
Inferring Data Transformation Rules to
Integrate Semantic Web Services

Bruce Spencer and Sandy Liu

National Research Council of Canada
46 Dineen Drive, Fredericton, New Brunswick, E3B 9W4

{Bruce.Spencer, Sandy.Liu}@nrc.ca http://iit.nrc.gc.ca/il.html

Abstract. OWL-S allows selecting, composing and invoking Web Ser-
vices at different levels of abstraction: selection uses high level abstract
descriptions, invocation uses low level grounding ones, while composi-
tion needs to consider both high and low level descriptions. In our set-
ting, two Web Services are to be composed so that output from the
upstream one is used to create input for the downstream one. These
Web Services may have different data models but are related to each
other through high and low level descriptions. Correspondences must be
found between components of the upstream data type and the down-
stream ones. Low level data transformation functions may be required
(e.g. unit conversions, data type conversions). The components may be
arranged in different XML tree structures. Thus, multiple data transfor-
mations are necessary: reshaping the message tree, matching leaves by
corresponding types, translating through ontologies, and calling conver-
sion functions. Our prototype compiles these transformations into a set
of data transformation rules, using our tableau-based ALC Description
Logic reasoner to reason over the given OWL-S and WSDL descriptions,
as well as the related ontologies. A resolution-based inference mechanism
for running these rules is embedded in an inference queue that conducts
data from the upstream to the downstream service, running the rules to
perform the data transformation in the process.

1 Introduction

Some envision that software components can be described sufficiently so that
they can be autonomously found and incorporated, can pass data that will be
automatically understood and processed, can recover from faults, and can prove
and explain their actions and results. The OWL-S specification for Semantic
Web Services [2] has recently been released in which these components are Web
Services described using the Web Ontology Language, OWL [13].

The OWL-S release 1.0 proposes to describe Web Services in three layers: the
service profile, service model, and service grounding, describing respectively what
the service does, how it does it, and how to access it. The service profile gives
the information necessary for discovering and for combining (composing) Web
Services. By convention, it may describe the services only abstractly and not in

complete detail; the inputs, outputs, preconditions, and effects of the service may
be advertised at a high level for faster but imperfect matching. The grounding
layer is where the complete details would be found for each of the components in
these objects, expressed both in OWL-S grounding and Web Service Description
Language (WSDL) [12], a low-level specification. By separating the abstract
from the concrete specifications, the tasks for which the service profile are used,
discovery and composition, are greatly simplified, making the whole architecture
more viable.

In general several Web Services can be selected to work together, but in this
paper we consider the case where only two Web Services have been selected: one
as the producer and the other as the consumer of a stream of data messages.
The producer, or upstream service will deliver one input message at a time to
the downstream service, which will consume it. We imagine that one or both of
these services were not previously designed to work together, and that they were
selected to work together based on their service profiles; now the two service
groundings must be coupled autonomously, using descriptions of both levels as
well as ontologies available. The setting can be seen as a special case of data
integration assisted by semantic markup.

We consider two use cases, a simple one for converting dates from year /
month / day order as given by the upstream service, into month / day / year
order as required by the downstream service. This simple case allows us to explain
the various steps in the proposals. In the second use case we convert flight
information from one format to another, reshaping the XML tree containing the
data and invoking two different kinds of conversions.

In section 2 we discuss the integration problem in light of two use cases, and
give the general technique for building the rules in Section 3. Section 4 gives a
presentation of inference queues used to run the rules. In the last two sections,
we give related and future work and conclusions.

2 Grounding Level Integration

We intend to automatically integrate Web Services. In our setting, the inte-
gration task is done at several levels. We assume that a high-level plan has
determined which Web Services can be integrated, based on descriptions of the
effects produced by upstream services, and the preconditions required by the
downstream one. The abstract planning level will have determined that the data
produced by the upstream services provide information needed by the down-
stream service. Matching upstream to downstream services should be done with-
out knowledge of minor differences in the concrete types of data to be transferred,
if reasoning at this level is to be kept unencumbered by overwhelming detail.
Once compatibility is established at the upper level, the task of matching at the
lower level can begin. Two similar or identical descriptions at the abstract level
can refer to very different descriptions at the concrete level.

Therefore, our objective is to create a message of the downstream data type
from one or more upstream messages. We assume there exist ontologies describ-

2

• OWL-S description
(Process & Grounding)

• WSDL description
• Ontologies
• Specifications of

converters &
typeCasters

 Web Service Web Service

Trans-
formation

Rules

Converters &
TypeCasters

Upstream Downstream

X
M

L
 in

te
rf

ac
e

Inference

Queue

X
M

L
 interface

Rule

Compiler

Fig. 1. System Architectural Overview

ing both the upstream messages and downstream messages, and in particular
description logic, possibly OWL-S specifications containing the leaf-level parts
of these messages. Figure 1 shows the overall system architecture to perform the
grounding level integrations. The rule compiler takes the OWL-S descriptions,
WSDL descriptions, auxiliary ontologies, and specifications of data converters
as inputs, and creates data transformation rules. If the semantic integration is
attempted but is not feasible, this will be indicated by a failure to create the
rules.

At service invocation time, the set of transformation rules can be run to
actually perform the data transformation from upstream to downstream. The
intermediate carrier is called an inference queue [11], which accepts input data
encoded as facts and rules in first-order logic, and can perform inferences on
those facts so that both the input facts and inferred facts are transmitted as
output. Such an inference queue loaded with data transformation rules at service
composition time, and loaded with upstream data at runtime, will be able to
convert that data to the appropriate form and deliver it to the downstream
service.

Because the inference queue includes a theorem prover for definite clauses, it
is capable of some of the other tasks we identified as necessary for robustness:
it can detect when the upstream data is not convertible into data acceptable by
the downstream service; it can also perform sanity test on the data. The OWL-S
proposal allows us to express preconditions expected by the downstream service
and effects expected from the upstream service. Since we may not have control
over how these Web Services are written, we should attempt to verify that the
expected effects were produced and expected preconditions were met. These
checks would also be performed by the rule engine.

In the real world many data types that are not identical syntactically are
still convertible, such as temperatures expressed in either Fahrenheit or Celsius,

3

currency in either dollars or Yen, etc. We assume the existence of some mappings
between data types, called converters, intended to be used for converting data
from one type to another. We also assume that low-level type conversion such as
converting between string and numeric can be performed through type casters.
The functions of the converters and type casters can be specified, then they can
be used by the rule compilers to generate the proper transformation rules. As
a result, a number of these standard conversions can be expressed as relations
in the bodies of rules, and at runtime the inference engine will perform the
conversion.

2.1 Use Cases

Consider the following example: Suppose a Web Service produces a date in the
conventional U.S. order month / day / year. In a typical usage scenario this date
would be part of a larger message, but for simplicity we consider that this is the
entire contents of the message. Suppose this Web Service has been selected as
the upstream service so it will provide data to the downstream Web Service. The
downstream message will also be composed of just a date, but in this case in the
ISO order year / month / day. The decision to connect these two Web Services
in this way would be done by a planning system, designed in accordance with
the current OWL-S proposal [2]. While building the abstract plan, it determined
that these messages are compatible, using only the information at the OWL-S
profile and process levels. An ontology of dates states that ISO and U.S. dates
are both subclasses of the class date and are composed of a year, a month and
a day, as in Figure 2. The planner did not look into the lower level, where the
types of the date are slightly different; these differences were considered to be
inessential at planning time. The specific types of date from the upstream and
downstream services are described in WSDL as three integers, and these integers
are given more meaning by the OWL-S grounding specification. Figure 3 shows
a snippet of OWL-S grounding specification for the downstream Web Service.

We compile the data transformation into a rule to be invoked to do this
transformation. The messages are passed from upstream to downstream via an
inference queue. An inference queue is a conduit for data that contains an infer-
ence engine. Data are considered facts, and rules are “plugged in” to tell how to
infer new facts, which become the output of the queue. We illustrate the data
transformation rules using a Prolog notation, where variables are shown with
an upper case letter. The current prototype directly uses the XML messages,
but it is possible to use RuleML [1] or SWRL [3]. Any upstream message is
assumed to be given to the inference queue as a fact using the unary predicate
symbol up, where the argument is a Prolog term, in this case containing a date
in month / day / year order. The inference queue produces a message meant
for the downstream service, also as a fact with the unary predicate symbol down
and the arguments in ISO order.

The rule for data transformation in this case is

down(isoDate(Year, Month, Day)) :- up(usDate(Month, Day, Year)).

4

<owl:Class rdf:ID="Date">

</owl:Class>

<owl:ObjectProperty rdf:ID="hasYear">

<rdfs:domain rdf:resource="#Date"/>

<rdfs:range rdf:resource="#Year"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasMonth"/>

<rdfs:domain rdf:resource="#Date"/>

<rdfs:range rdf:resource="#Month"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasDay"/>

<rdfs:domain rdf:resource="#Date"/>

<rdfs:range rdf:resource="#Day"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="ISODate">

<rdfs:subClassOf rdf:resource="#Date"/>

</owl:Class>

<owl:Class rdf:ID="USDate">

<rdfs:subClassOf rdf:resource="#Date"/>

</owl:Class>

Fig. 2. A Date Ontology in OWL

When a fact, say, up(usDate(12, 31, 1999)) is entered to the inference queue,
a resolution step is done, in which Month is bound to 12, Day to 31 and Year to
1999. The inference drawn is down(isoDate(1999, 12, 31)). This is expelled
from the downstream end of the inference, to be delivered to the downstream
Web Service.

For the second use case, suppose that a European-based Web Service pro-
ducing flight information is selected to provide input to a Canadian-based Web
Service accepting flight information. For the upstream (producing) Web Service
the flight has three data items: a source city, a destination city and a cost quoted
in Euros. The downstream service expects the flight to be described with two
pieces of information: the cost in Canadian dollars and a flight manifest, which
itself consists of two pieces of information, the code of the departure airport and
arrival airport, respectively. In this case we make use of two converters: from
Euros to dollars, and from cities to airport codes. We also need to have the
translation mechanism create a message with an internal structure, the manifest
object. The final rule generated for this case follows:

down(canadaFlight(DollarCurrency,

manifest(DepartureAirportCode, ArrivalAirportCode))):-

up(euroFlight(SourceCity, DestCity, EuroCurrency)),

stringToDouble(EuroCurrency, EuroCurrencyDouble),

euro2Dollar(EuroCurrencyDouble, DollarCurrency),

city2AirportCode(SourceCity, DepartureAirportCode),

city2AirportCode(DestCity, ArrivalAirportCode).

There are three tasks: creating the appropriate structure, converting the
currency, and converting the two airport locators. Each needs to be reflected in
the translation rules. The structure of the both up- and downstream messages

5

<grounding:WsdlAtomicProcessGrounding

rdf:ID="WSDLGrounding_CalendarMgmt_setVisitDate">

<grounding:wsdlInputMessageParts rdf:parseType="owl:collection">

<grounding:WsdlMessageMap>

<grounding:damlsParameter rdf:resource="&pm_file;#year"/>

<grounding:wsdlMessagePart>

<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg0"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

<grounding:WsdlMessageMap>

<grounding:owlsParameter rdf:resource="&pm_file;#month"/>

<grounding:wsdlMessagePart>

<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg1"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

<grounding:WsdlMessageMap>

<grounding:damlsParameter rdf:resource="&pm_file;#day"/>

<grounding:wsdlMessagePart>

<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg2"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlInputMessageParts>

</grounding:WsdlAtomicProcessGrounding>

Fig. 3. Snippet from the Downstream Grounding in OWL

must be reflected in the rule. In this case the downstream message, which is
the argument of the down predicate, contains the term canadaFlight which
itself contains two arguments, one for the dollar currency and other for the
flight manifest, represented by the function symbol (or XML tag) manifest and
containing two airport codes. So the rule constructor must be aware of and reflect
all of the inner structure of both messages. These XML structures are inferred
from the OWL-S grounding and WSDL information. Figure 4(a) and (b) shows
these two trees representing the XML structure of the messages.

The second task is to place a call to a converter in the body of a rule. It is
straightforward in the case of converting the currency amount in the upstream
message to a dollar amount in the downstream message. There is a converter
available, euro2Dollar whose specification shows that has the appropriate types;
it maps Euros to dollars. In the conversion rule that is constructed, a call to this
converter is included as a goal in the body of the clause. The first argument of
this goal is a variable for the Euro amount that is shared within the up literal, as
the first argument of the canadaFlight term. The second argument of the call
to euroToDollar converter is a variable for the dollar amount that appears also
in the down literal. All of these placements are straighforward because the types
of the converter and the types of the message match. The arrow in Figure 4(c)
from EuroCurrency to DollarCurrency was easy to place because of the type
correspondences. It is not always so simple.

6

euroFlight

SourceCity DestCity Euro
Currency

canadaFlight

Dollar
Currency

manifest

Departure
AirportCode

Arrival
AirportCode

(a) (b)

euroFlight

SourceCity DestCity Euro
Currency

canadaFlight

Dollar
Currency

manifest

Departure
AirportCode

Arrival
AirportCode

(c)

euro2Dollar

airportCity2Code

airportCity2Code

Euro
Currency

Dollar
Currency

euro2Dollar

(d)

String2Double

Fig. 4. Data transformation: Reshaping two XML trees

One complication arises because the output type of the converter may not
match the required type. If the output type is a subtype of what is required, it
must be promoted to the required type. But from a typing point of view, the
converter can be used since it is guaranteed to produce a value of the required
type. Alternately, if the output type is a supertype of what is required, it must
be demoted to the required type. The converter may be still be useful, but a
check must be done at runtime to ensure that the actual value is appropriate.
On the input side of the converter, similar cases apply.

Yet the discussion so far does not fully account for the rule above. Two airport
cities of different types, source and destination, need to be converted to airport
codes. We want these two outputs to be of type departure and arrival airport
codes, respectively. The converter, city2AirportCode will create data values of
type airport code, but not specifically of type arrival airport code or departure
airport code. Thus requires to promote the input of the converter and demote
the output. But there is information lost in the promote step, which leads to
confusion. (This will be illustrated in case (a) in Figure 6.) In our first attempt
to write this rule, the rule compiler mixed up the types and created calls to
the airportCity2Code converter in which the SourceCity was converted to the
ArrivalAirportCode, instead of the DestinationAirportCode. Promoting the
type from SourceCity to the more general type City causes information about
the specialization to be lost.

7

One impractical way to solve this problem would be to provide one converter
that takes a source city and creates an departure airport code, and another which
converts a destination city to an arrival airport code. In this way the types of the
converters would exactly match the types from the input and output messages.
This is unreasonable because the programs for these two different converters
would be identical, and each converter would be less useful than the original
general converter. Moreover all of these converters would have to be written
before the web services were encountered, defeating the goal of dealing with
unforeseen Web Services.

SourceCity = SourceLocation u City
DestCity = DestLocation u City

DepartureAirportCode = DepartureLocation u AirportCode
ArrivalAirportCode = ArrivalLocation u AirportCode

SourceLocation = DepartureLocation
DestLocation = ArrivalLocation
EuroCurrency v Currency

DollarCurrency v Currency

Fig. 5. Description Logic Axioms for Airport Example

Instead, our strategy is to create special converters dynamically from our
library of general converters. The input and output types are specialized so they
are closer to what is required. In this example, the concept of a SourceCity
is actually defined as the intersection of a SourceLocation and a City, shown
in Figure 5, while DepartureAirportCode is defined as the intersection of a
DepartureLocation and AirportCode. Moreover, the set DepartureLocation
is declared to be identical to the set SourceLocation. Thus the mapping from
SourceCity to DepartureAirportCode can be seen as a specialization of the
mapping from City to AirportCode. (This will be illustrated in case (a.1) in
Figure 6.) Using this specialized mapping to convert the provided SourceCity
gives us the right value for our DepartureAirportCode.

To create the correct specializations, we need to do some description logic
reasoning. We have a tableau-based implementation of an ALC reasoner in-
corporated into our prototype. It is capable of searching among the ancestors
(supersets) of a given concept. If two specific concepts are given and it is asked
whether the first one can be converted to the second, a search is made among the
superconcepts of each, to find some pair of ancestors that is most specific such
that a converter is available from one to the other. In our example the ancestor
types of the SourceCity are SourceLocation and City and the ancestors of
DepartureAirportCode are DepartureLocation and AirportCode. We have a
converter between two of these ancestors: SourceCity and AirportCode). The
other two types, SourceLocation and DepartureLocation, are declared to be
equivalent. From this information, the arrow in Figure 4(c) from SourceCity to
DepartureAirportCode can be drawn.

8

Note that the rule also pays attention to the fact that the Euro currency was
reported as an XML Schema string and needs to be converted to a decimal num-
ber (double) before being passed to the euro2Dollar converter. See Figure 4(d).

3 Creating Transformation Rules

The general procedure of creating the rule can now be described. A desired
downstream Web Service message type is to be constructed, and we have a (set
of) candidate upstream message type(s) that may provide values to be used. At
higher level of abstraction, a reasoning system, such as a planner, has determined
that these messages are compatible. A rule is required that at run-time creates
the desired downstream message from the upstream message(s). The rule must
contain a down conclusion in the head and this must match the structure of
the downstream message, in that internal structures are reproduced within the
Prolog term structure. An up goal with a reproduction of the upstream message
is always added to the body of the rule. For each leaf-level data item in the
downstream message, given its data type R2, we need to identify a source R1

among the data types available in the upstream messages.
There are several possibilities. An upstream data type may exactly match or

be a subconcept of the downstream data type: R1 v R2. In that case we identify
this upstream data as the source for the downstream data. For example, if R1 is
EuroCurrency and R2 is Currency then we are assured that the value in R1 is
appropriate for R2. Two occurrences of a shared variable are placed in the rule,
one in the position of the target datum in the downstream message and one in
the position in this upstream message of the selected matching datum.

An upstream data type may be a superconcept of the target downstream
type: R1 = R2. In that case the datum provided at runtime may or may not be
of the appropriate type for the downstream message. In this case a check can
be placed in the goal to verify that that datum a is of the downstream type,
a ∈ R2, if such a runtime check is possible. For example if R1 is Currency and
R2 is EuroCurrency then at runtime we should check that value in R1 is indeed
a EuroCurrency.

The other possibilities come from the converters. A converter is defined as
a mapping of data values from one type to another where both an element and
its image represent the same individual. For example, a converter might map
measurements in the imperial system to the metric system, but must map a
quantity in one system to an equal quantity in the other. We assume that a
converter C maps S1 → S2.

Suppose there is a converter C available to generate data of the target down-
stream type R2 from some available upstream type R1; in other words by good
fortune the types exactly match R1 = S1 and R2 = S2. Then add a goal to the
body of the rule that calls that converter, where its input variable is shared with
the position in the upstream message of the identified source datum, and the
converter’s output variable is shared with the target downstream datum.

9

Next suppose that the types do not match exactly. There are four cases to
consider, shown as Figure 6(a-d), where the S’s are either subsets or supersets
of the R’s.

Given a data value of type R1 if it is guaranteed to be in S1, as in cases (a)
and (b), we can consider the data to have type S1, promoting it so that we can
use it as the input to the converter. If not, then S1 < R1, and since the type is
demoted, a check at runtime for being in S1 is needed to be sure we can use this
converter. This check is added as a condition of the rule. Similarly for cases (b)
and (d) the output of the converter is guaranteed to be in R2, while for cases
(a) and (c), which are demotions, an additional check is needed.

However, for case (a) there is information loss at both ends. It was this
problem that mixed up our prototype, converting the SourceCity into the
ArrivalAirportCode. It may be possible to retain this information, to pre-
serve the mapping. Suppose that there exists a type T such that R1 = S1 u T
and R2 = S2 u T . Then we may assume that calling the converter with a datum
of type R1 will generate a datum of type R2. See Figure 6(a.1). In our exam-
ple from the previous section, we were able to restrict the domain and range of
C by T , as follows: S1 = City, S2 = AirportCode, R1 = SourceCity, R2 =
DepartureAirportCode, and T = SourceLocation = DepartureLocation.

If no such T exists, it may still be possible to specialize the converter. Suppose
that there exist types T1 and T2 such that R1 = S1 u T1 and R2 = S2 u T2. If
T1 v T2 then the converted value is sure to be a member of R2. See Figure 6(a.2).
Otherwise if T1 = T2 there is a chance that the output of the converter provided
is not in R2, and another goal should be placed into the rule checking that it is.

If there are two sources of upstream information available for the downstream
type, this may mean that the data is not described in sufficient detail to make a
unique determination. More semantic information may needed to disambiguate
the situation. Ambiguity may also arise if there are different converters that could
be applied. We can state that one converter is a better match than the other if it
provides the exact types needed. However there seems to be no general technique
to prefer using one converter over another. If ambiguities arise at rule generation
time, several strategies could be employed: abort, ask a human, deliver a set of
candidate rules, choose a probabilistically best one if a model of probability can
be imposed, etc. We did not consider this problem further.

Note that in many ways the semantic integration of these Web Serices may
fail and even if a rule is produced, it may not map data correctly. This could arise
if the OWL-S descriptions are not sufficiently detailed, if no ontology is available
to connect the data model of the upstream service to that of the downstream
service, and many other reasons. We feel that more experience with marking up
real life Web Services is needed before we can prescribe the sufficient conditions
for producing valid data transformation rules, and the necessary conditions for
succeeding to produce a rule.

In this discussion we have ignored the concrete (syntactic) data types, but at
run time, when Web Service data is actually given, it is important to consider
the XML Schema datatypes in which the data will delivered, either as xsd:string,

10

 (a.1) specialize converter (a.2) specialize and promote

R1
R2

S1 S2

T2 T1

(a) promote-demote (b) promote-promote

(d) demote-promote (c) demote-demote

S1 S2

R1 R2

R1 S2

S1 R2

S1 R2

R1 S2

R1 R2

S1 S2

R1

S1 S2

T
R2

Fig. 6. Cases for specializing the converter

one of the numeric types, etc. The downstream Web Service and the converter
will need to be called with the appropriate data type so a type casting (sometime
called type conversion) may need to be done. Our compiler also considers this
type casting and generates rules with these conversions inserted as necessary.
See Figure 4(d).

The rule compiler is written in Prolog, and uses our Prolog implementation
of a tableau-based ALC description logic engine.

4 Inference Queues

The inference queue plays a fundamental role in the delivery system from the
upstream to the downstream Web Service. As a queue it provides two main
functions: insert and remove, which are asynchronous calls (i.e. they can be
called by separate threads in any order.) The insert operation accepts facts and
rules and places them into the queue. It is non-blocking in that at any time a call
to insert will succeed without any long delays. The remove operation produces
facts that are logical consequences of the already inserted facts and rules. In
particular any inserted facts will eventually be produced by the inference queue
in response to a remove request.

In Section 3 we discuss how the inference queue is incorporated into an
engine for composing Web Services. The inference queue takes on the role of

11

NewFacts is a priority queue of facts, ordered by ¹, that have not yet been
processed. OldFacts is a list of facts that have already been processed. Rules
is a list of rules, and the first condition of each is designated the selected goal.
backgroundProcessingIsComplete is a boolean variable which recalls whether
processing has been done since the most recent remove and is initially true.
mostRecentlyRemovedFact is a fact which has a valid value when background-
ProcessingIsComplete is false.

synchronized insert(c)
if not backgroundProcessingIsComplete

performBackgroundProcessing(mostRecentlyRemovedFact)
endif
process(c)
notify

end insert

synchronized Fact remove()
if not backgroundProcessingIsComplete

performBackgroundProcessing(mostRecentlyRemovedFact)
endif
repeat

while NewFacts is empty
wait

end while
select and remove a new fact fnew from NewFacts

until fnew is not subsumed by any member of OldFacts
set backgroundProcessingIsComplete to false
set mostRecentlyRemovedFact to fnew

return fnew

end remove

synchronized performBackgroundProcessing(fnew)
for each rule r whose first condition unifies with fnew

resolve r against fnew producing r1

process(r1)
end for each
set backgroundProcessingIsComplete to true
add fnew to OldFacts

end performBackgroundProcessing

process(c)
if c is a rule

add c to Rules
for each old fact fold unifying with the selected goal of c

resolve c with fold to produce the new result n
process(n)

end for each
else

add c to NewFacts
end if

end process

Fig. 7. Inference Queue Operations: insert and remove

12

transporting the messages from one partner to the next. The messages are in
XML, but while they are in the inference queue, they are considered to be terms
in logic.

The inference queue has six properties that make it suitable for our task.
(See [11] for proofs.) (1) The engine computes only sound conclusions, which
means they are correct according to the meaning of the given formulas. (2) It
computes a complete set of conclusions, which means that if a conclusion log-
ically follows from the facts and rules that have been inserted into the queue,
then such a conclusion will be produced by the inference queue. (3) The output
is irredundant in that a fact, once produced, will not be produced again. More-
over, suppose one fact is more specific than another, as p(a) is more specific than
p(X) for all values X. (We say that the more specific fact is subsumed by the
more general one.) Then the inference queue will not generate the more specific
fact after it has already produced the more general one. (4) The conclusions are
generated by a fair strategy. This means a generated conclusion will eventu-
ally be chosen as the output to a remove request; it will not be infinitely often
deferred. Combining this property with completeness means we are guaranteed
that every conclusion will eventually be produced, given a sufficient number of
remove requests. To ensure this, the inference queue depends on a partial order,
¹ between the facts, and produces them in accordance with this order. (5) The
calls to insert and to remove are thread safe which means that these calls can
occur simultaneously without the risk of the mechanism getting into an unsafe
state. (6) Calls to insert and remove are responsive which means that there
will not be an infinite delay between calls. This remains true even if the facts
and rules have an infinite number of consequences.

Figure 7 shows the details of how the inference queue operations are defined.
Note that it uses the convention that methods declared to be synchronized are
mutually exclusive; there can not be threads active in two such methods at
once. The insert and remove methods also communicate via wait and notify,
which allows remove to block if the queue is currently empty, but to return a
value when a fact becomes available.

Other features of the inference queue can contribute to other parts of a
robust Web Services architecture, including the ability to detect, report and
recover from errors during service invocation. The inference queue is based on
the jDREW open-source libraries [10].

5 Related Work

The task we perform is similar to that proposed for a broker [4], in that messages
from one Web Service are translated to an appropriate form for another, where
these Web Services are not in direct communication, but pass through a third
party. The abstraction algorithm in [4] is similar to our proposal, but it does not
consider converters.

A recent proposal [5] to align OWL-S to DOLCE, is motivated in part by
the difficulty to state in OWL-S that the output of one process is the input of

13

another. We are interested in this work and look forward to seeing more details
on how the proposal would handle the converters that we have employed.

A number of recent proposals for integration of Semantic Web Services have
been presented. We are not aware of any other work chosing to compile the
integration tasks into rules, yet the integration tasks are similar. For example,
the merge-split of Xu and Embley [14] corresponds to our XML tree reshaping,
and their superset/subset value matching corresponds to our matching of basic
elements, as described in Section 3. They seem not to have incorporated con-
verter rules. Likewise the work of Giunchglia and Shvaiko [8] and that of Silva
and Rocha [9] consider mapping Web Services descriptions. Each of these pa-
pers offers insights for using semantic descriptions to assist with the integration
problems. We are less focused on this task, and more on the rule compilation
and execution tasks, so the approaches can be considered complementary.

The inference queue appears related to rule-based systems, with a long his-
tory from OPS-5 [6] to modern implementations [7]. They include rules for re-
acting to an event E under conditions C to perform action A with postcondition
P; hence are sometimes called ECAP rules. These systems do not usually have
a model theoretic semantics and usually allow one to delete facts. Our system
computes one model incrementally and does not allow deletion of facts; instead
they are preserved. The RETE match algorithm [6] on which most rule-based
systems are implemented bears a resemblance to the resolution-based system
we propose in the inference queue, in that it activates the goals in a rule in
left-to-right order and does high-speed matches from facts, or working memory
elements, to the conditions in the rules. Rule-based systems have a notion of
negation as the non-existence of a fact; we propose to allow negation in the
inference queue in the future.

6 Conclusion and Future Work

To conclude, we introduce a rule-based approach for integrating semantic Web
Services at the grounding level. Suppose a pair of Web Services is selected by
an abstract reasoning system, such as a planner, such that the output of one,
intended as the upstream service, semantically matches the input of the other,
intended to be downstream. Our approach is capable of generating data transfor-
mation rules; data from the upstream Web Service is transformed into the data
model of the downstream service such that the meaning is preserved. The core
transformation steps include reshaping the XML structure (complex data types),
followed by mapping the leaf level elements (the basic components). Special con-
vertors can also be employed as built-in utilities for semantic type conversions or
type casting between the basic components. The inference queue is proposed to
generate messages in their desired formats. Given a set of transformation rules,
the inference queue can produce sound, complete, and irredundant results. It
is also fair, responsive, and thread safe. We illustrate with two use cases. Our
approach compensates for the inflexibility of third-party code and completes the
integration solution after Semantic Web Services discovery and composition.

14

In future work we plan to add a form of negation to the inference queue.
Given a stratification of the literals that is consistent with the partial order
employed by the inference queue, we could then guarantee that any consequence
removed from the queue is consistent with the model of data so far inserted into
the queue. If negative information is later inserted or derived, those previously
removed consequences may not be consistent with the model including the new
information. We will consider whether such a system could be useful in the realm
of Web Services.

Our rules for performing the data transformation are definite clauses for
which all of the reasoning in the descrption-logic level has already been done.
It may be better to compile to SWRL [3] since some of the description logic
reasoning can possibly be deferred until invocation time, as the data passes
through the inference queue. In future work we propose to give the inference
queue DL reasoning ability.

References

1. Harold Boley. The rule markup initiative. http://www.ruleml.org, 2003.
2. OWL-S Coalition. Owl-s 1.0 release. “http://www.daml.org/services/owl-s/1.0/”,

2004.
3. Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combing OWL and

RuleML. http://www.daml.org/2003/11/swrl/, 2003.
4. Massimo Paolucci et al. A Broker for OWL-S Web Services. In Semantic Web Ser-

vices: Papers from the 2004 AAAI Spring Symposium, pages 92–99. AAAI Press,
2004.

5. Peter Mika et al. Foundations for OWL-S: Aligning OWL-S to DOLCE. In Se-
mantic Web Services: Papers from the 2004 AAAI Spring Symposium, pages 52–59.
AAAI Press, 2004.

6. C. Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence, 19:17–37, 1982.

7. Ernest Friedman-Hill. Jess, the expert system shell for the java platform. Technical
report, http://herzberg.ca.sandia.gov/jess/, 2002.

8. Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In Alon Halevy An-
Hai Doan and Natasha Noy, editors, Proceedings of the Semantic Integration Work-
shop, volume Vol-82. CEUR-WS.org, 2003.

9. Nuno Silva and Joao Rocha. Service-oriented ontology mapping system. In
Alon Halevy AnHai Doan and Natasha Noy, editors, Proceedings of the Seman-
tic Integration Workshop, volume Vol-82. CEUR-WS.org, 2003.

10. Bruce Spencer. A java deductive reasoning engine for the web. www.jdrew.org.
Accessed 2004 Jan 12.

11. Bruce Spencer and Sandy Liu. Inference Quenes for Communicating and Monitor-
ing Declarative Information between Web Services. In Michael Schroeder and Gerd
Wagner, editors, Proceedings of RuleML-2003: Rules and Rule Markup Languages
for the Semantic Web, number 2876 in Lecture Notes in Artificial Intelligence.
Springer, 2003.

12. W3C. Web Services Description Language. “http://www.w3.org/tr/wsdl”, 2001.
13. W3C. Owl web ontology language reference. “http://www.w3.org/TR/owl-ref/”,

2004.

15

14. Li Xu and David W. Embley. Using domain ontology to discover direct and indirect
matches for schema for schema elements. In Alon Halevy AnHai Doan and Natasha
Noy, editors, Proceedings of the Semantic Integration Workshop, volume Vol-82.
CEUR-WS.org, 2003.

16

