CS3383 Unit 3.2: Dynamic Programming Examples

David Bremner

March 10, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Outline

Dynamic Programming

Longest Increasing Subsequence Edit Distance Balloon Flight Planning

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Longest Increasing Subsequence problem

Input Integers $a_1, a_2 \dots a_n$ Output

 $a_{i_1},a_{i_2},\ldots a_{i_k}$

Such that

 $i_1 < i_2 \cdots < i_k$

and

 $a_{i_1} < a_{i_2} < \dots < a_{i_k}$

・ロト・西下・西下・西下・日・

Define F(i) as the length of longest sequence starting at position i

 Topological sort is trivial

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Define F(i) as the length of longest sequence starting at position i
 We could do n longest path in DAG queries.

 Topological sort is trivial

Define F(i) as the length of longest sequence starting at position i

- We could do n longest path in DAG queries.
- Thinking recursively:

 Topological sort is trivial

Define F(i) as the length of longest sequence starting at position i

- We could do n longest path in DAG queries.
- Thinking recursively:

 $F(i) = 1 + \max\{F(j) \mid (i, j) \in E\}$

 Topological sort is trivial

Define F(i) as the length of longest sequence starting at position i

- We could do n longest path in DAG queries.
- Thinking recursively:

 $F(i)=1+\max\{F(j)\mid (i,j)\in E\}$

We could solve this reasonably fast e.g. by memoization.

 Topological sort is trivial

Longest path in DAG, working backwards

Define L[i] as the longest path ending at a_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▶ total cost is
$$O(|E|)$$
, after computing E .

Improving memory use

```
We can inline the definition of E.
```

```
def lis(A):
  n = len(A)
  L = [1 \text{ for } j \text{ in } range(n)]
  for i in range(n):
    for j in range(i):
       if A[j] < A[i]:
         L[i] = \max(L[i], L[j]+1)
  return max(L)
```

Improving memory use

```
We can inline the definition of E.
L(i) = 1 + max{L(j) | j < i and a<sub>j</sub> < a<sub>i</sub>}
```

```
def lis(A):
  n = len(A)
  L = [1 \text{ for } j \text{ in } range(n)]
  for i in range(n):
    for j in range(i):
       if A[j] < A[i]:
         L[i] = \max(L[i], L[j]+1)
  return max(L)
```

Edit (Levenshtein) Distance

- CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

Using mostly insertions and deletions

```
iiii ddddds
_ _ TIMBERLAKE
FRUIT_ _ CAKE
```

```
Total cost 10.
```

Edit (Levenshtein) Distance

- CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.

Example: timberlake \rightarrow fruitcake

```
Using more substitutions
```

```
s s s s s d s
T I M B E R L A K E
F R U I T _ C A K E
```

```
Total cost 7.
```

Alignments (gap representation)

- 1 1 1 1 0 1 1 1 1 1 1 0 0 0 T I M B E R L A K E F R U I T _ _ _ C A K E
 - top line has letters from A, in order, or _
 bottom line has has letters from B or _

cost per column is 0 or 1.

Alignments (gap representation)

- 1 1 1 1 0 1 1 1 1 1 1 0 0 0 T I M B E R L A K E F R U I T _ _ _ C A K E
 - top line has letters from A, in order, or ___
 - bottom line has has letters from B or ____
 - cost per column is 0 or 1.

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

Alignments (gap representation)

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

proof.

By contradiction

Subproblems (prefixes)

▶ Define E[i, j] as the minimum edit cost for A[1 ... i] and B[1 ... j]

$$E[i,j] = \begin{cases} E[i,j-1]+1 & \text{insertion} \\ E[i-1,j]+1 & \text{deletion} \\ E[i-1,j-1]+1 & \text{substitution} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

justification.

We know deleting a column removes an element from one or both strings; all edit operations cost 1.

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

dependency of subproblems is *exactly* the same as LCS, so essentially the same DP algorithm works.

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

dependency of subproblems is *exactly* the same as LCS, so essentially the same DP algorithm works.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

or just memoize the recursion

order of subproblems

$$E[i,j] = \begin{cases} E[i-1,j]+1 & \text{deletion} \\ E[i,j-1]+1 & \text{insertion} \\ E[i-1,j-1]+1 & \text{substition} \\ E[i-1,j-1] & \text{equality} \end{cases}$$

- dependency of subproblems is *exactly* the same as LCS, so essentially the same DP algorithm works.
- or just memoize the recursion
- what are the base cases?

Edit distance

```
def dist(x,y):
 n = len(x); m = len(y)
 E = [[max(i,j) for j in range(m+1)]]
        for i in range(n+1) ]
  for i in range(1, n+1):
    for j in range(1,m+1):
      diff = int(x[i-1] != v[j-1])
      E[i][j] = min(E[i-1][j-1]+diff,
                    E[i-1][j]+1,
                     E[i][j-1]+1)
```

return E

Tracing back the edits

def trace(E,x,y,i,j): **if** (i < 1): return "i" * i: elif (i < 1): return "d" * i: **elif** \times [i -1] == \vee [i -1]: **return** trace $(E, \times, y, i-1, j-1) + "$." elif E[i][i] == E[i-1][i-1] + 1:**return** trace (E, x, y, i-1, j-1) + "s"elif E[i][j] = E[i-1][j]+1:**return** trace (E, x, y, i - 1, i) + "d"else: **return** trace (E, x, y, i, j-1) + "i"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろく⊙

 $\blacktriangleright \text{ Start at } (0,0)$

At every time step, increase or decrease altitude up to k steps, and increase x by 1.

> Start at (0,0)

- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.

> Start at (0,0)

- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.
- Maximize value of collected prizes

> Start at (0,0)

- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.
- Maximize value of collected prizes
- We can discretize/simulate the problem as a graph search

We can discretize/simulate the problem as a graph search

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- We can discretize/simulate the problem as a graph search
- After n steps we could reach as high as kn

・ロト・日本・日本・ 日本・ シック・

- We can discretize/simulate the problem as a graph search
- After n steps we could reach as high as kn
- Worse, there could be a prize that high

- We can discretize/simulate the problem as a graph search
- After n steps we could reach as high as kn
- Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.

- We can discretize/simulate the problem as a graph search
- After n steps we could reach as high as kn
- Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.
- This means we have a bad dependence on k; more about this later

Straightening paths

Lemma (Straightening Paths)

There is a feasible path from p to q iff the segment [p,q] is feasible.

Straightening paths

Lemma (Straightening Paths)

There is a feasible path from p to q iff the segment [p,q] is feasible.

Proof sketch

The path cannot escape the cone define by the steepest possible segments. There is always one step back towards start within cone. Apply induction.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

