
CS3383 Unit 3.2: Dynamic Programming
Examples

David Bremner

March 10, 2024

Outline

Dynamic Programming
Longest Increasing Subsequence
Edit Distance
Balloon Flight Planning

Longest Increasing Subsequence problem
Input Integers 𝑎1, 𝑎2 … 𝑎𝑛

Output

𝑎𝑖1
, 𝑎𝑖2

, … 𝑎𝑖𝑘

Such that

𝑖1 < 𝑖2 ⋯ < 𝑖𝑘

and

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑘

5 2 8 6 7

▶ (𝑎𝑖, 𝑎𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and
𝑎𝑖 < 𝑎𝑗.

▶ DPV 6.2, JE 3.6

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:

𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Longest path in DAG, working backwards

▶ Define 𝐿[𝑖] as the longest path
ending at 𝑎𝑖

For i = 1…n:
L[i] = 1 + max { L(j) | (j,i) in E }

▶ total cost is 𝑂(|𝐸|), after
computing 𝐸.

5 2 8 6 7

Improving memory use
▶ We can inline the definition of 𝐸.

▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}

def lis(A):
n = len(A)
L = [1 for j in range(n)]
for i in range(n):

for j in range(i):
if A[j] < A[i]:

L[i] = max(L[i],L[j]+1)
return max(L)

Improving memory use
▶ We can inline the definition of 𝐸.
▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}

def lis(A):
n = len(A)
L = [1 for j in range(n)]
for i in range(n):

for j in range(i):
if A[j] < A[i]:

L[i] = max(L[i],L[j]+1)
return max(L)

Edit (Levenshtein) Distance
▶ CLRS 14-5, DPV 6.3, JE3.7
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake
▶ Using mostly insertions and deletions

i i i i d d d d d s
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

Total cost 10.

Edit (Levenshtein) Distance
▶ CLRS 14-5, DPV 6.3, JE3.7
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake
▶ Using more substitutions

s s s s s d s
T I M B E R L A K E
F R U I T _ C A K E

Total cost 7.

Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
Removing any column from an optimal alignment, yields an opt.
alignment for the remaining substrings.

proof.
By contradiction

Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
Removing any column from an optimal alignment, yields an opt.
alignment for the remaining substrings.

proof.
By contradiction

Alignments (gap representation)

Theorem (Optimal substructure)
Removing any column from an optimal alignment, yields an opt.
alignment for the remaining substrings.

proof.
By contradiction

Subproblems (prefixes)
▶ Define 𝐸[𝑖, 𝑗] as the minimum edit cost for 𝐴[1 … 𝑖] and

𝐵[1 … 𝑗]

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substitution
𝐸[𝑖 − 1, 𝑗 − 1] equality

justification.
We know deleting a column removes an element from one or both
strings; all edit operations cost 1.

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

▶ or just memoize the recursion
▶ what are the base cases?

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

▶ or just memoize the recursion

▶ what are the base cases?

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

▶ or just memoize the recursion
▶ what are the base cases?

Edit distance
def dist(x,y):

n = len(x); m=len(y)
E = [[max(i,j) for j in range(m+1)]

for i in range(n+1)]
for i in range(1,n+1):

for j in range(1,m+1):
diff = int(x[i-1] != y[j-1])
E[i][j] = min(E[i-1][j-1]+diff ,

E[i-1][j]+1,
E[i][j-1]+1)

return E

Tracing back the edits
def t r a c e (E , x , y , i , j) :

i f (i <1):
return ” i ” ∗ j ;

e l i f (j <1):
return ”d” ∗ i ;

e l i f x [i −1] == y [j −1] :
return t r a c e (E , x , y , i −1, j −1)+” . ”

e l i f E [i] [j] == E [i −1] [j −1] + 1 :
return t r a c e (E , x , y , i −1, j −1)+” s ”

e l i f E [i] [j] == E [i −1] [j]+1 :
return t r a c e (E , x , y , i −1, j)+ ”d”

e l s e :
return t r a c e (E , x , y , i , j −1)+ ” i ”

Balloon Flight Planning

▶ Start at (0, 0)

▶ At every time step, increase or decrease
altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as a

graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as a

graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as a

graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.
▶ Maximize value of collected prizes

▶ We can discretize/simulate the problem as a
graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.
▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as a

graph search

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛

▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high

▶ On the other hand the input (ignoring
weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).

▶ This means we have a bad dependence on
k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).

▶ This means we have a bad dependence on
k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Straightening paths

Lemma (Straightening Paths)
There is a feasible path from 𝑝 to 𝑞 iff the
segment [𝑝, 𝑞] is feasible.

Straightening paths

Lemma (Straightening Paths)
There is a feasible path from 𝑝 to 𝑞 iff the
segment [𝑝, 𝑞] is feasible.

Proof sketch
The path cannot escape the cone define by the
steepest possible segments.
There is always one step back towards start
within cone. Apply induction.

A new graph

Improved graph size
The new graph is 𝑂(𝑝2),
where 𝑝 ≤ 𝑛 is the
number of prizes.

A new graph

Improved graph size
The new graph is 𝑂(𝑝2),
where 𝑝 ≤ 𝑛 is the
number of prizes.

	Dynamic Programming
	Longest Increasing Subsequence
	Edit Distance
	Balloon Flight Planning

