CS3383 Lecture 1.4: Order Statistics

David Bremner

February 12, 2024

Outline

Even More Divide and Conquer Randomized median finding Median of medians

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- *i* = 1: *minimum*;
- i = n: maximum; • $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index *i*th element. Worst-case running time = $\Theta(n \lg n) + \Theta(1)$ = $\Theta(n \lg n)$, using merge sort or heapsort (*not* quicksort).

Randomized divide-andconquer algorithm

RAND-SELECT $(A, p, q, i) \rightarrow i$ th smallest of $A[p \dots q]$ if p = q then return A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$ $k \leftarrow r - p + 1$ $\triangleright k = \operatorname{rank}(A[r])$ if i = k then return A[r]if i < k

> then return RAND-SELECT(A, p, r-1, i) else return RAND-SELECT(A, r+1, q, i-k)

Select the i = 7th smallest:

Partition:

2 5 3 6 8 13 10 11
$$k = 4$$

Select the 7 – 4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

 $T(n) = T(9n/10) + \Theta(n)$ = $\Theta(n)$ $n^{\log_{10/9}1} = n^0 = 1$ CASE 3

Unlucky:

 $T(n) = T(n-1) + \Theta(n)$ = $\Theta(n^2)$

arithmetic series

Worse than sorting!

Randomized median finding

```
def select(A,p,q,i):
    n = q - p + 1; bad = True
    if n==1: return A[p]
    while bad:
        r = partition(A,p,q,randrange(p,q))
        k = r - p
        if (k == i): return A[r]
        bad = (k < n//4) or (k > 3 * n//4)
    if (i < k):
        return select (A,p,r-1,i)
    else:
        return select (A, r+1, q, i-k-1)
```

How many times do we partition?

```
def select(A,p,q,i):
    while bad:
        bad = (k < n//4) or (k > 3 * n//4)
    if (i < k):
        return select(A,p,r-1,i)
    else:
        return select(A,r+1,q,i-k-1)
```


▶ Odds are 50/50.

Let W(n) be the random variable for time in while.
Let s = 4/3

T(n) < W(n) + T(n/s) + O(1) $< W(n) + W(n/s) + T(n/s^2) + O(1) + O(1)$ $\log_{a}(n)$ $\leq \sum_{i=0}^{N-1} \left[W(\frac{n}{s^j}) + O(1) \right]$ $\leq \left\lceil \sum_{i=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big) \right\rceil + c_1 \log_s n \quad \forall n \geq n_0$

Let W(n) be the random variable for time in while.
 Let s = 4/3

$$\begin{split} T(n) &\leq W(n) + T(n/s) + O(1) \\ &\leq W(n) + W(n/s) + T(n/s^2) + O(1) + O(1) \\ &\leq \sum_{j=0}^{\log_s(n)} \left[W(\frac{n}{s^j}) + O(1) \right] \\ &\leq \left[\sum_{j=0}^{\log_s(n)} W\left(\frac{n}{s^j}\right) \right] + c_1 \log_s n \quad \forall n \geq n_0 \end{split}$$

 \blacktriangleright Let W(n) be the random variable for time in while. Let s = 4/3 $T(n) \le W(n) + T(n/s) + O(1)$ $< W(n) + W(n/s) + T(n/s^2) + O(1) + O(1)$ $\log_{a}(n)$ $\leq \sum_{i=1}^{s} \left[W(\frac{n}{s^{j}}) + O(1) \right]$ $\leq \left\lceil \sum_{i=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big) \right\rceil + c_1 \log_s n \quad \forall n \geq n_0$

 \blacktriangleright Let W(n) be the random variable for time in while. Let s = 4/3 $T(n) \le W(n) + T(n/s) + O(1)$ $< W(n) + W(n/s) + T(n/s^2) + O(1) + O(1)$ $\log_{a}(n)$ $\leq \sum_{i=0}^{N_{os}(i)} \left[W(\frac{n}{s^j}) + O(1) \right]$ $\leq \left\lceil \sum_{s=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big) \right\rceil + c_1 \log_s n \quad \forall n \geq n_0$

Linearity of expectation, again

▶ Let W(n) be the random variable for time in while.
▶ Let s = 4/3
For all n ≥ n₀

$$\begin{split} T(n) &\leq \left(\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\Big) + c_1 \log_s n \\ E[T(n)] &\leq E\left[\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \\ &\leq \sum_{j=0}^{\log_s(n)} E\left[W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \end{split}$$

Linearity of expectation, again

▶ Let W(n) be the random variable for time in while.
▶ Let s = 4/3
For all n ≥ n₀

$$\begin{split} T(n) &\leq \left(\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\right) + c_1 \log_s n \\ E[T(n)] &\leq E\left[\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \\ &\leq \sum_{j=0}^{\log_s(n)} E\left[W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \end{split}$$

Linearity of expectation, again

▶ Let W(n) be the random variable for time in while.
▶ Let s = 4/3
For all n ≥ n₀

$$\begin{split} T(n) &\leq \left(\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\Big) + c_1 \log_s n \\ E[T(n)] &\leq E\left[\sum_{j=0}^{\log_s(n)} W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \\ &\leq \sum_{j=0}^{\log_s(n)} E\left[W\Big(\frac{n}{s^j}\Big)\right] + c_1 \log_s n \end{split}$$

How many iterations?

where

$$X_j = \begin{cases} 1 & \text{while runs } j \text{ times} \\ 0 & \text{otherwise} \end{cases}$$

How many expected iterations?

How many expected iterations?

How many expected iterations?

Probability of exactly j iterations

$$\begin{split} E[W(n)] &\leq c_2 n \cdot \sum_{j=1}^{\infty} j P[X_j = 1] \\ &\leq c_2 n \cdot \sum_{j=1}^{\infty} \frac{j}{2^j} \\ (\text{CLRS4 A.11}) &\leq c_2 n \cdot \frac{1/2}{(1 - 1/2)^2} \\ &\leq c_3 n \end{split}$$

$$\begin{split} E[W(n)] &\leq c_2 n \cdot \sum_{j=1}^{\infty} j P[X_j = 1] \\ &\leq c_2 n \cdot \sum_{j=1}^{\infty} \frac{j}{2^j} \\ (\text{CLRS4 A.11}) &\leq c_2 n \cdot \frac{1/2}{(1 - 1/2)^2} \\ &\leq c_3 n \end{split}$$

$$\begin{split} E[W(n)] &\leq c_2 n \cdot \sum_{j=1}^{\infty} j P[X_j = 1] \\ &\leq c_2 n \cdot \sum_{j=1}^{\infty} \frac{j}{2^j} \\ \end{split} \\ (\mathsf{CLRS4 A.11}) &\leq c_2 n \cdot \frac{1/2}{(1 - 1/2)^2} \\ &\leq c_3 n \end{split}$$

$$\begin{split} E[W(n)] &\leq c_2 n \cdot \sum_{j=1}^{\infty} j P[X_j = 1] \\ &\leq c_2 n \cdot \sum_{j=1}^{\infty} \frac{j}{2^j} \\ \end{split} \\ (\mathsf{CLRS4 A.11}) &\leq c_2 n \cdot \frac{1/2}{(1 - 1/2)^2} \\ &\leq c_3 n \end{split}$$

Geometric series, again

Let W(n) be time in while. Let s = 4/3. For all $n \ge n_0$:

$$\begin{split} E[T(n)] &\leq \sum_{j=0}^{\log_s(n)} E\left[W\left(\frac{n}{s^j}\right)\right] + c_1 \log_s n \\ &\leq \left(\sum_{j=0}^{\log_s(n)} c_3 \frac{n}{s^j}\right) + c_1 \log_s n \\ \end{split} \label{eq:clrs4-A.7} (\mathsf{CLRS4-A.7}) &\leq c_3 n \cdot \frac{1}{1-s^{-1}} + c_1 \log_s n \end{split}$$

Geometric series, again

Let W(n) be time in while. Let s = 4/3. For all $n \ge n_0$:

$$\begin{split} E[T(n)] &\leq \sum_{j=0}^{\log_s(n)} E\left[W\left(\frac{n}{s^j}\right)\right] + c_1 \log_s n \\ &\leq \left(\sum_{j=0}^{\log_s(n)} c_3 \frac{n}{s^j}\right) + c_1 \log_s n \\ (\mathsf{CLRS4-A.7}) &\leq c_3 n \cdot \frac{1}{1-s^{-1}} + c_1 \log_s n \end{split}$$

Geometric series, again

Let W(n) be time in while. Let s = 4/3. For all $n \ge n_0$:

$$\begin{split} E[T(n)] &\leq \sum_{j=0}^{\log_s(n)} E\left[W\left(\frac{n}{s^j}\right)\right] + c_1 \log_s n \\ &\leq \left(\sum_{j=0}^{\log_s(n)} c_3 \frac{n}{s^j}\right) + c_1 \log_s n \\ \end{split} \label{eq:clrs4-A.7} (\mathsf{CLRS4-A.7}) &\leq c_3 n \cdot \frac{1}{1-s^{-1}} + c_1 \log_s n \end{split}$$

it turns out we can achieve O(n) time deterministically

- it turns out we can achieve O(n) time deterministically
- deterministic algorithm is more complicated

- it turns out we can achieve O(n) time deterministically
- deterministic algorithm is more complicated
- practical performance is typically worse

- it turns out we can achieve O(n) time deterministically
- deterministic algorithm is more complicated
- practical performance is typically worse
- The main idea of this algorithm is taking the median of medians

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find *lesser* the median of each 5-element group by rote.

greater

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot. greater

lesser

greater

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians. • Therefore, at least 3 n/10 elements are $\leq x$.

lesser

September 28, 2005

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3\lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3\lfloor n/10 \rfloor$ elements are $\geq x$.

Convright © 2001-5 by Erik D. Demaine and Charles E. Leiserson I.6.26

lesser

Minor simplification

- For $n \ge 50$, we have $3\lfloor n/10 \rfloor \ge n/4$.
- Therefore, for $n \ge 50$ the recursive call to SELECT in Step 4 is executed recursively on $\le 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time T(3n/4) in the worst case.
- For n < 50, we know that the worst-case time is $T(n) = \Theta(1)$.

Developing the recurrence

T(n) Select(i, n) $\Theta(n)$ { 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote. $T(n/5) \begin{cases} 2. \text{ Recursively SELECT the median } x \text{ of the } \lfloor n/5 \rfloor \\ \text{group medians to be the pivot.} \end{cases}$ $\Theta(n)$ 3. Partition around the pivot *x*. Let $k = \operatorname{rank}(x)$. $T(3n/4) \begin{cases} 4. \text{ if } i = k \text{ then return } x \\ else \text{ if } i < k \\ \text{ then recursively SELECT the } i \text{ th} \\ \text{ smallest element in the lower part} \\ else \text{ recursively SELECT the } (i-k) \text{ th} \end{cases}$ smallest element in the upper part

A familiar recurrence

(Guess) (Strong induction) (Choice of *c*, *d*)

$$\begin{split} T(n) &= T(n/5) + T(3n/4) + cn \\ T(n) &\leq dn, n \geq n_0 \\ &\leq (1/5) dn + (3/4) dn + cn \\ &\leq dn \end{split}$$