CS3383 Unit 5.0: Backtracking and SAT

David Bremner

March 27, 2024

Combinatorial Search

Backtracking

SAT

Tractable kinds of SAT

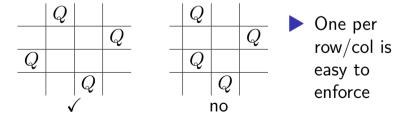
Background

```
DPV 9.1 Backtracking
DPV 8.1 SAT
DPV 5.3 Horn SAT
DPV Chapter 3 exercises 2SAT
Unit Propagation https:
//en.wikipedia.org/wiki/Unit_propagation_
```

N-queens

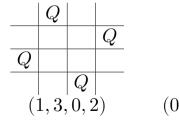
Problem Description

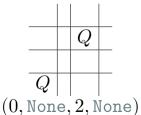
Given an $n \times n$ chess board, can you place n queens so that no two are in the same row, column, or diagonal.



Representing Chessboards

- We only care about cases where there is 1 queen per column
- Represent a $n \times n$ board as an array of n integers, meaning which row.
- ▶ None for not chosen yet.





Backtracking Requirements

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems
- 3. A test for partial solutions that returns

 True if the solution is complete (Success)

 False if there is no way to complete

 (Failure)

 None if neither can be quickly determined.

 (Uncertainty)

Generic Backtracking

```
def backtrack(P0):
    S = [P0]
    while len(S) > 0:
        P = S.pop()
        for R in expand(P):
            result = test(R)
            if result == True:
                 return R.
            elif result == None:
                 S.append(R)
    return False
```

Backtracking for N-Queens: Framework

representation Q[0...n-1] where Q[i] is row chosen, or None. expand For some Q[i] = None, try Q[i] = 0...n-1

```
def test(Q):
  default = True
  for i in range(len(Q)):
    if Q[i] == None:
      default = None
    else:
      for j in range(i):
        if Q[i] - Q[j] in [0,i-j,j-i]:
          return False
  return default
```

Backtracking for subset sum

Subset Sum

Given $X\subset \mathbb{Z}^+$, T

Decide Is there a subset of X that sums to T

```
def SubsetSum(X,T):
   if T == 0:
      return true
   elif T<0 or len(X) == 0:
      return False
   (y,rest) = (X[0],X[1:])</pre>
```

return SubsetSum(rest, T-y) \
 or SubsetSum(rest,T)

The SAT Problem

Conjunctive Normal Form (CNF)

```
Variables \{x_1...x_n\}
Literals L=\{x_i,\bar{x}_i\mid \text{variable }x_i\}
Clauses \{z_1,...,z_k\}\subset L
```

Propositional Satisfiability (SAT)

Instance Set of clauses S

Question \exists setting of variables to 0, 1 such that each clause has at least one true literal?

SAT Example

$$\begin{array}{l} \{\,\{\,1,2,3\,\},\,\{\,-1,-2,-3\,\}\,\} = \{\,\{\,x_1,x_2,x_3\,\},\,\{\,\bar{x}_1,\bar{x}_2,\bar{x}_3\,\}\,\}\\ (\mathsf{A}) &= (x_1 \vee x_2 \vee x_3) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \end{array}$$

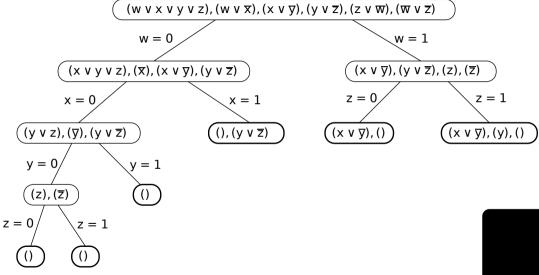
Truth Table

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 & A \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & \\ \vdots & & & \\ \end{array}$$

Backtracking for SAT

```
representation (reduced) clauses  \begin{array}{c} \text{test if empty clause, return False. If no clauses,} \\ \text{return True. Otherwise return None} \\ \text{(UNKNOWN)} \\ \text{expand } P_0 = \text{reduce}(P,j,0), \, P_1 = \text{reduce}(P,j,1) \text{ for some } j. \end{array}
```

Backtracking SAT Example II



- We tried 11 possibilities. Maximum?

2SAT

- In 2SAT problem every clause has at most 2 elements
- 2SAT is solvable in polynomial time, but not quite trivially.
- Greedy fails on

$$(x_1 \lor x_2) \land (x_1 \lor x_3) \land (\bar{x}_1 \lor x_4) \land (\bar{x}_4 \lor x_5) \land (\bar{x}_4 \lor x_6)$$

- to maximize number of clauses satisfied, choose $x_1 \leftarrow 1, x_4 \leftarrow 0$
- solvable with unit propagation

Horn SAT

Horn formulas

implication $(z \wedge w \wedge q) \Rightarrow u$. LHS is all positive, RHS one positive literal

negative clauses $(\bar{x} \vee \bar{w} \vee \bar{y})$. All literals negated.

Horn formulas as CNF

- negative clauses are already CNF
- implications use the following transformations

$$(\bigwedge_{i=1}^k x_i) \Rightarrow y$$

$$\neg (\bigwedge_{i=1}^k x_i) \vee y$$

$$(\bigvee_{i=1}^k \bar{x}_i) \vee y$$

special CNF with at most one positive literal.

Unit propagation

```
def UnitProp(S):
  Q = [c \text{ for } c \text{ in } S \text{ if } len(c) == 1]; V = []
  while len(Q)>0:
     z = Q.pop()[0]; T = []; V.append(z)
     for C in S:
       C = [j \text{ for } j \text{ in } C \text{ if } j!=-z]
       if len(C) == 0: return (False, V)
       if len(C) == 1: Q.append(C)
       if not z in C: T.append(C)
     if len(T) == 0: return (True, V)
     S = T
  return S
```

Solving Horn SAT with Unit Propagation

- 1. Apply unit propagation
- 2. If no contradiction is detected, set the remaining variables to false.

Correctness

- ▶ If unit propagation returns False, the instance is unsatisfiable
- Otherwise, the resulting assignment is valid