CS3383 Lecture 1.2: Substitution method and randomized d\&c

David Bremner David Bremner

February 15, 2024

Even More Divide and Conquer
Substitution Method for recurrences
Quicksort
Randomized Quicksort
/Subtype /Text/F 1/T (Video)/Contents (video/12.0-intro-amav)

Even More Divide and Conquer
Substitution Method for recurrences
Quicksort
Randomized Quicksort
/Subtype /Text/F 1/T (Video)/Contents (video/12.0-intro-bmav)

Substitution method

The most general method:

1. Guess the form of the solution.
/Subtype 2. Taxthefy ${ }^{1}$ bI in indidefibnfontents (video/12.1-subst.mkv)
2. Solve for constants.

Substitution method

The most general method:
/Subtype 1 Text ${ }^{\text {Guss }}$ the form of the solution.
(video/12.2-examifie. hy induction.
3. Solve for constants.

Example: $T(n)=4 T(n / 2)+n$

- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

Example of substitution

$$
T(n)=4 T(n / 2)+n
$$

 (video/12.3-workifg2. Thikv) ${ }^{n}$

$$
\begin{aligned}
& =c n^{3}-\left((c / 2) n^{3}-n\right)-\text { desired }- \text { residual } \\
& \leq c n^{3}-\text { desired }
\end{aligned}
$$

whenever $(c / 2) n^{3}-n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.

Example of substitution

$$
T(n)=4 T(n / 2)+n
$$

(video $/ 12.3$-working 4). mikikv) ${ }^{2}$

$$
\begin{aligned}
& =c n^{3}-\left((c / 2) n^{3}-n\right) \leftarrow \text { desired }- \text { residual } \\
& \leq c n^{3} \leftarrow \text { desired }
\end{aligned}
$$

whenever $(c / 2) n^{3}-n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

$$
T(n)=4 T(n / 2)+n
$$

$$
\leq 4 c(n / 2)^{2}+n
$$

$$
=c n^{2}+n
$$

= O Wrong! We must prove the I.H.

Divide and conquer

Quicksort an n-element array:
/Subtype Pivide: Paptition the array into two subarrays (video/12.6-quicksort.mkv) x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.
\square
2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Divide and conquer

Quicksort an n-element array:
/Subtype Pivide: Paptition the array into two subarrays (video/12.6-quicksort-b.mkv) such that elements in lower subarray $\leq x \leq$ elements in upper subarray.
\square
2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Analysis of quicksort

$>$ Quicksort is $\Theta\left(n^{2}\right)$ in the worst case. What kind of input is bad?

- Quicksort is supposed to be fast "in practice".
- We can choose a better pivot in $O(n)$ time, but we'll see it's a bit complicated.
- What if we choose a random element as pivot?
/Subtype /Text/F 1/T (Video)/Contents
(video/12.7-qs-time-a.mkv)

Analysis of quicksort

$>$ Quicksort is $\Theta\left(n^{2}\right)$ in the worst case. What kind of input is bad?

- Quicksort is supposed to be fast "in practice".
$>$ We can choose a better pivot in $O(n)$ time, but we'll see it's a bit complicated.
What if we choose a random element as pivot?
/Subtype /Text/F 1/T (Video)/Contents
(video/12.7-qs-time-b.mkv)

Random pivot

$>$ pivot $\leftarrow \mathrm{A}[$ random(1..n)]
$>$ indicator $X_{k}=1$ if we generate a $k: n-k-1$ split, 0 otherwise

- $E\left[X_{k}\right]=\operatorname{Pr}\left[X_{k}=1\right]=1 / n$, assuming distinct elements.
/Subtype /Text/F 1/T (Video)/Contents (video/12.8-pivot.mkv)

ALGORITHMS
 Analysis (continued)

$\int T(0)+T(n-1)+\Theta(n)$ if $0: n-1$ split,

$$
T(n-1)+T(0)+\Theta(n) \text { if } n-1: 0 \text { split, }
$$

$$
=\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))
$$

