# CS3383 Unit 3.2: Dynamic Programming Examples 

David Bremner

March 10, 2024


## Outline

Dynamic Programming
Longest Increasing Subsequence
Edit Distance
Balloon Flight Planning

## Longest Increasing Subsequence problem

Input Integers $a_{1}, a_{2} \ldots a_{n}$ Output

$$
a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}
$$

Such that

$$
i_{1}<i_{2} \cdots<i_{k}
$$


$>\left(a_{i}, a_{j}\right) \in E$ if $i<j$ and $a_{i}<a_{j}$.

- DPV 6.2, JE 3.6
and

$$
a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}
$$

## Defining subproblems

D Define $F(i)$ as the length of longest sequence starting at position $i$


- Topological sort is trivial


## Defining subproblems

$>$ Define $F(i)$ as the length of longest sequence starting at position $i$
$\rightarrow$ We could do $n$ longest path in $D A G$ queries.


## Defining subproblems

$>$ Define $F(i)$ as the length of longest sequence starting at position $i$
$\rightarrow$ We could do $n$ longest path in $D A G$ queries.

- Thinking recursively:



## Defining subproblems

$>$ Define $F(i)$ as the length of longest sequence starting at position $i$

- We could do $n$ longest path in $D A G$ queries.
- Thinking recursively:

- Topological sort is trivial

$$
F(i)=1+\max \{F(j) \mid(i, j) \in E\}
$$

## Defining subproblems

$>$ Define $F(i)$ as the length of longest sequence starting at position $i$

- We could do $n$ longest path in $D A G$ queries.
- Thinking recursively:

$>$ Topological sort is trivial

$$
F(i)=1+\max \{F(j) \mid(i, j) \in E\}
$$

- We could solve this reasonably fast e.g. by memoization.


## Longest path in DAG, working backwards

- Define $L[i]$ as the longest path ending at $a_{i}$


For i = 1...n:
$L[i]=1+\max \{L(j) \mid(j, i)$ in $E\}$
$>$ total cost is $O(|E|)$, after computing $E$.

## Improving memory use

$>$ We can inline the definition of $E$.

```
def lis(A):
    n = len(A)
    L = [1 for j in range(n)]
    for i in range(n):
        for j in range(i):
        if A[j] < A[i]:
        L[i] = max(L[i],L[j]+1)
    return max(L)
```


## Improving memory use

- We can inline the definition of $E$.
$\triangleright L(i)=1+\max \left\{L(j) \mid j<i\right.$ and $\left.a_{j}<a_{i}\right\}$

```
def lis(A):
    n = len(A)
    L = [1 for j in range(n)]
    for i in range(n):
        for j in range(i):
        if A[j] < A[i]:
        L[i] = max(L[i],L[j]+1)
    return max(L)
```


## Edit (Levenshtein) Distance

- CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.


## Example: timberlake $\rightarrow$ fruitcake

- Using mostly insertions and deletions
i i i $\quad$ d d d d d s
$\bar{F} \bar{R} \bar{U} \bar{I} T$ T M B E R L AK E
Total cost 10.


## Edit (Levenshtein) Distance

- CLRS 14-5, DPV 6.3, JE3.7
- Minimum number of insertions, deletions, substitutions to transform one string into another.


## Example: timberlake $\rightarrow$ fruitcake

- Using more substitutions

```
s s s s s d s
T I M B E R L A K E
FRUI T C A K E
```

Total cost 7.

## Alignments (gap representation)


top line has letters from $A$, in order, or _

- bottom line has has letters from $B$ or _
$>$ cost per column is 0 or 1 .


## Alignments (gap representation)

| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bar{F}$ | $\bar{R}$ | $\bar{U}$ | $\bar{I}$ | $T$ |  |  |  |  |  |  | $C$ | $A$ | $K$ | $E$ |

$>$ top line has letters from $A$, in order, or _
$\square$ bottom line has has letters from $B$ or _

- cost per column is 0 or 1 .


## Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

## Alignments (gap representation)

## Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an opt. alignment for the remaining substrings.

## proof.

By contradiction

## Subproblems (prefixes)

- Define $E[i, j]$ as the minimum edit cost for $A[1 \ldots i]$ and $B[1 \ldots j]$

$$
E[i, j]= \begin{cases}E[i, j-1]+1 & \text { insertion } \\ E[i-1, j]+1 & \text { deletion } \\ E[i-1, j-1]+1 & \text { substitution } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

## justification.

We know deleting a column removes an element from one or both strings; all edit operations cost 1.

## order of subproblems

$$
E[i, j]= \begin{cases}E[i-1, j]+1 & \text { deletion } \\ E[i, j-1]+1 & \text { insertion } \\ E[i-1, j-1]+1 & \text { substition } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

$\checkmark$ dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.

## order of subproblems

$$
E[i, j]= \begin{cases}E[i-1, j]+1 & \text { deletion } \\ E[i, j-1]+1 & \text { insertion } \\ E[i-1, j-1]+1 & \text { substition } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

$\checkmark$ dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.
$>$ or just memoize the recursion

## order of subproblems

$$
E[i, j]= \begin{cases}E[i-1, j]+1 & \text { deletion } \\ E[i, j-1]+1 & \text { insertion } \\ E[i-1, j-1]+1 & \text { substition } \\ E[i-1, j-1] & \text { equality }\end{cases}
$$

$\checkmark$ dependency of subproblems is exactly the same as LCS, so essentially the same DP algorithm works.
$>$ or just memoize the recursion
what are the base cases?

## Edit distance

$$
\begin{aligned}
& \text { def dist (x,y): } \\
& \mathrm{n}=\operatorname{len}(\mathrm{x}) ; \mathrm{m}=\operatorname{len}(\mathrm{y}) \\
& E=[\max (i, j) \text { for } j \text { in range }(m+1)] \\
& \text { for } i \text { in range }(n+1) \text { ] } \\
& \text { for i in range (1, } \mathrm{n}+1 \text { ): } \\
& \text { for } j \text { in range (1, m+1): } \\
& \text { diff }=\text { int }(x[i-1] \quad!=y[j-1]) \\
& E[i][j]=\min (E[i-1][j-1]+d i f f, \\
& E[i-1][j]+1 \text {, } \\
& E[i][j-1]+1)
\end{aligned}
$$

return E

## Tracing back the edits

```
def trace(E,x,y,i,j):
    if (i<1):
        return " i" * j;
    elif (j<1):
        return "d" * i;
    elif x[i-1]= y[j-1]:
        return trace(E,x,y,i - 1,j -1)+'
    elif E[i][j] = E[i-1][j-1] + 1:
        return trace(E,x,y,i-1,j -1)+"s"
    elif E[i][j] =}E[i-1][j]+1
        return trace(E,x,y,i-1,j)+ "d"
    else:
        return trace(E,x,y,i,j-1)+ "i"
```


## Balloon Flight Planning

$>$ Start at $(0,0)$


## Balloon Flight Planning

$>$ Start at $(0,0)$

- At every time step, increase or decrease altitude up to $k$ steps, and increase $x$ by 1 .



## Balloon Flight Planning

$>$ Start at $(0,0)$

- At every time step, increase or decrease altitude up to $k$ steps, and increase $x$ by 1 .
$\rightarrow$ There is one prize per positive integer $x$ coordinate.



## Balloon Flight Planning

$>$ Start at $(0,0)$

- At every time step, increase or decrease altitude up to $k$ steps, and increase $x$ by 1 .
$>$ There is one prize per positive integer $x$ coordinate.

- Maximize value of collected prizes


## Balloon Flight Planning

$>$ Start at $(0,0)$

- At every time step, increase or decrease altitude up to $k$ steps, and increase $x$ by 1 .
$>$ There is one prize per positive integer $x$ coordinate.

- Maximize value of collected prizes
- We can discretize/simulate the problem as a graph search


## Big Graph is Big

- We can discretize/simulate the problem as a graph search



## Big Graph is Big

- We can discretize/simulate the problem as a graph search
- After $n$ steps we could reach as high as $k n$



## Big Graph is Big

- We can discretize/simulate the problem as a graph search
- After $n$ steps we could reach as high as $k n$
- Worse, there could be a prize that high



## Big Graph is Big

- We can discretize/simulate the problem as a graph search
- After $n$ steps we could reach as high as $k n$
- Worse, there could be a prize that high

$>$ On the other hand the input (ignoring weights) is only $O(n \log n+n \log k)$.


## Big Graph is Big

- We can discretize/simulate the problem as a graph search
- After $n$ steps we could reach as high as $k n$
- Worse, there could be a prize that high

$>$ On the other hand the input (ignoring weights) is only $O(n \log n+n \log k)$.
- This means we have a bad dependence on k; more about this later


## Straightening paths



## Lemma (Straightening Paths)

There is a feasible path from $p$ to $q$ iff the segment $[p, q]$ is feasible.

## Straightening paths



## Lemma (Straightening Paths)

There is a feasible path from $p$ to $q$ iff the segment $[p, q]$ is feasible.

## Proof sketch

The path cannot escape the cone define by the steepest possible segments.
There is always one step back towards start within cone. Apply induction.

## A new graph



## A new graph



Improved graph size
The new graph is $O\left(p^{2}\right)$, where $p \leq n$ is the number of prizes.

