CS3383 Unit 5.0: Backtracking and SAT

David Bremner

March 31, 2024

Outline

Combinatorial Search

Backtracking SAT Tractable kinds of SAT

N-queens

Problem Description

Given an $n \times n$ chess board, can you place n queens so that no two are in the same row, column, or diagonal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Representing Chessboards

We only care about cases where there is 1 queen per column
 Represent a n × n board as an array of n integers, meaning which row.

None for not chosen yet.

Detecting collisions

$$Q[j] - Q[i] = j - i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Detecting collisions

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ▲□ ◆ ○へ⊙

Detecting collisions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

And one more (easy) case

1. A representation for partial solutions

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems
- 3. A test for partial solutions that returns

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems
- 3. A test for partial solutions that returns True if the solution is complete (Success)

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems
- 3. A test for partial solutions that returns True if the solution is complete (Success) False if there is no way to complete (Failure)

- 1. A representation for partial solutions
- 2. A procedure to expand a problem into smaller subproblems
- 3. A test for partial solutions that returns

True if the solution is complete (Success) False if there is no way to complete (Failure) None if neither can be quickly determined. (Uncertainty)

Generic Backtracking

```
def backtrack(P0):
    S = [P0]
    while len(S) > 0:
        P = S.pop()
        result = test(P)
        if result == True:
            return P
        elif result == None:
            for R in expand(P):
                S.append(R)
    return False
```

Backtracking for N-Queens: Framework representation Q[1...n] where Q[i] is row chosen, or None.

Backtracking for N-Queens: Framework representation Q[1...n] where Q[i] is row chosen, or None. expand For some Q[i] = None, try Q[i] = 0...n - 1

Backtracking for N-Queens: Framework representation Q[1...n] where Q[i] is row chosen, or None. expand For some Q[i] = None, try Q[i] = 0...n - 1

```
def test(Q):
 default = True
 for i in range(len(Q)):
   if Q[i]==None:
     default = None
   else:
     for j in range(i):
       if Q[i] - Q[j] in [0,i-j,j-i]:
         return False
 return default
```

Backtracking for N-Queens: Expand

```
def expand(Q):
  i=0: S=[]
  while Q[i] != None:
    i + = 1
  for j in range(len(Q)):
    R=Q[:] # copy
    R[i] = j
    S.append(R)
  return S
```

Backtracking for subset sum

Subset Sum

Given $X \subset \mathbb{Z}^+$, TDecide Is there a subset of X that sums to T

・ロト・西ト・西ト・日・ 白・ シュマ

Backtracking for subset sum

Subset Sum

Given $X \subset \mathbb{Z}^+$, TDecide Is there a subset of X that sums to T

lf (X,T) has feasible solution Z, for all $y \in X$, either the solution includes y or not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Backtracking for SubsetSum

```
def SubsetSum(X,T):
   if T == 0:
       return true
   elif T < 0 or len(X) == 0:
       return False
   (v, rest) = (X[0], X[1:])
   return SubsetSum(rest, T-y) \
       or SubsetSum(rest,T)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The SAT Problem

Conjunctive Normal Form (CNF)

$$\begin{array}{l} \text{Variables} \ \left\{ \, x_1 ... x_n \, \right\} \\ \text{Literals} \ L = \left\{ \, x_i, \bar{x}_i \ | \ \text{variables} \ x_i \, \right\} \\ \text{Clause} \ \left\{ \, z_1, ..., z_k \, \right\} \subset L \end{array}$$

The SAT Problem

Conjunctive Normal Form (CNF)

$$\begin{array}{l} \text{Variables} \; \left\{ \, x_1 ... x_n \, \right\} \\ \text{Literals} \; L = \left\{ \, x_i, \bar{x}_i \mid \text{variable} \; x_i \, \right\} \\ \text{Clause} \; \left\{ \, z_1, ..., z_k \, \right\} \subset L \end{array}$$

Propositional Satisfiability (SAT)

Instance Set of clauses SQuestion \exists setting of variables to 0, 1 such that each clause has at least one true literal?

SAT Example

$$\left\{ \left\{ 1, 2, 3 \right\}, \left\{ -1, -2, -3 \right\} \right\} = \left\{ \left\{ x_1, x_2, x_3 \right\}, \left\{ \bar{x}_1, \bar{x}_2, \bar{x}_3 \right\} \right\}$$
(A) =

Truth Table

$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & A \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 \\ \vdots & \vdots & & \\ \end{array}$$

ロン・「日本・「日本・「日本」の人で

SAT Example

$$\begin{array}{l} \{ \, \{ \, 1, 2, 3 \, \}, \{ \, -1, -2, -3 \, \} \, \} = \{ \, \{ \, x_1, x_2, x_3 \, \}, \{ \, \bar{x}_1, \bar{x}_2, \bar{x}_3 \, \} \, \} \\ (\mathsf{A}) &= (x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) \end{array}$$

Truth Table

$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & A \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & \\ \vdots & \vdots & & \\ \end{array}$$

ロト (日) (日) (日) (日) (日)

Backtracking for SAT

representation (reduced) clauses test if empty clause, return False. If no clauses, return True. Otherwise return None (UNKNOWN) expand $P_0 = \text{reduce}(P, x_j)$, $P_1 = \text{reduce}(P, \bar{x}_j)$ for some j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□ > ◆母 > ◆母 > ◆母 > ◆日 > ◆ ● ◆

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Backtracking Sat test

```
def test(clauses):
    if (len(clauses)) == 0:
        return True
    for clause in clauses:
        if len(clause)==0:
            return False
    return None
```

Backtracking Sat expand

```
def reduce(clauses,literal):
    out=[]
    for C in clauses:
        if not literal in C:
            new=[z for z in C if z != -1*literal]
            out.append(new)
    return out
```


▶ In 2SAT problem every clause has at most 2 elements

In 2SAT problem every clause has at most 2 elements 2SAT is solvable in polynomial time, but not quite trivially.

In 2SAT problem every clause has at most 2 elements
2SAT is solvable in polynomial time, but not quite trivially.
Greedy fails on

$$(x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (\bar{x}_1 \vee x_4) \wedge (\bar{x}_4 \vee x_5) \wedge (\bar{x}_4 \vee x_6)$$

In 2SAT problem every clause has at most 2 elements
2SAT is solvable in polynomial time, but not quite trivially.
Greedy fails on

$$(x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (\bar{x}_1 \vee x_4) \wedge (\bar{x}_4 \vee x_5) \wedge (\bar{x}_4 \vee x_6)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

to maximize number of clauses satisfied, choose $x_1 \leftarrow 1$, $x_4 \leftarrow 0$

In 2SAT problem every clause has at most 2 elements
2SAT is solvable in polynomial time, but not quite trivially.
Greedy fails on

$$(x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (\bar{x}_1 \vee x_4) \wedge (\bar{x}_4 \vee x_5) \wedge (\bar{x}_4 \vee x_6)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▶ to maximize number of clauses satisfied, choose x₁ ← 1, x₄ ← 0
 ▶ solvable with *unit propagation*

Horn SAT

Horn formulas

implication $(z \land w \land q) \Rightarrow u$. LHS is all positive, RHS one positive literal negative clauses $(\bar{x} \lor \bar{w} \lor \bar{y})$. All literals negated.

Horn formulas as CNF

negative clauses are already CNF

Horn formulas as CNF

- negative clauses are already CNF
- implications use the following transformations

$$(\bigwedge_{i=1}^{k} x_{i}) \Rightarrow y$$
$$\neg(\bigwedge_{i=1}^{k} x_{i}) \lor y$$
$$(\bigvee_{i=1}^{k} \bar{x}_{i}) \lor y$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Horn formulas as CNF

- negative clauses are already CNF
- implications use the following transformations

$$(\bigwedge_{i=1}^{k} x_{i}) \Rightarrow y$$
$$\neg(\bigwedge_{i=1}^{k} x_{i}) \lor y$$
$$(\bigvee_{i=1}^{k} \bar{x}_{i}) \lor y$$

special CNF with at most one positive literal.

Unit propagation

```
def UnitProp(S):
  Q = [c \text{ for } c \text{ in } S \text{ if } len(c) == 1]
  while len(Q) > 0:
    z = Q.pop()[0]; T = []
     for C in S:
       C = [j \text{ for } j \text{ in } C \text{ if } j!=-z]
       if len(C)==0: return False
       if len(C) == 1: Q.append(C)
       if not z in C: T.append(C)
     if len(T)==0: return True
     S = T
  return S
```

Unit propagation (with assignment)

```
def UnitProp(S):
  Q = [c \text{ for } c \text{ in } S \text{ if } len(c) = 1]; V = []
  while len(Q)>0:
    z = Q.pop()[0]; T = []
    V.append(z)
    for C in S:
       C = [j \text{ for } j \text{ in } C \text{ if } j!=-z]
       if len(C) == 0: return (False,V)
       if len(C)==1: Q.append(C)
       if not z in C: T.append(C)
     if len(T)==0: return (True,V)
     S = T
                                             ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00
  return S
```

Solving Horn SAT with Unit Propagation

- 1. Apply unit propagation
- 2. If no contradiction is detected, set the remaining variables to false.

Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Solving Horn SAT with Unit Propagation

- 1. Apply unit propagation
- 2. If no contradiction is detected, set the remaining variables to false.

Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Claim 2

If no contradiction is detected, the resulting assignment is valid

Solving Horn SAT with Unit Propagation

- 1. Apply unit propagation
- 2. If no contradiction is detected, set the remaining variables to false.

Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

Claim 2

If no contradiction is detected, the resulting assignment is valid

Proof

any remaining clause has at least one negative literal

Solving 2SAT with Unit Propagation

Claim

Applying reduce, followed by unit propagation, always yields either a contradiction (empty clause), or a subset of the original clauses. Solving 2SAT with Unit Propagation

```
def two sat(clauses):
  if len(clauses) == 0:
      return True
  j = clauses[0][0]
  R0 = UnitProp(reduce(clauses,-j))
  R1 = UnitProp(reduce(clauses, j))
  if True in [ R0, R1 ]: return True
  if R0 == False and R1 == False: return False
  if RO == False:
      return two sat(R1)
  else:
      return two sat(R0)
```

2SAT with Unit Propagation

Correctness

if two_sat returns False, the formula is unsatisfiable.
 if two_sat returns True, the formula is satisfiable.
 By induction on number of clauses; base case: no clauses. Suppose the function is correct for j < k clauses.

return False

directly both choices for x_j led to a contradiction. indirectly we found a contradiction in some subset of the original clauses.

2SAT with Unit Propagation

Correctness

▶ if two_sat returns False, the formula is unsatisfiable.

if two_sat returns True, the formula is satisfiable.

By induction on number of clauses; base case: no clauses. Suppose the function is correct for j < k clauses.

return True

directly one of our choices for x_j , along with unit prop., satisfied all clauses.

indirectly all clauses containing \boldsymbol{x}_j removed. remaining clauses satisfiable by induction.

Backtracking Sat with Unit Propagation

```
def backtrack(P0):
    S = [P0]
    while len(S) > 0:
        P = S.pop()
        P1 = UnitProp(P)
        if P1 != False:
             if P1 == True:
                 return P1
             else:
                 for R in expand(P1):
                     S.append(R)
    return False
```

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで