CS3383 Unit 5.0: Backtracking and SAT

David Bremner

March 31, 2024

Outline

Combinatorial Search
Backtracking
SAT
Tractable kinds of SAT

N -queens

Problem Description

Given an $n \times n$ chess board, can you place n queens so that no two are in the same row, column, or diagonal.

$>$ One per row/col is easy to enforce

Representing Chessboards

- We only care about cases where there is 1 queen per column
\rightarrow Represent a $n \times n$ board as an array of n integers, meaning which row.
- None for not chosen yet.

Detecting collisions

$$
Q[j]-Q[i]=j-i
$$

Detecting collisions

	Q
Q	
i	j

$$
Q[j]-Q[i]=j-i
$$

$$
Q[j]-Q[i]=i-j
$$

Detecting collisions

	Q	
Q		
i	j	

$$
Q[j]-Q[i]=j-i
$$

$$
Q[j]-Q[i]=i-j
$$

- And one more (easy) case

Backtracking Requirements

1. A representation for partial solutions

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller subproblems

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller subproblems
3. A test for partial solutions that returns

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete (Failure)

Backtracking Requirements

1. A representation for partial solutions
2. A procedure to expand a problem into smaller subproblems
3. A test for partial solutions that returns

True if the solution is complete (Success)
False if there is no way to complete (Failure)
None if neither can be quickly determined.
(Uncertainty)

Generic Backtracking

def backtrack(PO):

$$
\begin{aligned}
& S=[P 0] \\
& \text { while len }(S)>0: \\
& P=S \cdot p o p() \\
& \text { result }=\text { test }(P) \\
& \text { if result }==\text { True: } \\
& \text { return } P \\
& \text { elif result }==\text { None: } \\
& \text { for } R \text { in expand }(P): \\
& \text { S.append }(R)
\end{aligned}
$$

return False

Backtracking for N-Queens: Framework

 representation $Q[1 \ldots n]$ where $Q[i]$ is row chosen, or None.
Backtracking for N-Queens: Framework

 representation $Q[1 \ldots n]$ where $Q[i]$ is row chosen, or None. expand For some $Q[i]=$ None, try $Q[i]=0 \ldots n-1$
Backtracking for N-Queens: Framework

 representation $Q[1 \ldots n]$ where $Q[i]$ is row chosen, or None. expand For some $Q[i]=$ None, try $Q[i]=0 \ldots n-1$```
def test(Q):
 default = True
 for i in range(len(Q)):
 if Q[i]==None:
 default = None
 else:
 for j in range(i):
 if Q[i] - Q[j] in [0,i-j,j-i]:
 return False
 return default
```


## Backtracking for N -Queens: Expand

```
def expand(Q):
 i=0; S=[]
 while Q[i] != None:
 i+=1
 for j in range(len(Q)):
 R=Q[:] # copy
 R[i] = j
 S.append(R)
 return S
```


## Backtracking for subset sum

## Subset Sum

Given $X \subset \mathbb{Z}^{+}, T$
Decide Is there a subset of $X$ that sums to $T$

## Backtracking for subset sum

## Subset Sum

## Given $X \subset \mathbb{Z}^{+}, T$

Decide Is there a subset of $X$ that sums to $T$
$>$ If $(X, T)$ has feasible solution $Z$, for all $y \in X$, either the solution includes $y$ or not.

## Backtracking for SubsetSum

```
def SubsetSum(X,T):
 if T == 0:
 return true
 elif T<0 or len(X) == 0:
 return False
 (y,rest) = (X[0],X[1:])
 return SubsetSum(rest, T-y)
 or SubsetSum(rest,T)
```


## The SAT Problem

## Conjunctive Normal Form (CNF)

Variables $\left\{x_{1} \ldots x_{n}\right\}$
Literals $L=\left\{x_{i}, \bar{x}_{i} \mid\right.$ variable $\left.x_{i}\right\}$
Clause $\left\{z_{1}, \ldots, z_{k}\right\} \subset L$

## The SAT Problem

## Conjunctive Normal Form (CNF)

Variables $\left\{x_{1} \ldots x_{n}\right\}$
Literals $L=\left\{x_{i}, \bar{x}_{i} \mid\right.$ variable $\left.x_{i}\right\}$
Clause $\left\{z_{1}, \ldots, z_{k}\right\} \subset L$

## Propositional Satisfiability (SAT)

Instance Set of clauses $S$
Question $\exists$ setting of variables to 0,1 such that each clause has at least one true literal?

## SAT Example

$\{\{1,2,3\},\{-1,-2,-3\}\}=\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\}\right\}$
(A)

Truth Table

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $A$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 |  |
|  | $\vdots$ |  |  |

## SAT Example

$$
\begin{aligned}
\{\{1,2,3\},\{-1,-2,-3\}\} & =\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\}\right\} \\
& =\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
\end{aligned}
$$

Truth Table

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $A$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 |  |
|  | $\vdots$ |  |  |

## Backtracking for SAT

representation (reduced) clauses
test if empty clause, return False. If no
clauses, return True. Otherwise return None (UNKNOWN)
expand $P_{0}=\operatorname{reduce}\left(P, x_{j}\right), P_{1}=\operatorname{reduce}\left(P, \bar{x}_{j}\right)$ for some $j$.

## Backtracking SAT Example II



$$
w=0
$$

$(x \vee y \vee z),(x),(x \vee y),(y \vee z)$

## Backtracking SAT Example II



## Backtracking SAT Example II



## Backtracking SAT Example II



$$
w=0
$$

## Backtracking SAT Example II

$$
w=0
$$

## Backtracking SAT Example II

$$
\text { ( } w \vee x \vee y \vee z),(w \vee x),(x \vee y),(y \vee z),(z \vee W),(\mathbb{F} \vee z)
$$

$$
w=0
$$

## Backtracking SAT Example II



$$
w=0
$$



## Backtracking SAT Example II



## Backtracking SAT Example II



## Backtracking SAT Example II



## Backtracking SAT Example II

( $\mathrm{w} \vee \mathrm{x} \vee \mathrm{y} \vee \mathrm{z}$ ), ( $\mathrm{w} \vee \mathrm{x}$ ), ( $\mathrm{x} \vee \mathrm{y}),(\mathrm{y} \vee \mathrm{z}),(\mathrm{z} \vee \mathrm{w}),(\mathrm{m} \vee \mathrm{z})$

$$
w=0
$$



We tried 11 possibilities. Maximum?

## Backtracking Sat test

```
def test(clauses):
 if (len(clauses)) == 0:
 return True
 for clause in clauses:
 if len(clause)==0:
 return False
 return None
```


## Backtracking Sat expand

```
def reduce(clauses,literal):
 out=[]
 for C in clauses:
 if not literal in C:
 new=[z for z in C if z != -1*literal]
 out.append(new)
 return out
```

def expand(clauses):
$j=c l a u s e s[0][0]$
return [reduce(clauses, $j$ ),
reduce(clauses,-j)]

## 2SAT

- $\ln$ 2SAT problem every clause has at most 2 elements


## 2SAT

$\rightarrow$ In 2SAT problem every clause has at most 2 elements

- 2SAT is solvable in polynomial time, but not quite trivially.


## 2SAT

- In 2SAT problem every clause has at most 2 elements
- 2SAT is solvable in polynomial time, but not quite trivially.
- Greedy fails on

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right) \wedge\left(\bar{x}_{4} \vee x_{5}\right) \wedge\left(\bar{x}_{4} \vee x_{6}\right)
$$

## 2SAT

- In 2SAT problem every clause has at most 2 elements
- 2SAT is solvable in polynomial time, but not quite trivially.
- Greedy fails on

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right) \wedge\left(\bar{x}_{4} \vee x_{5}\right) \wedge\left(\bar{x}_{4} \vee x_{6}\right)
$$

$>$ to maximize number of clauses satisfied, choose $x_{1} \leftarrow 1, x_{4} \leftarrow 0$

## 2SAT

- In 2SAT problem every clause has at most 2 elements
- 2SAT is solvable in polynomial time, but not quite trivially.
- Greedy fails on

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right) \wedge\left(\bar{x}_{4} \vee x_{5}\right) \wedge\left(\bar{x}_{4} \vee x_{6}\right)
$$

$>$ to maximize number of clauses satisfied, choose $x_{1} \leftarrow 1, x_{4} \leftarrow 0$
$\checkmark$ solvable with unit propagation

## Horn SAT

## Horn formulas

$$
\begin{aligned}
& \text { implication }(z \wedge w \wedge q) \Rightarrow u \text {. LHS is all positive, RHS one positive } \\
& \text { literal }
\end{aligned}
$$

negative clauses $(\bar{x} \vee \bar{w} \vee \bar{y})$. All literals negated.

## Horn formulas as CNF

- negative clauses are already CNF


## Horn formulas as CNF

- negative clauses are already CNF
- implications use the following transformations

$$
\begin{gathered}
\left(\bigwedge_{i=1}^{k} x_{i}\right) \Rightarrow y \\
\neg\left(\bigwedge_{i=1}^{k} x_{i}\right) \vee y \\
\left(\bigvee_{i=1}^{k} \bar{x}_{i}\right) \vee y
\end{gathered}
$$

## Horn formulas as CNF

- negative clauses are already CNF
- implications use the following transformations

$$
\begin{gathered}
\left(\bigwedge_{i=1}^{k} x_{i}\right) \Rightarrow y \\
\neg\left(\bigwedge_{i=1}^{k} x_{i}\right) \vee y \\
\left(\bigvee_{i=1}^{k} \bar{x}_{i}\right) \vee y
\end{gathered}
$$

- special CNF with at most one positive literal.


## Unit propagation

def UnitProp（S）：
$Q=[c$ for $c$ in $S$ if $\operatorname{len}(c)==1]$
while len（Q）$>0$ ：
$z=Q \cdot p o p()[0] ; T=[]$
for C in $S$ ：
$C=[j$ for $j$ in $C$ if $j!=-z]$
if len（C）＝＝0：return False
if $\operatorname{len}(C)==1: ~ Q . a p p e n d(C)$
if not $z$ in $C: T . a p p e n d(C)$
if $\operatorname{len}(T)==0:$ return True
$S=T$
return $S$

## Unit propagation (with assignment)

def UnitProp(S):

$$
\begin{aligned}
& Q=[\mathrm{c} \text { for } \mathrm{c} \text { in } \mathrm{S} \text { if } \operatorname{len}(\mathrm{c})==1] ; \mathrm{V}=[] \\
& \text { while len(Q) }>0 \text { : } \\
& z=Q \cdot p o p()[0] ; T=[] \\
& \text { V.append (z) } \\
& \text { for } C \text { in } S: \\
& C=[j \text { for } j \text { in } C \text { if } j!=-z] \\
& \text { if len(C)==0: return (False,V) } \\
& \text { if } \operatorname{len}(C)==1: ~ Q . a p p e n d(C) \\
& \text { if not } z \text { in C: T.append(C) } \\
& \text { if len(T)==0: return (True, V) } \\
& S=T
\end{aligned}
$$

## Solving Horn SAT with Unit Propagation

1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to false.

## Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

## Solving Horn SAT with Unit Propagation

1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to false.

## Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

## Claim 2

If no contradiction is detected, the resulting assignment is valid

## Solving Horn SAT with Unit Propagation

1. Apply unit propagation
2. If no contradiction is detected, set the remaining variables to false.

## Claim 1

If the procedure detects a contradiction, the instance is unsatisfiable

## Claim 2

If no contradiction is detected, the resulting assignment is valid

## Proof

any remaining clause has at least one negative literal

## Solving 2SAT with Unit Propagation

## Claim

Applying reduce, followed by unit propagation, always yields either a contradiction (empty clause), or a subset of the original clauses.

## Solving 2SAT with Unit Propagation

```
def two_sat(clauses):
 if len(clauses) == 0:
 return True
 j = clauses[0][0]
 R0 = UnitProp(reduce(clauses, - j))
 R1 = UnitProp(reduce(clauses,j))
 if True in [R0, R1]: return True
 if RO == False and R1 == False: return False
 if RO == False:
 return two_sat(R1)
 else:
 return two_sat(R0)
```


## 2SAT with Unit Propagation

## Correctness

$>$ if two_sat returns False, the formula is unsatisfiable.

- if two_sat returns True, the formula is satisfiable.

By induction on number of clauses; base case: no clauses. Suppose the function is correct for $j<k$ clauses.

## return False

directly both choices for $x_{j}$ led to a contradiction.
indirectly we found a contradiction in some subset of the original clauses.

## 2SAT with Unit Propagation

## Correctness

- if two_sat returns False, the formula is unsatisfiable.
- if two_sat returns True, the formula is satisfiable.

By induction on number of clauses; base case: no clauses. Suppose the function is correct for $j<k$ clauses.

## return True

directly one of our choices for $x_{j}$, along with unit prop., satisfied all clauses.
indirectly all clauses containing $x_{j}$ removed. remaining clauses satisfiable by induction.

## Backtracking Sat with Unit Propagation

$$
\begin{aligned}
& \text { def backtrack }(P 0): \\
& \text { S = [PO] } \\
& \text { while len (S) }>0 \text { : } \\
& \text { P }=\text { S. pop () } \\
& \text { Pi }=\text { UnitProp (P) } \\
& \text { if P1 ! }=\text { False: } \\
& \text { if P1 }==\text { True: } \\
& \text { return P1 } \\
& \text { else: } \\
& \text { for R in expand (P1): } \\
& \quad \text { S. append (R) }
\end{aligned}
$$

return False

