CS3383 Unit 1, Lecture 1: Divide and conquer intro

David Bremner

February 15, 2024

Divide and conquer
Big Picture Merge Sort
Recursion tree Integer Multiplication

unit prereqs

$>$ mergesort
geometric series (CLRS A.5)

Structure of divide and conquer

```
function \(\operatorname{Solve}(\mathrm{P})\)
    if \(|P|\) is small then
        SolveDirectly \((P)\)
    else
```

$$
\begin{gathered}
P_{1} \ldots P_{k}=\operatorname{Partition}(P) \\
\text { for } i=1 \ldots k \text { do } \\
S_{i}=\operatorname{Solve}\left(P_{i}\right)
\end{gathered}
$$

end for
Combine $\left(S_{1} \ldots S_{k}\right)$ end if
end function

- Where is the actual work?
- How many subproblems?
- How big are the subproblems?

Merge sort

MergeSort (A[1...n]) :

```
if (n == 1):
            return A
    left = MergeSort( }A[1\ldots\lceiln/2\rceil]
    right = MergeSort(A[\lceiln/2\rceil+1\ldotsn])
    return Merge(left, right)
```

non-recursive cost is in merging (and splitting) arrays
$>$ can be done in $\Theta(n)$ time

Recurrence for merge sort

```
1 def MergeSort(A[1..n]):
2 if (n == 1):
3 return A
4 left = MergeSort (A[1\ldots\lceiln/2\rceil])
5
    right = MergeSort(A[[n/2\rceil+1\ldotsn])
    return Merge(left,right)
```

(line 4)

$$
T(n)=T(n / 2)
$$

(line 5)
(line 6)

$$
\begin{aligned}
& +T(n / 2) \\
& +\Theta(n)
\end{aligned}
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Appendix: geometric series

$$
\begin{gathered}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots=\frac{1}{1-x} \text { for }|x|<1
\end{gathered}
$$

Return to last slide viewed.

Integer Multiplication

The Problem

Input positive integers x and y, each n bits long
Output positive integer z where $z=x \cdot y$

- A straightforward approach using base-2 arithmetic, akin to how we multiply by hand, takes $\Theta\left(n^{2}\right)$ time.
$>$ Can we do better with divide and conquer?

Splitting the input

Split the bitstrings in half, generating $x_{L}, x_{R}, y_{L}, y_{R}$ such that

$$
\begin{aligned}
& x=2^{\frac{n}{2}} \cdot x_{L}+x_{R} \\
& y=2^{\frac{n}{2}} \cdot y_{L}+y_{R} .
\end{aligned}
$$

- Like base $2^{\left\lfloor\frac{n}{2}\right\rfloor}$
- Assume that n is a power of 2 , so $\frac{n}{2}$ will always be integer.

A first approach

Express our multiplication of the n-bit integers as four multiplications of $\frac{n}{2}$-bit integers:

$$
\begin{aligned}
x \cdot y & =\left(2^{\frac{n}{2}} \cdot x_{L}+x_{R}\right) \cdot\left(2^{\frac{n}{2}} \cdot y_{L}+y_{R}\right) \\
& =2^{n} \cdot x_{L} y_{L}+2^{\frac{n}{2}} \cdot\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

This gives a recurrence of

$$
T(n)=4 T\left(\frac{n}{2}\right)+c n
$$

A first approach

Express our multiplication of the n-bit integers as four multiplications of $\frac{n}{2}$-bit integers:

$$
\begin{aligned}
x \cdot y & =\left(2^{\frac{n}{2}} \cdot x_{L}+x_{R}\right) \cdot\left(2^{\frac{n}{2}} \cdot y_{L}+y_{R}\right) \\
& =2^{n} \cdot x_{L} y_{L}+2^{\frac{n}{2}} \cdot\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

This gives a recurrence of

$$
T(n)=4 T\left(\frac{n}{2}\right)+c n
$$

Bad news

This recurrence solves to $\Theta\left(n^{2}\right)$

Finding a better recurrence / algorithm.

We want to compute

$$
2^{n} \cdot x_{L} y_{L}+2^{\frac{n}{2}} \cdot\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
$$

$>$ Can we compute $\left(x_{L} y_{R}+x_{R} y_{L}\right)$, the coefficient of $2^{\frac{n}{2}}$, more efficiently?
\rightarrow How about re-using $x_{L} y_{L}$ and $x_{R} y_{R}$?

Gauss's trick

From the binomial expansion

$$
\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)=x_{L} y_{L}+x_{L} y_{R}+x_{R} y_{L}+y_{R} x_{R}
$$

we get that

$$
x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}
$$

Recursive Algorithm
 To compute

$$
2^{n} \cdot x_{L} y_{L}+2^{\frac{n}{2}} \cdot\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
$$

1. find $x_{L}, x_{R}, y_{L}, y_{R}$ and $x_{L}+x_{R}, y_{L}+y_{R}[O(n)]$
2. find $x_{L} y_{L}, x_{R} y_{R}$, and $\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$ recursively
3. and assemble the results in linear time

Recursive Algorithm

To compute

$$
2^{n} \cdot x_{L} y_{L}+2^{\frac{n}{2}} \cdot\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
$$

1. find $x_{L}, x_{R}, y_{L}, y_{R}$ and $x_{L}+x_{R}, y_{L}+y_{R}[O(n)]$
2. find $x_{L} y_{L}, x_{R} y_{R}$, and $\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$ recursively
3. and assemble the results in linear time

Roughly speaking, the recurrence is

$$
T(n) \approx 3 T\left(\frac{n}{2}\right)+c n
$$

$>$ one subproblem is actually one bit bigger. Does it matter?

