CS3383 Unit 4: dynamic multithreaded algorithms lecture 1

David Bremner

March 20, 2024

Outline

Dynamic Multithreaded Algorithms
Race Conditions Scheduling

Race Conditions

Non-Determinism

- result varies from run to run
sometimes OK (in certain randomized algorithms)
- mostly a bug.

Race Conditions

Non-Determinism

- result varies from run to run
sometimes OK (in certain randomized algorithms)
$>$ mostly a bug.

$$
\begin{aligned}
& x=0 \\
& \text { parallel for } i \leftarrow 1 \text { to } 2 \text { do } \\
& \quad x \leftarrow x+1
\end{aligned}
$$

\checkmark nondeterministic unless incrementing x is
atomic

Racy execution

－all possible topological sorts are
 valid execution orders

Racy execution

- all possible topological sorts are
 valid execution orders
- In particular it's not hard for both loads to complete before either store

Racy execution

- all possible topological sorts are
 valid execution orders
- In particular it's not hard for both loads to complete before either store
- In practice there are various synchronization strategies (locks, etc...).

Racy execution

- all possible topological sorts are
 valid execution orders
$>$ In particular it's not hard for both loads to complete before either store
- In practice there are various synchronization strategies (locks, etc...).
- Here we will insist that parallel strands are independent

Racy demo

```
#pragma omp parallel for
    for (int i=0; i<10000; i ++){
        x ++ ;
    }
```

$>$ what is the final value of x ?

We can write bad code with spawn too

```
sum(i, j)
    if (i>j)
    return;
    if (i==j)
        x++;
    else
        m=(i+j)/2;
        spawn sum(i,m);
        sum(m+1,j);
        sync;
```

> here we have the same non-deterministic interleaving of reading and writing x
the style is a bit unnatural, in particular we are not using the return value of spawn at all.

spawn race demo

static void
sum(long i, long j, long *out) \{
if (i>j)
return;
if (i==j) \{
(*out) ++ ;
\} else \{
long $m=(i+j) / 2$;
\#pragma omp task
sum (i,m,out);
sum (m+1, j, out);
\#pragma omp taskwait

Being more functional helps

```
sum(i, j)
    if (i>j) return 0;
    if (i==j) return i;
    m}\leftarrow(i+j)/2
    left \leftarrow spawn sum(i,m);
    right \leftarrow sum(m+1,j);
    sync;
    return left + right;
```

- each strand writes into different variables

Being more functional helps

```
sum(i, j)
    if (i>j) return 0;
    if (i==j) return i;
    m}\leftarrow(i+j)/2
    left \leftarrow spawn sum(i,m);
    right \leftarrow sum(m+1,j);
    sync;
    return left + right;
```

- each strand writes into different variables
- sync is used as a barrier to serialize

functional sum demo

```
long sum(long i, long j) {
    if (i>j) return 0;
    if (i==j) {
        return i;
    } else {
    long left,right,m=(i+j)/2;
#pragma omp task shared(left)
    left = sum(i,m);
    right = sum(m+1,j);
#pragma omp taskwait
    return left+right;
}
```


Single Writer races

$>$ arguments to spawned routines are evaluated in the parent context

```
x & spawn foo(x)
y }\leftarrow\textrm{foo(x)
sync
```


Single Writer races

$>$ arguments to spawned routines are evaluated in the parent context
$>$ but this isn't enough to be race free.

```
x t spawn foo(x)
y }\leftarrow\textrm{foo(x)
sync
```


Single Writer races

$>$ arguments to spawned routines are evaluated in the parent context
$>$ but this isn't enough to be race free.
$>$ which value x is passed to the second call of 'foo' depends how long the first one takes.

$$
\begin{aligned}
& x \leftarrow \operatorname{spawn} \text { foo }(x) \\
& y \leftarrow \text { foo }(x) \\
& \text { sync }
\end{aligned}
$$

Scheduling

Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Scheduling

Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler

On-Line No advance knowledge of when threads will spawn or complete.
Distributed No central controller.

Scheduling

Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler

On-Line No advance knowledge of when threads will spawn or complete.
Distributed No central controller.
to simplify analysis, we relax the second condition

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If $\geq p$ (\# processors) strands are ready, assign p strands to processors.

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If $\geq p$ (\# processors) strands are ready, assign p strands to processors.
Incomplete Step Otherwise, assign all waiting strands to processors

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If $\geq p$ (\# processors) strands are ready, assign p strands to processors.
Incomplete Step Otherwise, assign all waiting strands to processors
$>$ To simplify analysis, split any non-unit strands into a chain of unit strands

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If $\geq p$ (\# processors) strands are ready, assign p strands to processors.
Incomplete Step Otherwise, assign all waiting strands to processors

- To simplify analysis, split any non-unit strands into a chain of unit strands
- Therefore, after one time step, we schedule again.

Optimal and Approximate Scheduling

Recall
(work law)
(span)
Therefore

$$
\begin{aligned}
& T_{p} \geq T_{1} / p \\
& T_{p} \geq T_{\infty}
\end{aligned}
$$

$$
T_{p} \geq \max \left(T_{1} / p, T_{\infty}\right)=\mathrm{opt}
$$

Optimal and Approximate Scheduling Recall

(work law)
(span)
Therefore

$$
T_{p} \geq \max \left(T_{1} / p, T_{\infty}\right)=\mathrm{opt}
$$

With the greedy algorithm we can achieve

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty} \leq 2 \max \left(T_{1} / p, T_{\infty}\right)=2 \times \mathrm{opt}
$$

Counting Complete Steps

Let k be the number of complete steps.

Counting Complete Steps

$>$ Let k be the number of complete steps.

- At each complete step we do p units of work.

Counting Complete Steps

Let k be the number of complete steps.

- At each complete step we do p units of work.
- Every unit of work corresponds to one step of the serialization, so $k p \leq T_{1}$.

Counting Complete Steps

Let k be the number of complete steps.

- At each complete step we do p units of work.
- Every unit of work corresponds to one step of the serialization, so $k p \leq T_{1}$.
$>$ Therefore $k \leq T_{1} / p$

Counting Incomplete Steps

Let G be the DAG of remaining strands.

Counting Incomplete Steps

Let G be the DAG of remaining strands.
\rightarrow ready queue $=$ the set of sources in G

Counting Incomplete Steps

Let G be the DAG of remaining strands.
$>$ ready queue $=$ the set of sources in G

- In incomplete step runs all sources in G

Counting Incomplete Steps

Let G be the DAG of remaining strands.
$>$ ready queue $=$ the set of sources in G

- In incomplete step runs all sources in G
- Every longest path starts at a source

Counting Incomplete Steps

- Let G be the DAG of remaining strands.
$>$ ready queue $=$ the set of sources in G
- In incomplete step runs all sources in G
- Every longest path starts at a source
- After an incomplete step, length of longest path shrinks by 1

Counting Incomplete Steps

- Let G be the DAG of remaining strands.
$>$ ready queue $=$ the set of sources in G
- In incomplete step runs all sources in G
\rightarrow Every longest path starts at a source
- After an incomplete step, length of longest path shrinks by 1
$>$ There can be at most T_{∞} steps.

Parallel Slackness

$$
\text { parallel slackness }=\frac{\text { parallelism }}{p}=\frac{T_{1}}{p T_{\infty}}
$$

- If slackness <1, speedup $<p$

Parallel Slackness

$$
\begin{aligned}
& \text { parallel slackness }=\frac{\text { parallelism }}{p}=\frac{T_{1}}{p T_{\infty}} \\
& \text { speedup }=\frac{T_{1}}{T_{p}} \leq \frac{T_{1}}{T_{\infty}}=p \times \text { slackness }
\end{aligned}
$$

$>$ If slackness <1, speedup $<p$

- If slackness ≥ 1, linear speedup achievable for given number of processors

Slackness and Scheduling

$$
\text { slackness }:=\frac{T_{1}}{p \times T_{\infty}}
$$

Theorem

For suf. large slackness, greedy scheduler approaches time T_{1} / p.

Slackness and Scheduling

$$
\text { slackness }:=\frac{T_{1}}{p \times T_{\infty}}
$$

Theorem

For suf. large slackness, greedy scheduler approaches time T_{1} / p.

Suppose

$$
T_{1} /\left(p \times T_{\infty}\right) \geq c
$$

Slackness and Scheduling

$$
\begin{equation*}
\text { slackness }:=\frac{T_{1}}{p \times T_{\infty}} \quad \text { (1) } \quad T_{\infty} \leq \frac{T_{1}}{c p} \tag{1}
\end{equation*}
$$

Theorem

For suf. large slackness, greedy scheduler approaches time T_{1} / p.

Suppose

$$
T_{1} /\left(p \times T_{\infty}\right) \geq c
$$

Slackness and Scheduling

$$
\text { slackness }:=\frac{T_{1}}{p \times T_{\infty}}
$$

(1) $\quad T_{\infty} \leq \frac{T_{1}}{c p}$

With the greedy scheduler,

$$
T_{p} \leq\left(\frac{T_{1}}{p}+T_{\infty}\right)
$$

Theorem

For suf. large slackness, greedy scheduler approaches time T_{1} / p.

Suppose

$$
T_{1} /\left(p \times T_{\infty}\right) \geq c
$$

Slackness and Scheduling

$$
\text { slackness }:=\frac{T_{1}}{p \times T_{\infty}}
$$

(1) $\quad T_{\infty} \leq \frac{T_{1}}{c p}$

With the greedy scheduler,

Theorem

For suf. large slackness, greedy scheduler approaches time T_{1} / p.

Suppose

$$
T_{1} /\left(p \times T_{\infty}\right) \geq c
$$

$$
T_{p} \leq\left(\frac{T_{1}}{p}+T_{\infty}\right)
$$

Substituting (1),

$$
T_{p} \leq \frac{T_{1}}{p}\left(1+\frac{1}{c}\right)
$$

