition

$(1,1,1)$

- Let $I^{d}=[-1,1]^{d}$. Let $\mathbf{e}=(1, \ldots, 1)$.
- For each $\rho \in \operatorname{Sym}(d)$, there is a path $[\rho]$ from $-\mathbf{e}$ to \mathbf{e}.
- Define Δ_{ρ} as conv $[\rho]$.
- The linear ordering triangulation of bdy I^{d} is the intersection of bdy I^{d} with all Δ_{ρ}

Proposition

$H_{d}=\operatorname{stab}\left(\overline{\operatorname{Aut}}\left(I^{d}\right),\{-\mathbf{e}, \mathbf{e}\}\right)$ acts transitively on the I.o.t. of bdy Id .

$\Delta_{(1,2,3)}$

Linear Ordering Perturbation

Example

Let \tilde{I}^{d} denote the H_{d}-orbitwise pulling of I^{d} in order induced by $\omega(v)=\min \left(\mathbf{e}^{T} v,-\mathbf{e}^{T} v\right)$.
bdy \tilde{I}^{d} has one orbit of simplicial facets under $H_{d} \leq \overline{\operatorname{Aut}}\left(\tilde{I}^{d}\right)$.

Linear Ordering Perturbation

Example

Let \tilde{I}^{d} denote the H_{d}-orbitwise pulling of I^{d} in order induced by $\omega(v)=\min \left(\mathbf{e}^{T} v,-\mathbf{e}^{T} v\right)$.

- bdy $\tilde{I}^{d} \equiv$ the l.o.t. of bdy I^{d}.
bdy ${ }^{d}$ has one orbit of simplicial facets under $H_{d} \leq \overline{\operatorname{Aut}}\left(\tilde{I}^{d}\right)$.

Linear Ordering Perturbation

Example

Let \tilde{I}^{d} denote the H_{d}-orbitwise pulling of I^{d} in order induced by $\omega(v)=\min \left(\mathbf{e}^{T} v,-\mathbf{e}^{T} v\right)$.

- bdy $\tilde{I}^{d} \equiv$ the l.o.t. of bdy I^{d}.
- bdy \tilde{I}^{d} has one orbit of simplicial facets under $H_{d} \leq \overline{\operatorname{Aut}}\left(\tilde{I}^{d}\right)$.

Linear Ordering Perturbation

Example

Let \tilde{I}^{d} denote the H_{d}-orbitwise pulling of I^{d} in order induced by $\omega(v)=\min \left(\mathbf{e}^{T} v,-\mathbf{e}^{T} v\right)$.

- bdy $\tilde{I}^{d} \equiv$ the l.o.t. of bdy I^{d}.
- bdy \tilde{I}^{d} has one orbit of simplicial facets under $H_{d} \leq \overline{\operatorname{Aut}}\left(\tilde{I}^{d}\right)$.

Linear Ordering Perturbation

Example

Let \tilde{I}^{d} denote the H_{d}-orbitwise pulling of I^{d} in order induced by $\omega(v)=\min \left(\mathbf{e}^{T} v,-\mathbf{e}^{T} v\right)$.

- bdy $\tilde{I}^{d} \equiv$ the l.o.t. of bdy I^{d}.
- bdy \tilde{I}^{d} has one orbit of simplicial facets under $H_{d} \leq \overline{\operatorname{Aut}}\left(\tilde{I}^{d}\right)$.

Example: E_{7} root lattice contact polytope

Contact Polytope for E_{7} root lattice

		Orbits
Dimension	8	
Group Order	2903040	
Vertices	126	1
Facets	632	2
Irs Δ 's	20520	
bases		161

What makes a good subgroup?

What makes a good subgroup?

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.

