CS3383 Lecture 1.2: Substitution method

David Bremner

January 29, 2024

Outline

Even More Divide and Conquer
Substitution Method for recurrences
Substitution examples

Example recurrence

- The Master Method actually works for this, but it won't always.

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n \\
& T(1)=1
\end{aligned}
$$

$>$ Suppose that we want to prove $T(n) \in O\left(n^{3}\right)$ by induction

- Guess $T(n) \leq c n^{3}$

Example of substitution

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{3}+n \\
&=(c / 2) n^{3}+n \\
&=c n^{3}-\left((c / 2) n^{3}-n\right)-\text { desired }- \text { residual } \\
& \leq c n^{3}-\text { desired } \\
& \text { whenever }(c / 2) n^{3}-n \geq 0, \text { for example, } \\
& \text { if } c \geq 2 \text { and } n \geq 1 . \underbrace{}_{\text {residual }}
\end{aligned}
$$

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.

This bound is not tight!

We shall prove that $T(n)=O\left(n^{2}\right)$.

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.
Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.
Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =O \mathbf{O} \text {) Wrong! We must prove the I.H. }
\end{aligned}
$$

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.
Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =0 \text { Wrong! We must prove the I.H. } \\
& =c n^{2}-(-n) \quad \text { [desired }- \text { residual] } \\
& \leq c n^{2} \quad \text { for } \boldsymbol{n} \boldsymbol{o} \text { choice of } c>0 . \text { Lose! }
\end{aligned}
$$

A tighter upper bound!

Idea: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

A tighter upper bound!

Idea: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& =4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { if } c_{2} \geq 1
\end{aligned}
$$

A tighter upper bound!

Idea: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& =4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { if } c_{2} \geq 1
\end{aligned}
$$

Pick c_{1} big enough to handle the initial conditions.

Substitution example II

$$
\begin{array}{rlrl}
T(0) & =1 & \\
T(n) & =T(n-1)+c^{n} & n>0, c>1 \\
& =T(n-2)+c^{n-1}+c^{n} & \\
& =\sum_{i=0}^{n} c^{i} & \text { guess! } \\
& =\frac{c^{n+1}-1}{c-1} & &
\end{array}
$$

Substitution example II

$$
\begin{array}{rlr}
T(0) & =1 & \\
T(n) & =T(n-1)+c^{n} & n>0, c>1 \\
& =T(n-2)+c^{n-1}+c^{n} & \\
& =\sum_{i=0}^{n} c^{i} & \text { guess! } \\
& =\frac{c^{n+1}-1}{c-1} & \text { geo. series } \\
\text { base } \mathrm{T}(0) &
\end{array}
$$

Substitution example III

$$
\begin{aligned}
T(n) & =T(n / 5)+T(3 n / 4)+c n \\
T(n) & \leq d n, n \geq n_{0} \\
& \leq(1 / 5) d n+(3 / 4) d n+c n \\
& \leq d n
\end{aligned}
$$

(Guess)
(Strong induction) (Choice of c, d)

