CS3383 Lecture 1.4: Order Statistics

David Bremner

February 12, 2024

Outline

Even More Divide and Conquer Randomized median finding Median of medians

Order statistics

Select the i th smallest of n elements (the element with rank i).

- $i=1$: minimum;
- $i=n$: maximum;
- $i=\lfloor(n+1) / 2\rfloor$ or $\lceil(n+1) / 2\rceil$: median.

Naive algorithm: Sort and index i th element.
Worst-case running time $=\Theta(n \lg n)+\Theta(1)$

$$
=\Theta(n \lg n),
$$

using merge sort or heapsort (not quicksort).

ALGORITHMS
 $\rightarrow{ }^{\circ}$
 Randomized divide-andconquer algorithm

$\operatorname{Rand}-\operatorname{Select}(A, p, q, i) \quad \triangleright i$ th smallest of $A[p \ldots q]$ if $p=q$ then return $A[p]$
$r \leftarrow \operatorname{Rand}-\operatorname{Partition}(A, p, q)$
$k \leftarrow r-p+1 \quad \triangleright k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return $\operatorname{Rand}-\operatorname{Select}(A, p, r-1, i)$
else return $\operatorname{Rand}-\operatorname{Select}(A, r+1, q, i-k)$

Example

Select the $i=7$ th smallest:

Partition:

Select the $7-4=3$ rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

$$
\begin{aligned}
T(n) & =T(9 n / 10)+\Theta(n) & & n^{\log _{10 / 9} 1}=n^{0}=1 \\
& =\Theta(n) & & \text { CASE } 3
\end{aligned}
$$

Unlucky:

$$
\begin{aligned}
T(n) & =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

arithmetic series

Worse than sorting!

Randomized median finding

def select (A,p,q,i):
$\mathrm{n}=\mathrm{q}-\mathrm{p}+1 ; \mathrm{bad}=$ True if $\mathrm{n}==1$: return $\mathrm{A}[\mathrm{p}]$
while bad:

$$
\begin{aligned}
& r=p a r t i t i o n(A, p, q, r a n d r a n g e(p, q)) \\
& k=r-p \\
& \text { if }(k==i): \text { return } A[r] \\
& \text { bad }=(k<n / / 4) \text { or }(k>3 * n / / 4) \\
& i<k): \\
& \text { return select }(A, p, r-1, i)
\end{aligned}
$$

if (i < k) :
else:
return select $(A, r+1, q, i-k-1)$

How many times do we partition?

$$
\text { def select }(A, p, q, i):
$$

while bad:

$$
\begin{aligned}
& \quad \text { bad }=(k<n / / 4) \text { or }(k>3 * n / / 4) \\
& \text { if }(i<k): \\
& \quad \text { return } \operatorname{select}(A, p, r-1, i) \\
& \text { else : } \\
& \quad \text { return } \operatorname{select}(A, r+1, q, i-k-1)
\end{aligned}
$$

- Call a pivot r good if $\lfloor n / 4\rfloor$ elements are on either side.
Odds are 50/50.

A random recurrence

Let $W(n)$ be the random variable for time in while.

- Let $s=4 / 3$

$$
\begin{aligned}
T(n) & \leq W(n)+T(n / s)+O(1) \\
& \leq W(n)+W(n / s)+T\left(n / s^{2}\right)+O(1)+O(1) \\
& \leq \sum_{j=0}^{\log _{s}(n)}\left[W\left(\frac{n}{s^{j}}\right)+O(1)\right] \\
& \leq\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \quad \forall n \geq n_{0}
\end{aligned}
$$

A random recurrence

Let $W(n)$ be the random variable for time in while.

- Let $s=4 / 3$

$$
\begin{aligned}
T(n) & \leq W(n)+T(n / s)+O(1) \\
& \leq W(n)+W(n / s)+T\left(n / s^{2}\right)+O(1)+O(1) \\
& \leq \sum_{j=0}^{\log _{s}(n)}\left[W\left(\frac{n}{s^{j}}\right)+O(1)\right] \\
& \leq\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \quad \forall n \geq n_{0}
\end{aligned}
$$

A random recurrence

Let $W(n)$ be the random variable for time in while.

- Let $s=4 / 3$

$$
\begin{aligned}
T(n) & \leq W(n)+T(n / s)+O(1) \\
& \leq W(n)+W(n / s)+T\left(n / s^{2}\right)+O(1)+O(1) \\
& \leq \sum_{j=0}^{\log _{s}(n)}\left[W\left(\frac{n}{s^{j}}\right)+O(1)\right] \\
& \leq\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \quad \forall n \geq n_{0}
\end{aligned}
$$

A random recurrence

Let $W(n)$ be the random variable for time in while.

- Let $s=4 / 3$

$$
\begin{aligned}
T(n) & \leq W(n)+T(n / s)+O(1) \\
& \leq W(n)+W(n / s)+T\left(n / s^{2}\right)+O(1)+O(1) \\
& \leq \sum_{j=0}^{\log _{s}(n)}\left[W\left(\frac{n}{s^{j}}\right)+O(1)\right] \\
& \leq\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \quad \forall n \geq n_{0}
\end{aligned}
$$

Linearity of expectation, again

- Let $W(n)$ be the random variable for time in while.

Let $s=4 / 3$
For all $n \geq n_{0}$

$$
\begin{aligned}
T(n) & \leq\left(\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right)+c_{1} \log _{s} n \\
E[T(n)] & \leq E\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n
\end{aligned}
$$

Linearity of expectation, again

- Let $W(n)$ be the random variable for time in while.

Let $s=4 / 3$
For all $n \geq n_{0}$

$$
\begin{aligned}
T(n) & \leq\left(\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right)+c_{1} \log _{s} n \\
E[T(n)] & \leq E\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n
\end{aligned}
$$

Linearity of expectation, again

- Let $W(n)$ be the random variable for time in while.

Let $s=4 / 3$
For all $n \geq n_{0}$

$$
\begin{aligned}
T(n) & \leq\left(\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right)+c_{1} \log _{s} n \\
E[T(n)] & \leq E\left[\sum_{j=0}^{\log _{s}(n)} W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n
\end{aligned}
$$

How many iterations?

index $n / 8 \quad n / 4$
$n / 2$
$3 n / 4$

$$
W(n) \leq c_{2} n \cdot \sum_{j=1}^{\infty} j X_{j}
$$

where

$$
X_{j}= \begin{cases}1 & \text { while runs } j \text { times } \\ 0 & \text { otherwise }\end{cases}
$$

How many expected iterations?
index $n / 8 \quad n / 4$
$n / 2$
$3 n / 4$

$$
\begin{aligned}
E[W(n)] & \leq E\left[c_{2} n \cdot \sum_{j=1}^{\infty} j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} E\left[j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right]
\end{aligned}
$$

How many expected iterations?
index $n / 8 \quad n / 4$
$n / 2$
$3 n / 4$

$$
\begin{aligned}
E[W(n)] & \leq E\left[c_{2} n \cdot \sum_{j=1}^{\infty} j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} E\left[j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right]
\end{aligned}
$$

How many expected iterations?
index $n / 8 \quad n / 4$
$n / 2$
$3 n / 4$

$$
\begin{aligned}
E[W(n)] & \leq E\left[c_{2} n \cdot \sum_{j=1}^{\infty} j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} E\left[j X_{j}\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right]
\end{aligned}
$$

Probability of exactly j iterations

index $n / 8 \quad n / 4$
$n / 2$
$3 n / 4$

$$
\begin{aligned}
X_{j} & = \begin{cases}1 & \text { while runs } j \text { times } \\
0 & \text { otherwise }\end{cases} \\
P\left[X_{j}=1\right] & =(1-p)^{j-1} \cdot p \\
& =\frac{1}{2^{j}}
\end{aligned}
$$

How many expected iterations? (redux)

$$
\begin{aligned}
E[W(n)] & \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} \frac{j}{2^{j}}
\end{aligned}
$$

(CLRS4 A.11)

$$
\begin{aligned}
& \leq c_{2} n \cdot \frac{1 / 2}{(1-1 / 2)^{2}} \\
& \leq c_{3} n
\end{aligned}
$$

How many expected iterations? (redux)

$$
\begin{aligned}
E[W(n)] & \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} \frac{j}{2^{j}}
\end{aligned}
$$

(CLRS4 A.11)

$$
\begin{aligned}
& \leq c_{2} n \cdot \frac{1 / 2}{(1-1 / 2)^{2}} \\
& \leq c_{3} n
\end{aligned}
$$

How many expected iterations? (redux)

$$
\begin{aligned}
E[W(n)] & \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} \frac{j}{2^{j}}
\end{aligned}
$$

(CLRS4 A.11)

$$
\begin{aligned}
& \leq c_{2} n \cdot \frac{1 / 2}{(1-1 / 2)^{2}} \\
& \leq c_{3} n
\end{aligned}
$$

How many expected iterations? (redux)

$$
\begin{aligned}
E[W(n)] & \leq c_{2} n \cdot \sum_{j=1}^{\infty} j P\left[X_{j}=1\right] \\
& \leq c_{2} n \cdot \sum_{j=1}^{\infty} \frac{j}{2^{j}}
\end{aligned}
$$

(CLRS4 A.11)

$$
\begin{aligned}
& \leq c_{2} n \cdot \frac{1 / 2}{(1-1 / 2)^{2}} \\
& \leq c_{3} n
\end{aligned}
$$

Geometric series, again

Let $W(n)$ be time in while. Let $s=4 / 3$. For all $n \geq n_{0}$:

$$
\begin{aligned}
E[T(n)] & \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq\left(\sum_{j=0}^{\log _{s}(n)} c_{3} \frac{n}{s^{j}}\right)+c_{1} \log _{s} n
\end{aligned}
$$

(CLRS4-A.7)

$$
\leq c_{3} n \cdot \frac{1}{1-s^{-1}}+c_{1} \log _{s} n
$$

Geometric series, again

Let $W(n)$ be time in while. Let $s=4 / 3$. For all $n \geq n_{0}$:

$$
\begin{aligned}
E[T(n)] & \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq\left(\sum_{j=0}^{\log _{s}(n)} c_{3} \frac{n}{s^{j}}\right)+c_{1} \log _{s} n
\end{aligned}
$$

(CLRS4-A.7)

$$
\leq c_{3} n \cdot \frac{1}{1-s^{-1}}+c_{1} \log _{s} n
$$

Geometric series, again

Let $W(n)$ be time in while. Let $s=4 / 3$. For all $n \geq n_{0}$:

$$
\begin{aligned}
E[T(n)] & \leq \sum_{j=0}^{\log _{s}(n)} E\left[W\left(\frac{n}{s^{j}}\right)\right]+c_{1} \log _{s} n \\
& \leq\left(\sum_{j=0}^{\log _{s}(n)} c_{3} \frac{n}{s^{j}}\right)+c_{1} \log _{s} n
\end{aligned}
$$

$($ CLRS4-A. 7$) \quad \leq c_{3} n \cdot \frac{1}{1-s^{-1}}+c_{1} \log _{s} n$

Deterministically choosing a good pivot.

- it turns out we can achieve $O(n)$ time deterministically

Deterministically choosing a good pivot.

- it turns out we can achieve $O(n)$ time deterministically
$>$ deterministic algorithm is more complicated

Deterministically choosing a good pivot.

- it turns out we can achieve $O(n)$ time deterministically
$>$ deterministic algorithm is more complicated
practical performance is typically worse

Deterministically choosing a good pivot.

- it turns out we can achieve $O(n)$ time deterministically
$>$ deterministic algorithm is more complicated
- practical performance is typically worse
- The main idea of this algorithm is taking the median of medians
․․․ Choosing the pivot

스네 Choosing the pivot

1. Divide the n elements into groups of 5 .

… Choosing the pivot

lesser the median of each 5 -element group by rote.

$\therefore . .{ }^{\prime}$ Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser the median of each 5-element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.
lesser

greater
\therefore Analysis (Assume all elements are distinct.)

lesser
At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.

\therefore Analysis (Assume all elements are distinct.)

lesser
At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.
- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.
- Similarly, at least $3\lfloor n / 10\rfloor$ elements are $\geq x$.

greater

Minor simplification

- For $n \geq 50$, we have $3\lfloor n / 10\rfloor \geq n / 4$.
- Therefore, for $n \geq 50$ the recursive call to Select in Step 4 is executed recursively on $\leq 3 n / 4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time $T(3 n / 4)$ in the worst case.
- For $n<50$, we know that the worst-case time is $T(n)=\Theta(1)$.

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$
$\Theta(n)\left\{\begin{array}{l}\text { 1. Divide the } n \text { elements into groups of 5. Find } \\ \text { the median of each 5-element group by rote. }\end{array}\right.$
$T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively SeLect the median } x \text { of the }\lfloor n / 5\rfloor \\ \text { group medians to be the pivot. }\end{array} \Theta(n) \quad\right.$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
4. if $i=k$ then return x
elseif $i<k$
then recursively Select the i th smallest element in the lower part else recursively Select the $(i-k)$ th smallest element in the upper part

A familiar recurrence

(Guess)
(Strong induction)
(Choice of c, d)

$$
T(n)=T(n / 5)+T(3 n / 4)+c n
$$

$$
T(n) \leq d n, n \geq n_{0}
$$

$$
\leq(1 / 5) d n+(3 / 4) d n+c n
$$

$$
\leq d n
$$

