
CS3383 Unit 5.0: Backtracking and SAT

David Bremner

March 31, 2024

Outline

Combinatorial Search
Backtracking
SAT
Tractable kinds of SAT

N-queens

Problem Description
Given an 𝑛 × 𝑛 chess board, can you place 𝑛 queens so that no two
are in the same row, column, or diagonal.

𝑄
𝑄

𝑄
𝑄

𝑄
𝑄

𝑄
𝑄

✓ no

▶ One per
row/col is
easy to
enforce

Representing Chessboards
▶ We only care about cases where there is 1 queen per column
▶ Represent a 𝑛 × 𝑛 board as an array of 𝑛 integers, meaning

which row.
▶ None for not chosen yet.

𝑄
𝑄

𝑄
𝑄

𝑄

𝑄
(1, 3, 0, 2) (0, None, 2, None)

Detecting collisions

𝑄

𝑄
𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑗 − 𝑖

𝑄

𝑄

𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑖 − 𝑗

▶ And one more (easy) case

Detecting collisions

𝑄

𝑄
𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑗 − 𝑖

𝑄

𝑄

𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑖 − 𝑗

▶ And one more (easy) case

Detecting collisions

𝑄

𝑄
𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑗 − 𝑖

𝑄

𝑄

𝑖 𝑗

𝑄[𝑗] − 𝑄[𝑖] = 𝑖 − 𝑗

▶ And one more (easy) case

Backtracking Requirements

1. A representation for partial solutions

2. A procedure to expand a problem into smaller
subproblems

3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete

(Failure)
None if neither can be quickly determined.

(Uncertainty)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller

subproblems

3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete

(Failure)
None if neither can be quickly determined.

(Uncertainty)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller

subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete

(Failure)
None if neither can be quickly determined.

(Uncertainty)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller

subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)

False if there is no way to complete
(Failure)

None if neither can be quickly determined.
(Uncertainty)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller

subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete

(Failure)

None if neither can be quickly determined.
(Uncertainty)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller

subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete

(Failure)
None if neither can be quickly determined.

(Uncertainty)

Generic Backtracking
def backtrack(P0):

S = [P0]
while len(S) > 0:

P = S.pop()
result = test(P)
if result == True:

return P
elif result == None:

for R in expand(P):
S.append(R)

return False

Backtracking for N-Queens: Framework
representation 𝑄[1…𝑛] where 𝑄[𝑖] is row chosen, or None.

expand For some 𝑄[𝑖] = None, try 𝑄[𝑖] = 0…𝑛 − 1

def test(Q):
default = True
for i in range(len(Q)):

if Q[i]==None:
default = None

else:
for j in range(i):

if Q[i] - Q[j] in [0,i-j,j-i]:
return False

return default

Backtracking for N-Queens: Framework
representation 𝑄[1…𝑛] where 𝑄[𝑖] is row chosen, or None.

expand For some 𝑄[𝑖] = None, try 𝑄[𝑖] = 0…𝑛 − 1

def test(Q):
default = True
for i in range(len(Q)):

if Q[i]==None:
default = None

else:
for j in range(i):

if Q[i] - Q[j] in [0,i-j,j-i]:
return False

return default

Backtracking for N-Queens: Framework
representation 𝑄[1…𝑛] where 𝑄[𝑖] is row chosen, or None.

expand For some 𝑄[𝑖] = None, try 𝑄[𝑖] = 0…𝑛 − 1

def test(Q):
default = True
for i in range(len(Q)):

if Q[i]==None:
default = None

else:
for j in range(i):

if Q[i] - Q[j] in [0,i-j,j-i]:
return False

return default

Backtracking for N-Queens: Expand

def expand(Q):
i=0; S=[]
while Q[i] != None:

i+=1
for j in range(len(Q)):

R=Q[:] # copy
R[i] = j
S.append(R)

return S

Backtracking for subset sum

Subset Sum
Given 𝑋 ⊂ ℤ+, 𝑇

Decide Is there a subset of 𝑋 that sums to 𝑇

▶ If (𝑋, 𝑇) has feasible solution 𝑍, for all 𝑦 ∈ 𝑋,
either the solution includes 𝑦 or not.

Backtracking for subset sum

Subset Sum
Given 𝑋 ⊂ ℤ+, 𝑇

Decide Is there a subset of 𝑋 that sums to 𝑇

▶ If (𝑋, 𝑇) has feasible solution 𝑍, for all 𝑦 ∈ 𝑋,
either the solution includes 𝑦 or not.

Backtracking for SubsetSum

def SubsetSum(X,T):
if T == 0:

return true
elif T<0 or len(X) == 0:

return False

(y,rest) = (X[0],X[1:])
return SubsetSum(rest , T-y) \

or SubsetSum(rest ,T)

The SAT Problem
Conjunctive Normal Form (CNF)
Variables { 𝑥1…𝑥𝑛 }

Literals 𝐿 = { 𝑥𝑖, ̄𝑥𝑖 ∣ variable 𝑥𝑖 }
Clause { 𝑧1, …, 𝑧𝑘 } ⊂ 𝐿

Propositional Satisfiability (SAT)
Instance Set of clauses 𝑆
Question ∃ setting of variables to 0, 1 such that

each clause has at least one true literal?

The SAT Problem
Conjunctive Normal Form (CNF)
Variables { 𝑥1…𝑥𝑛 }

Literals 𝐿 = { 𝑥𝑖, ̄𝑥𝑖 ∣ variable 𝑥𝑖 }
Clause { 𝑧1, …, 𝑧𝑘 } ⊂ 𝐿

Propositional Satisfiability (SAT)
Instance Set of clauses 𝑆
Question ∃ setting of variables to 0, 1 such that

each clause has at least one true literal?

SAT Example

{ { 1, 2, 3 }, { −1, −2, −3 } } = { { 𝑥1, 𝑥2, 𝑥3 }, { ̄𝑥1, ̄𝑥2, ̄𝑥3 } }
=

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (̄𝑥1 ∨ ̄𝑥2 ∨ ̄𝑥3)

(A)

Truth Table

𝑥1 𝑥2 𝑥3 𝐴
0 0 0 0
0 0 1 1
0 1 0

⋮

SAT Example

{ { 1, 2, 3 }, { −1, −2, −3 } } = { { 𝑥1, 𝑥2, 𝑥3 }, { ̄𝑥1, ̄𝑥2, ̄𝑥3 } }
= (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (̄𝑥1 ∨ ̄𝑥2 ∨ ̄𝑥3)(A)

Truth Table

𝑥1 𝑥2 𝑥3 𝐴
0 0 0 0
0 0 1 1
0 1 0

⋮

Backtracking for SAT

representation (reduced) clauses
test if empty clause, return False. If no

clauses, return True. Otherwise return
None (UNKNOWN)

expand 𝑃0 = reduce(𝑃 , 𝑥𝑗), 𝑃1 = reduce(𝑃 , ̄𝑥𝑗)
for some 𝑗.

Backtracking SAT Example II
(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

w = 0

Backtracking SAT Example II

(y∨ z), (y), (y∨ z)

(w∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y∨ z)

w = 0

x = 0

Backtracking SAT Example II

(y ∨ z), (y), (y∨ z)

(z), (z)

(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

y = 0

w = 0

x = 0

Backtracking SAT Example II

(y ∨ z), (y), (y∨ z)

(z), (z)

(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

()

z = 0

y = 0

w = 0

x = 0

Backtracking SAT Example II

(y ∨ z), (y), (y∨ z)

(z), (z)

(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

()

z = 0 z = 1

()

y = 0

w = 0

x = 0

Backtracking SAT Example II

(y ∨ z), (y), (y∨ z)

(z), (z)

(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

()

z = 0 z = 1

()

()

y = 1y = 0

w = 0

x = 0

Backtracking SAT Example II

(), (y∨ z)(y ∨ z), (y), (y∨ z)

(z), (z)

(w ∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w ∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1y = 0

w = 0

x = 0

Backtracking SAT Example II

(), (y∨ z)(y∨ z), (y), (y∨ z)

(z), (z)

(x ∨ y), (y∨ z), (z), (z)

(w∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1y = 0

w = 1w = 0

x = 0

Backtracking SAT Example II

(), (y∨ z)(y∨ z), (y), (y∨ z)

(z), (z)

(x ∨ y), (y∨ z), (z), (z)

(x ∨ y), ()

(w∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1y = 0

w = 1w = 0

x = 0 z = 0

Backtracking SAT Example II

(), (y∨ z)(y∨ z), (y), (y∨ z)

(z), (z)

(x ∨ y), (y∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

Backtracking SAT Example II

(), (y∨ z)(y∨ z), (y), (y∨ z)

(z), (z)

(x ∨ y), (y∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w∨ x ∨ y∨ z), (w∨ x), (x ∨ y), (y∨ z), (z ∨w), (w∨ z)

(x ∨ y∨ z), (x), (x ∨ y), (y∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

We tried 11 possibilities. Maximum?

Backtracking Sat test

def test(clauses):
if (len(clauses)) == 0:

return True
for clause in clauses:

if len(clause)==0:
return False

return None

Backtracking Sat expand
def reduce(clauses ,literal):

out=[]
for C in clauses:

if not literal in C:
new=[z for z in C if z != -1*literal]
out.append(new)

return out

def expand(clauses):
j = clauses[0][0]
return [reduce(clauses ,j),

reduce(clauses ,-j)]

2SAT
▶ In 2SAT problem every clause has at most 2 elements

▶ 2SAT is solvable in polynomial time, but not quite trivially.
▶ Greedy fails on

(𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (̄𝑥1 ∨ 𝑥4) ∧ (̄𝑥4 ∨ 𝑥5) ∧ (̄𝑥4 ∨ 𝑥6)

▶ to maximize number of clauses satisfied,
choose 𝑥1 ← 1, 𝑥4 ← 0

▶ solvable with unit propagation

2SAT
▶ In 2SAT problem every clause has at most 2 elements
▶ 2SAT is solvable in polynomial time, but not quite trivially.

▶ Greedy fails on

(𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (̄𝑥1 ∨ 𝑥4) ∧ (̄𝑥4 ∨ 𝑥5) ∧ (̄𝑥4 ∨ 𝑥6)

▶ to maximize number of clauses satisfied,
choose 𝑥1 ← 1, 𝑥4 ← 0

▶ solvable with unit propagation

2SAT
▶ In 2SAT problem every clause has at most 2 elements
▶ 2SAT is solvable in polynomial time, but not quite trivially.
▶ Greedy fails on

(𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (̄𝑥1 ∨ 𝑥4) ∧ (̄𝑥4 ∨ 𝑥5) ∧ (̄𝑥4 ∨ 𝑥6)

▶ to maximize number of clauses satisfied,
choose 𝑥1 ← 1, 𝑥4 ← 0

▶ solvable with unit propagation

2SAT
▶ In 2SAT problem every clause has at most 2 elements
▶ 2SAT is solvable in polynomial time, but not quite trivially.
▶ Greedy fails on

(𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (̄𝑥1 ∨ 𝑥4) ∧ (̄𝑥4 ∨ 𝑥5) ∧ (̄𝑥4 ∨ 𝑥6)

▶ to maximize number of clauses satisfied,
choose 𝑥1 ← 1, 𝑥4 ← 0

▶ solvable with unit propagation

2SAT
▶ In 2SAT problem every clause has at most 2 elements
▶ 2SAT is solvable in polynomial time, but not quite trivially.
▶ Greedy fails on

(𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (̄𝑥1 ∨ 𝑥4) ∧ (̄𝑥4 ∨ 𝑥5) ∧ (̄𝑥4 ∨ 𝑥6)

▶ to maximize number of clauses satisfied,
choose 𝑥1 ← 1, 𝑥4 ← 0

▶ solvable with unit propagation

Horn SAT

Horn formulas
implication (𝑧 ∧ 𝑤 ∧ 𝑞) ⇒ 𝑢. LHS is all positive, RHS one positive

literal
negative clauses (̄𝑥 ∨ �̄� ∨ ̄𝑦). All literals negated.

Horn formulas as CNF
▶ negative clauses are already CNF

▶ implications use the following transformations

(
𝑘

⋀
𝑖=1

𝑥𝑖) ⇒ 𝑦

¬(
𝑘

⋀
𝑖=1

𝑥𝑖) ∨ 𝑦

(
𝑘

⋁
𝑖=1

̄𝑥𝑖) ∨ 𝑦

▶ special CNF with at most one positive literal.

Horn formulas as CNF
▶ negative clauses are already CNF
▶ implications use the following transformations

(
𝑘

⋀
𝑖=1

𝑥𝑖) ⇒ 𝑦

¬(
𝑘

⋀
𝑖=1

𝑥𝑖) ∨ 𝑦

(
𝑘

⋁
𝑖=1

̄𝑥𝑖) ∨ 𝑦

▶ special CNF with at most one positive literal.

Horn formulas as CNF
▶ negative clauses are already CNF
▶ implications use the following transformations

(
𝑘

⋀
𝑖=1

𝑥𝑖) ⇒ 𝑦

¬(
𝑘

⋀
𝑖=1

𝑥𝑖) ∨ 𝑦

(
𝑘

⋁
𝑖=1

̄𝑥𝑖) ∨ 𝑦

▶ special CNF with at most one positive literal.

Unit propagation
def UnitProp(S):

Q = [c for c in S if len(c)==1]
while len(Q)>0:

z = Q.pop()[0]; T = []
for C in S:

C = [j for j in C if j!=-z]
if len(C)==0: return False
if len(C)==1: Q.append(C)
if not z in C: T.append(C)

if len(T)==0: return True
S = T

return S

Unit propagation (with assignment)
def UnitProp(S):

Q = [c for c in S if len(c)==1]; V = []
while len(Q)>0:

z = Q.pop()[0]; T = []
V.append(z)
for C in S:

C = [j for j in C if j!=-z]
if len(C)==0: return (False ,V)
if len(C)==1: Q.append(C)
if not z in C: T.append(C)

if len(T)==0: return (True ,V)
S = T

return S

Solving Horn SAT with Unit Propagation
1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to

false.

Claim 1
If the procedure detects a contradiction, the instance is unsatisfiable

Claim 2
If no contradiction is detected, the resulting assignment is valid

Proof
any remaining clause has at least one negative literal

Solving Horn SAT with Unit Propagation
1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to

false.

Claim 1
If the procedure detects a contradiction, the instance is unsatisfiable

Claim 2
If no contradiction is detected, the resulting assignment is valid

Proof
any remaining clause has at least one negative literal

Solving Horn SAT with Unit Propagation
1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to

false.

Claim 1
If the procedure detects a contradiction, the instance is unsatisfiable

Claim 2
If no contradiction is detected, the resulting assignment is valid

Proof
any remaining clause has at least one negative literal

Solving 2SAT with Unit Propagation

Claim
Applying reduce, followed by unit propagation, always yields either
a contradiction (empty clause), or a subset of the original clauses.

Solving 2SAT with Unit Propagation
def two_sat(clauses):

if len(clauses) == 0:
return True

j = clauses[0][0]
R0 = UnitProp(reduce(clauses ,-j))
R1 = UnitProp(reduce(clauses ,j))
if True in [R0, R1]: return True
if R0 == False and R1 == False: return False
if R0 == False:

return two_sat(R1)
else:

return two_sat(R0)

2SAT with Unit Propagation
Correctness

▶ if two_sat returns False, the formula is unsatisfiable.
▶ if two_sat returns True, the formula is satisfiable.

By induction on number of clauses; base case: no clauses. Suppose
the function is correct for 𝑗 < 𝑘 clauses.

return False
directly both choices for 𝑥𝑗 led to a contradiction.

indirectly we found a contradiction in some subset of the original
clauses.

2SAT with Unit Propagation
Correctness

▶ if two_sat returns False, the formula is unsatisfiable.
▶ if two_sat returns True, the formula is satisfiable.

By induction on number of clauses; base case: no clauses. Suppose
the function is correct for 𝑗 < 𝑘 clauses.

return True
directly one of our choices for 𝑥𝑗, along with unit prop., satisfied

all clauses.
indirectly all clauses containing 𝑥𝑗 removed. remaining clauses

satisfiable by induction.

Backtracking Sat with Unit Propagation
def backtrack(P0):

S = [P0]
while len(S) > 0:

P = S.pop()
P1 = UnitProp(P)
if P1 != False:

if P1 == True:
return P1

else:
for R in expand(P1):

S.append(R)
return False

	Combinatorial Search
	Backtracking
	SAT
	Tractable kinds of SAT

