Facet Generation and Symmetric Triangulation

David Bremner

UNB

June 19, 2008

with Achill Schürmann, Mathieu Dutour Sikirić

Facet generation up to symmetry

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone(V) if

$$\{Av \mid v \in V\} = V$$

 $\overline{\text{Aut}}(V)$ denotes the group of restricted automorphisms of cone(V).

Facet generation up to symmetry

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone(V) if

$$\{Av \mid v \in V\} = V$$

 $\overline{\text{Aut}}(V)$ denotes the group of restricted automorphisms of cone(V).

Facet generation up to symmetry

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone(V) if

$$\{Av \mid v \in V\} = V$$

 $\overline{Aut}(V)$ denotes the group of restricted automorphisms of cone(V).

Problem

Given $V \subseteq \mathbb{R}^d$, $\overline{\operatorname{Aut}}(V)$.

Find One representative of each orbit of facet defining inequalities for cone(V).

Bases and Orbits

Bases and Orbits

basis (r-1) rays (d vertices) spanning a facet. orbits $\overline{Aut}(P)$ acts on bases

Bases and Orbits

basis (r-1) rays (d vertices) spanning a facet. orbits $\overline{Aut}(P)$ acts on bases

Exploring the Basis Graph

pivot $C' = C \setminus \{I\} \cup \{e\}$ such that C' is a basis.

Exploring the Basis Graph

pivot
$$C' = C \setminus \{I\} \cup \{e\}$$

such that C' is a basis.
basis graph nodes = bases, edges
= pivots

 $\overline{}$

Exploring the Basis Graph

pivot
$$C' = C \setminus \{I\} \cup \{e\}$$

such that C' is a basis.
basis graph nodes = bases, edges
= pivots

Exploring the Basis Graph

pivot
$$C' = C \setminus \{I\} \cup \{e\}$$

such that C' is a basis.
basis graph nodes = bases, edges
= pivots

Exploring the Basis Graph

pivot
$$C' = C \setminus \{I\} \cup \{e\}$$

such that C' is a basis.
basis graph nodes = bases, edges
= pivots

Wreath products

Wreath products Let $P = \operatorname{conv}(v_1 \dots v_m) \subset \mathbb{R}^d$. Let $Q = \operatorname{conv}(w_1 \dots w_n) \subset \mathbb{R}^e$. $P \wr Q = \operatorname{conv} \begin{bmatrix} P & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ & & \ddots & \\ 0 & 0 & 0 & P \\ w_1 & w_2 & w_3 & w_n \end{bmatrix}$

Wreath products

Roughly, $\overline{\operatorname{Aut}(Q)}$ acts on "big columns" and $\overline{\operatorname{Aut}(P)}$ within them.

Wreath products

Let
$$P = \operatorname{conv}(v_1 \dots v_m) \subset \mathbb{R}^d$$
. Let
 $Q = \operatorname{conv}(w_1 \dots w_n) \subset \mathbb{R}^e$.

$$P \wr Q = \text{conv} \begin{bmatrix} P & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ & & \ddots & \\ 0 & 0 & 0 & P \\ w_1 & w_2 & w_3 & w_n \end{bmatrix}$$

Wreath products

Roughly, $\overline{\operatorname{Aut}(Q)}$ acts on "big columns" and $\overline{\operatorname{Aut}(P)}$ within them.

Example

- Let $C_k = \operatorname{conv}\{\pm e_1, \ldots, \pm e_k\}$. Let $P = C_d \wr C_e$.
 - *P* has dimension D = 2de + e and $4de \sim 2D$ vertices
 - *P* has $2^{(d+1)e}$ facets, each containing $3de \sim 1.5D$ vertices
 - P has one orbit of vertices, facets, and (D-1)-bases.

Example

- Let $C_k = \operatorname{conv}\{\pm e_1, \ldots, \pm e_k\}$. Let $P = C_d \wr C_e$.
 - *P* has dimension D = 2de + e and $4de \sim 2D$ vertices
 - ▶ *P* has $2^{(d+1)e}$ facets, each containing $3de \sim 1.5D$ vertices
 - P has one orbit of vertices, facets, and (D-1)-bases.

Example

- Let $C_k = \operatorname{conv}\{\pm e_1, \ldots, \pm e_k\}$. Let $P = C_d \wr C_e$.
 - *P* has dimension D = 2de + e and $4de \sim 2D$ vertices
 - ▶ *P* has $2^{(d+1)e}$ facets, each containing $3de \sim 1.5D$ vertices
 - P has one orbit of vertices, facets, and (D-1)-bases.

Example

Let $C_k = \operatorname{conv}\{\pm e_1, \ldots, \pm e_k\}$. Let $P = C_d \wr C_e$.

Orbitwise Degenerate Polytopes

	Dimension	Triangulation $ rianglessimes$	Basis Orbits
Cut	10 (n = 5)	496	2
	15 ($n = 6$)	186636	6300
	4	48	4
	5	240	17
Cubes	6	1440	237
	7	10080	9892
	8	80640	> 209000

Definition

 \widetilde{V} is a valid perturbation of V if $\exists \nu(\cdot) : V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

If ν(W) is linearly dependent then W is
 If ν(W) is extreme for V then W is extreme for V.

Definition

 \widetilde{V} is a *valid perturbation* of V if $\exists \nu(\cdot) : V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

1. If $\nu(W)$ is linearly dependent then W is.

2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Definition

 \widetilde{V} is a *valid perturbation* of V if $\exists \nu(\cdot) : V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

- 1. If $\nu(W)$ is linearly dependent then W is.
- 2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Definition

 \widetilde{V} is a *valid perturbation* of V if $\exists \nu(\cdot) : V \leftrightarrow \widetilde{V}$ such that $\forall W \subseteq V$,

- 1. If $\nu(W)$ is linearly dependent then W is.
- 2. If $\nu(W)$ is extreme for \widetilde{V} then W is extreme for V.

Symmetry preserving perturbation

Proposition

- Let V ⊂ ℝ^d. V₁,..., V_k the orbits of V under H, and u be a fixed point for H,
- There exists ε₁ ≫ · · · ≫ ε_k ≥ 0 such that

 $V' = \bigcup_j (V_j \pm \varepsilon_j u)$

is a valid perturbation of V and $H \leq \overline{\operatorname{Aut}}(V')$.

Symmetry preserving perturbation

Proposition

- Let V ⊂ ℝ^d. V₁,..., V_k the orbits of V under H, and u be a fixed point for H,
- There exists ε₁ ≫ · · · ≫ ε_k ≥ 0 such that

$$V' = \bigcup_j (V_j \pm \varepsilon_j u)$$

is a valid perturbation of V and $H \leq \overline{Aut}(V')$.

Symmetry preserving perturbation

Proposition

- Let V ⊂ ℝ^d. V₁,..., V_k the orbits of V under H, and u be a fixed point for H,
- There exists ε₁ ≫ · · · ≫ ε_k ≥ 0 such that

$$V' = \bigcup_j (V_j \pm \varepsilon_j u)$$

is a valid perturbation of V and $H \leq \overline{Aut}(V')$.

Affine Orbitwise Perturbation

Affine Orbitwise Perturbation

Affine Orbitwise Perturbation

Linear Ordering Triangulation

Definition

- Let $I^d = [-1, 1]^d$. Let $\mathbf{e} = (1, \dots, 1)$.
- For each ρ ∈ Sym(d), there is a path [ρ] from -e to e.
- Define Δ_{ρ} as conv $[\rho]$.
- The linear ordering triangulation of bdy I^d is the intersection of bdy I^d with all Δ_ρ

$$H_d = \operatorname{stab}(\overline{\operatorname{Aut}}(I^d), \{-\mathbf{e}, \mathbf{e}\})$$
 acts transitively on the l.o.t. of bdy I^d .

Linear Ordering Triangulation

Definition

- Let $I^d = [-1, 1]^d$. Let $\mathbf{e} = (1, \dots, 1)$.
- For each $\rho \in \text{Sym}(d)$, there is a path $[\rho]$ from $-\mathbf{e}$ to \mathbf{e} .
- ▶ Define Δ_{ρ} as conv[ρ].
- ▶ The *linear ordering triangulation* of bdy *I^d* is

$$H_d = \operatorname{stab}(\overline{\operatorname{Aut}}(I^d), \{-\mathbf{e}, \mathbf{e}\})$$
 acts transitively on the l.o.t. of bdy I^d .

Linear Ordering Triangulation

Definition

- Let $I^d = [-1, 1]^d$. Let $\mathbf{e} = (1, \dots, 1)$.
- For each $\rho \in \text{Sym}(d)$, there is a path $[\rho]$ from $-\mathbf{e}$ to \mathbf{e} .
- Define Δ_{ρ} as conv[ρ].

▶ The *linear ordering triangulation* of bdy *I^d* is

$$H_d = \operatorname{stab}(\overline{\operatorname{Aut}}(I^d), \{-\mathbf{e}, \mathbf{e}\})$$
 acts transitively on the l.o.t. of bdy I^d .

Linear Ordering Triangulation

Definition

- Let $I^d = [-1, 1]^d$. Let $\mathbf{e} = (1, \dots, 1)$.
- For each $\rho \in \text{Sym}(d)$, there is a path $[\rho]$ from $-\mathbf{e}$ to \mathbf{e} .
- Define Δ_{ρ} as conv $[\rho]$.
- ▶ The linear ordering triangulation of bdy I^d is the intersection of bdy I^d with all Δ_a

$$H_d = \operatorname{stab}(\overline{\operatorname{Aut}}(I^d), \{-\mathbf{e}, \mathbf{e}\})$$
 acts transitively on the l.o.t. of bdy I^d .

Linear Ordering Perturbation

Example

- bdy $\tilde{I}^d \equiv$ the l.o.t. of bdy I^d
- ► bdy \tilde{I}^d has one orbit of simplicial facets under $H_d \leq \overline{\operatorname{Aut}}(\tilde{I}^d)$.

Linear Ordering Perturbation

Example

- bdy $\tilde{I}^d \equiv$ the l.o.t. of bdy I^d .
- ► bdy \tilde{I}^d has one orbit of simplicial facets under $H_d \leq \overline{\operatorname{Aut}}(\tilde{I}^d)$.

Linear Ordering Perturbation

Example

- bdy $\tilde{I}^d \equiv$ the l.o.t. of bdy I^d .
- ▶ bdy *l̃^d* has one orbit of simplicial facets under H_d ≤ Aut(*l̃^d*).

Linear Ordering Perturbation

Example

- bdy $\tilde{I}^d \equiv$ the l.o.t. of bdy I^d .
- ▶ bdy *l̃^d* has one orbit of simplicial facets under H_d ≤ Aut(*l̃^d*).

Linear Ordering Perturbation

Example

- bdy $\tilde{I}^d \equiv$ the l.o.t. of bdy I^d .
- bdy *l̃^d* has one orbit of simplicial facets under H_d ≤ Aut(*l̃^d*).

Example: E₇ root lattice contact polytope

Contact Polytope for E7 root lattice

		Orbits
Dimension	8	
Group Order	2903040	
Vertices	126	1
Facets	632	2
lrs ∆'s	20520	
bases		161

What makes a good subgroup?

David Bremner (UNB)

Facet Generation & Symmetric Triangulation

What makes a good subgroup?

David Bremner (UNB)

Facet Generation & Symmetric Triangulation

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.

Conclusions

- For certain special cases, pivoting works well for facet generation under symmetry.
- The question of what polytopes have symmetric triangulations is an interesting one.
- Simple heuristics exist to find subgroups with desired size and number of input orbits; more ideas are probably needed to find effective triangulations.