CS3383 Lecture 1.1: The Master Theorem with applications

David Bremner

January 23, 2024

Outline

Divide and Conquer Continued The Master Theorem Matrix Multiplication

The Master Theorem

If \exists constants $b>0, s>1$ and $d \geq 0$ such that
$T(n)=b \cdot T\left(\left\lceil\frac{n}{s}\right\rceil\right)+\Theta\left(n^{d}\right)$, then
(Simplified from Theorem 4.1 in CLRS4; this is closer to the Roughgarden version)

The Master Theorem

If \exists constants $b>0, s>1$ and $d \geq 0$ such that $T(n)=b \cdot T\left(\left\lceil\frac{n}{s}\right\rceil\right)+\Theta\left(n^{d}\right)$, then

$$
T(n)=\left\{\begin{array}{lll}
\Theta\left(n^{d}\right) & \text { if } d>\log _{s} b & \text { (equiv. to } \left.b<s^{d}\right) \\
\Theta\left(n^{d} \log n\right) & \text { if } d=\log _{s} b & \text { (equiv. to } \left.b=s^{d}\right) \\
\Theta\left(n^{\log _{s} b}\right) & \text { if } d<\log _{s} b & \text { (equiv. to } \left.b>s^{d}\right)
\end{array}\right.
$$

(Simplified from Theorem 4.1 in CLRS4; this is closer to the Roughgarden version)

Master theorem, in pictures

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)
The height of our recursion tree is $\log _{s} n$.

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)

The height of our recursion tree is $\log _{s} n$. At level i of the recursion tree (counting from 0) we have:

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)

The height of our recursion tree is $\log _{s} n$. At level i of the recursion tree (counting from 0) we have:
$>$ the size of the data $=\frac{n}{s^{i}}$

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)
The height of our recursion tree is $\log _{s} n$. At level i of the recursion tree (counting from 0) we have:
∇ the size of the data $=\frac{n}{s^{i}}$
the time for the combine step $=c \cdot\left(\frac{n}{s^{i}}\right)^{d}$

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)
The height of our recursion tree is $\log _{s} n$. At level i of the recursion tree (counting from 0) we have:
$>$ the size of the data $=\frac{n}{s^{i}}$
the time for the combine step $=c \cdot\left(\frac{n}{s^{i}}\right)^{d}$
$>$ the number of recursive instantiations $=b^{i}$

Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what do we do?)

The height of our recursion tree is $\log _{s} n$. At level i of the recursion tree (counting from 0) we have:
$>$ the size of the data $=\frac{n}{s^{i}}$
the time for the combine step $=c \cdot\left(\frac{n}{s^{i}}\right)^{d}$
the number of recursive instantiations $=b^{i}$
And so

$$
T(n)=\sum_{i=0}^{\log _{s} n} c \cdot\left(\frac{n}{s^{i}}\right)^{d} \cdot b^{i}
$$

Proof of Master theorem, $b=s^{d}$

$$
T(n)=\sum_{i=0}^{\log _{s} n} c \cdot\left(\frac{n^{d}}{\left(s^{i}\right)^{d}}\right) \cdot b^{i}=c \cdot n^{d} \cdot\left(\sum_{i=0}^{\log _{s} n}\left(\frac{b}{s^{d}}\right)^{i}\right)
$$

Proof of Master theorem, $b=s^{d}$

$$
T(n)=\sum_{i=0}^{\log _{s} n} c \cdot\left(\frac{n^{d}}{\left(s^{i}\right)^{d}}\right) \cdot b^{i}=c \cdot n^{d} \cdot\left(\sum_{i=0}^{\log _{s} n}\left(\frac{b}{s^{d}}\right)^{i}\right)
$$

If $b=s^{d}$, then

$$
T(n)=c \cdot n^{d} \cdot\left(\sum_{i=0}^{\log _{s} n} 1\right)=c \cdot n^{d} \log _{s} n
$$

Proof of Master theorem, $b=s^{d}$

$$
T(n)=\sum_{i=0}^{\log _{s} n} c \cdot\left(\frac{n^{d}}{\left(s^{i}\right)^{d}}\right) \cdot b^{i}=c \cdot n^{d} \cdot\left(\sum_{i=0}^{\log _{s} n}\left(\frac{b}{s^{d}}\right)^{i}\right)
$$

If $b=s^{d}$, then

$$
T(n)=c \cdot n^{d} \cdot\left(\sum_{i=0}^{\log _{s} n} 1\right)=c \cdot n^{d} \log _{s} n
$$

so $T(n)$ is $\Theta\left(n^{d} \log n\right)$.

Proof of Master Theorem $b \neq s^{d}$ (1 of 2) Otherwise $\left(b \neq s^{d}\right)$, we have a geometric series,

$$
T(n)=c \cdot n^{d} \cdot\left(\frac{\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1}{\frac{b}{s^{d}}-1}\right)
$$

Proof of Master Theorem $b \neq s^{d}$ (1 of 2) Otherwise $\left(b \neq s^{d}\right)$, we have a geometric series,

$$
T(n)=c \cdot n^{d} \cdot\left(\frac{\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1}{\frac{b}{s^{d}}-1}\right)
$$

Applying $\frac{1}{b / \square-1}=\frac{\square}{b-\square}$

Proof of Master Theorem $b \neq s^{d}$ (1 of 2) Otherwise $\left(b \neq s^{d}\right)$, we have a geometric series,

$$
T(n)=c \cdot n^{d} \cdot\left(\frac{\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1}{\frac{b}{s^{d}}-1}\right)
$$

Applying $\frac{1}{b / \square-1}=\frac{\square}{b-\square}$

$$
T(n)=\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d} \cdot\left(\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1\right)
$$

Proof of Master Theorem $b \neq s^{d}$ (1 of 2) Otherwise $\left(b \neq s^{d}\right)$, we have a geometric series,

$$
T(n)=c \cdot n^{d} \cdot\left(\frac{\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1}{\frac{b}{s^{d}}-1}\right)
$$

Applying $\frac{1}{b / \square-1}=\frac{\square}{b-\square}$

$$
\begin{aligned}
& T(n)=\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d} \cdot\left(\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-1\right) \\
& =\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d} \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
\end{aligned}
$$

Proof of Master Theorem $b \neq s^{d}$ (2 of 2)

 From rules of powers and logarithms:$$
\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}=\frac{b}{s^{d}} \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n}=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{\left(s^{d}\right)^{\log _{s} n}}
$$

Proof of Master Theorem $b \neq s^{d}$ (2 of 2)

 From rules of powers and logarithms:$$
\begin{array}{r}
\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}=\frac{b}{s^{d}} \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n}=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{\left(s^{d}\right)^{\log _{s} n}} \\
=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{n^{d}}=b \cdot \frac{n^{\log _{s} b}}{s^{d} n^{d}}
\end{array}
$$

Proof of Master Theorem $b \neq s^{d}$ (2 of 2)

 From rules of powers and logarithms:$$
\begin{array}{r}
\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}=\frac{b}{s^{d}} \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n}=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{\left(s^{d}\right)^{\log _{s} n}} \\
=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{n^{d}}=b \cdot \frac{n^{\log _{s} b}}{s^{d} n^{d}} \\
T(n)=\frac{s^{d} n^{d}}{b-s^{d}} \cdot c \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
\end{array}
$$

Proof of Master Theorem $b \neq s^{d}$ (2 of 2)

 From rules of powers and logarithms:$$
\begin{array}{r}
\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}=\frac{b}{s^{d}} \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n}=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{\left(s^{d}\right)^{\log _{s} n}} \\
=\frac{b}{s^{d}} \cdot \frac{b^{\log _{s} n}}{n^{d}}=b \cdot \frac{n^{\log _{s} b}}{s^{d} n^{d}} \\
T(n)=\frac{s^{d} n^{d}}{b-s^{d}} \cdot c \cdot\left(\frac{b}{s^{d}}\right)^{\log _{s} n+1}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d} \\
=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
\end{array}
$$

Branching versus subproblem size $1 / 2$

$$
T(n)=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
$$

Now we need to test b versus s^{d}.

Branching versus subproblem size $1 / 2$

$$
T(n)=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
$$

Now we need to test b versus s^{d}.
If $b>s^{d}\left(\log _{s} b>d\right)$, first term dominates:

$$
\begin{align*}
T(n) & =c_{2} n^{\log _{s} b}-c_{3} n^{d} \\
& \leq c_{2} n^{\log _{s} b} \\
& \geq\left(c_{2}-c_{3}\right) n^{\log _{s} b} \tag{O}
\end{align*}
$$

Branching versus subproblem size 2 /2

$$
T(n)=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
$$

Now we need to test b versus s^{d}.

Branching versus subproblem size 2 /2

$$
T(n)=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
$$

Now we need to test b versus s^{d}.
If $b<s^{d}\left(\log _{s} b<d\right)$, then

$$
T(n)=\frac{s^{d}}{s^{d}-b} \cdot c \cdot n^{d}-\frac{b}{s^{d}-b} \cdot c \cdot n^{\log _{s} b}
$$

Branching versus subproblem size 2 /2

$$
T(n)=\frac{b}{b-s^{d}} \cdot c \cdot n^{\log _{s} b}-\frac{s^{d}}{b-s^{d}} \cdot c \cdot n^{d}
$$

Now we need to test b versus s^{d}.
If $b<s^{d}\left(\log _{s} b<d\right)$, then

$$
T(n)=\frac{s^{d}}{s^{d}-b} \cdot c \cdot n^{d}-\frac{b}{s^{d}-b} \cdot c \cdot n^{\log _{s} b}
$$

new first term dominates, same argument: $\Theta\left(n^{d}\right)$.

Matrix Multiplication

The product of two $n \times n$ matrices X and Y is a third $n \times n$ matrix $Z=X Y$, with

$$
Z_{i j}=\sum_{k=1}^{n} X_{i k} Y_{k j}
$$

where $Z_{i j}$ is the entry in row i and column j of matrix Z.

Calculating Z directly using this formula takes $\Theta\left(n^{3}\right)$ time.

Matrix Multiplication: Blocks

Decompose the input matrices into four blocks each

Matrix Multiplication: Blocks

Decompose the input matrices into four blocks each

$$
X=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right], \quad Y=\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]
$$

Matrix Multiplication: Blocks

Decompose the input matrices into four blocks each

$$
X=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right], \quad Y=\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]
$$

$$
\begin{aligned}
& X Y=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right] \\
= & {\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] }
\end{aligned}
$$

Matrix Multiplication: Blocks

Decompose the input matrices into four blocks each

$$
\left.\begin{array}{rl}
X= & {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], \quad Y=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]}
\end{array} \begin{array}{l}
\text { subinstances } \\
A E, B G \\
X Y=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] \\
A F, B H \\
=
\end{array} \begin{array}{ll}
A E, D G \\
C E+D G & A F+B H \\
C F & C F+D H
\end{array}\right] \quad \begin{array}{ll}
C F, D H
\end{array}
$$

Matrix Multiplication: Blocks

8 subinstances of dimension $\frac{n}{2}$, and taking cn^{2} time to add the results:

$$
T(n)=8 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

Matrix Multiplication: Blocks

8 subinstances of dimension $\frac{n}{2}$, and taking cn^{2} time to add the results:

$$
T(n)=8 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

Master Theorem (and $\log _{2} 8=3>2$) yields

$$
T(n) \in \Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)
$$

Matrix Multiplication: Blocks

8 subinstances of dimension $\frac{n}{2}$, and taking cn^{2} time to add the results:

$$
T(n)=8 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

As with integer mult., naive split does not improve running time.

Master Theorem (and $\log _{2} 8=3>2$) yields

$$
T(n) \in \Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)
$$

Matrix Multiplication: Strassen Decomposition

As with integers, we find we need a decomposition that reuses results.

Matrix Multiplication: Strassen Decomposition

As with integers, we find we need a decomposition that reuses results. Strassen found such a decomposition:

$$
X Y=\left[\begin{array}{cc}
P_{5}+P_{4}-P_{2}+P_{6} & P_{1}+P_{2} \\
P_{3}+P_{4} & P_{1}+P_{5}-P_{3}-P_{7}
\end{array}\right]
$$

Matrix Multiplication: Strassen Decomposition

As with integers, we find we need a decomposition that reuses results. Strassen found such a decomposition:

$$
X Y=\left[\begin{array}{cc}
P_{5}+P_{4}-P_{2}+P_{6} & P_{1}+P_{2} \\
P_{3}+P_{4} & P_{1}+P_{5}-P_{3}-P_{7}
\end{array}\right]
$$

where

$$
\begin{array}{ll}
P_{1}=A(F-H) & P_{5}=(A+D)(E+H) \\
P_{2}=(A+B) H & P_{6}=(B-D)(G+H) \\
P_{3}=(C+D) E & P_{7}=(A-C)(E+F) \\
P_{4}=D(G-E) &
\end{array}
$$

Matrix Multiplication: Strassen Decomposition

This looks complicated, but in saving one recursive call, we get a time recurrence of

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

Matrix Multiplication: Strassen Decomposition

This looks complicated, but in saving one recursive call, we get a time recurrence of

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

Master Theorem (with $\log _{2} 7>\log _{2} 4=2$) shows

$$
T(n) \in \Theta\left(n^{\log _{2} 7}\right) \subset \Theta\left(n^{2.81}\right)
$$

Matrix Multiplication: Strassen Decomposition

This looks complicated, but in saving one recursive call, we get a time recurrence of

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

Master Theorem (with $\log _{2} 7>\log _{2} 4=2$) shows

$$
T(n) \in \Theta\left(n^{\log _{2} 7}\right) \subset \Theta\left(n^{2.81}\right)
$$

input size is
$m=n^{2}$, time is
$\Theta\left(m^{1.404}\right)$ time (vs $\left.\Theta\left(m^{1.5}\right)\right)$.

