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Longest Increasing Subsequence problem
Input Integers 𝑎1, 𝑎2 … 𝑎𝑛

Output

𝑎𝑖1
, 𝑎𝑖2

, … 𝑎𝑖𝑘

Such that

𝑖1 < 𝑖2 ⋯ < 𝑖𝑘

and

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑘

5 2 8 6 7

▶ (𝑎𝑖, 𝑎𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and
𝑎𝑖 < 𝑎𝑗.

▶ DPV 6.2, JE 3.6



Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.
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▶ Topological sort is
trivial
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Longest path in DAG, working backwards

▶ Define 𝐿[𝑖] as the longest path
ending at 𝑎𝑖

For i = 1…n:
L[i] = 1 + max { L(j) | (j,i) in E }

▶ total cost is 𝑂(|𝐸|), after
computing 𝐸.

5 2 8 6 7



Improving memory use
▶ We can inline the definition of 𝐸.

▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}

def lis(A):
n = len(A)
L = [1 for j in range(n)]
for i in range(n):

for j in range(i):
if A[j] < A[i]:

L[i] = max(L[i],L[j]+1)
return max(L)
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Edit (Levenshtein) Distance
▶ CLRS 14-5, DPV 6.3, JE3.7
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake
▶ Using mostly insertions and deletions

i i i i d d d d d s
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

Total cost 10.



Edit (Levenshtein) Distance
▶ CLRS 14-5, DPV 6.3, JE3.7
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake
▶ Using more substitutions

s s s s s d s
T I M B E R L A K E
F R U I T _ C A K E

Total cost 7.



Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
Removing any column from an optimal alignment, yields an opt.
alignment for the remaining substrings.

proof.
By contradiction
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Subproblems (prefixes)
▶ Define 𝐸[𝑖, 𝑗] as the minimum edit cost for 𝐴[1 … 𝑖] and

𝐵[1 … 𝑗]

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substitution
𝐸[𝑖 − 1, 𝑗 − 1] equality

justification.
We know deleting a column removes an element from one or both
strings; all edit operations cost 1.



order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

▶ or just memoize the recursion
▶ what are the base cases?
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Edit distance
def dist(x,y):

n = len(x); m=len(y)
E = [ [max(i,j) for j in range(m+1)]

for i in range(n+1) ]
for i in range(1,n+1):

for j in range(1,m+1):
diff = int(x[i-1] != y[j-1])
E[i][j] = min(E[i-1][j-1]+diff ,

E[i-1][j]+1,
E[i][j-1]+1)

return E



Tracing back the edits
def t r a c e (E , x , y , i , j ) :

i f ( i <1):
return ” i ” ∗ j ;

e l i f ( j <1):
return ”d” ∗ i ;

e l i f x [ i −1] == y [ j −1] :
return t r a c e (E , x , y , i −1, j −1)+” . ”

e l i f E [ i ] [ j ] == E [ i −1] [ j −1] + 1 :
return t r a c e (E , x , y , i −1, j −1)+” s ”

e l i f E [ i ] [ j ] == E [ i −1] [ j ]+1 :
return t r a c e (E , x , y , i −1, j )+ ”d”

e l s e :
return t r a c e (E , x , y , i , j −1)+ ” i ”



Balloon Flight Planning

▶ Start at (0, 0)

▶ At every time step, increase or decrease
altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as a

graph search
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Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later
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Straightening paths

Lemma (Straightening Paths)
There is a feasible path from 𝑝 to 𝑞 iff the
segment [𝑝, 𝑞] is feasible.



Straightening paths

Lemma (Straightening Paths)
There is a feasible path from 𝑝 to 𝑞 iff the
segment [𝑝, 𝑞] is feasible.

Proof sketch
The path cannot escape the cone define by the
steepest possible segments.
There is always one step back towards start
within cone. Apply induction.



A new graph

Improved graph size
The new graph is 𝑂(𝑝2),
where 𝑝 ≤ 𝑛 is the
number of prizes.
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