Reversible Logic Circuit Synthesis

Vivek V. Shende, Aditya K. Prasad,

Igor L. Markov, and John P. Hayes

University of Michigan, Advanced Computer Architecture Laboratory, Ann Arbor, Ml 48109-2122

{vshende,akprasad,imarkov,jhayes

ABSTRACT

Reversible, or information-lossless, circuits have applications in

digital signal processing, communication, computer graphics and
cryptography. They are also a fundamental requirement for quan-
tum computation. We investigate the synthesis of reversible circuits
that employ a minimum number of gates and contain no redun-
dant input-output line-pairs (temporary storage channels). We pro-
pose new constructions for reversible circuits composed of NOT,
Controlled-NOT, and TOFFOLI gates (tlNT gate library) based

on permutation theory. A new algorithm is given to synthesize op-

timal reversible circuits using an arbitrary gate library, and we de-

scribe much faster heuristic algorithms. We also pursue applica-
tions of the proposed techniques to the synthesis of quantum cir-
cuits.

1. INTRODUCTION

In most computing tasks, the number of output bits is relatively
small compared to the number of input bits. For example, in a de-
cision problem, the output is only one bit (yes or no), and the input

}@umich.edu

functions that permute the set of possible input values. For exam-
ple, the butterfly operatiota,b) — (a+b,a— b) is reversible but
isn't a bit permutation. It is a key element of Fast Fourier Trans-
form algorithms and has been used in application-specific proces-
sors from Tensilica. One might expect to get further speed-ups by
adding instructions to allow computation of an arbitrary reversible
function; the problem of chaining such instructions together pro-
vides one motivation for studying reversible logic circuits, that is,
logic circuits composed of gates computing reversible functions.

Reversible circuits are also interesting because the loss of bits
of information implies energy loss [2]. Younis and Knight [18]
showed that some reversible circuits can be made asymptotically
energy-lossless if their delay is allowed to be arbitrarily large. Cur-
rently, energy losses due to irreversibility are dwarfed by the overall
power dissipation, but this may change if Moore’s law holds until
2020 and power dissipation improves [11]. In particular, reversibil-
ity is important for nanotechnologies where switching devices with
gain are difficult to build.

Finally, reversible circuits can be viewed as a special case of
quantum circuits because quantum evolution must be reversible.

can be as large as desired. However, computational tasks in digitalClassical (non-quantum) reversible gates are subject to the same

signal processing, communication, computer graphics and cryptog-
raphy require that all of the information encoded in the input be pre-

“circuit rules”, whether they operate on classical bits or quantum
states. In fact, popular universal gate libraries for quantum com-

served in the output. Some of those tasks are important enough toPutation often contain, as their subsets, universal gate libraries for

justify new microprocessor instructions to HP PA-RISC (MAX and
MAX-2), Sun SPARC (VIS), PowerPC (AltiVec), IA-32 and I1A-64
(MMX) instruction sets [15, 9]. In particular, new bit-permutation
instructions were shown to vastly improve performance of several
standard algorithms, including matrix transposition and DES, as
well as recent cryptographic algorithms Twofish and Serpent [9].
Bit-permutations are a special caser@fersible functionsthat is,

*This work was partially supported by the Undergraduate Sum-
mer Research Program at the University of Michigan and by the
DARPA QuIST program. The views and conclusions contained
herein are those of the authors and should not be interpreted a
necessarily representing official policies of endorsements, either

expressed or implied, of the Defense Advanced Research Projects

Agency (DARPA), the Air Force Research Laboratory, or the U.S.
Government.

Permission to make digital or hard copies of all or part of this work for

classical reversible computation. While the speed-ups which make
guantum computing attractive are not available without purely quan-
tum gates, logic synthesis for classical reversible circuits is a first
step toward synthesis of quantum circuits. Moreover, algorithms
for quantum communications and cryptography often do not have
classical competitors because they act on quantum states, even if
their action in a given computational basis corresponds to classical
reversible functions on bit-strings. Another connection between
classical and quantum computing comes from “pseudo-classical”
circuits, as used, e.g., in Grover's search algorithm [4]. These cir-
cuits are close to classical reversible circuits [5] and their definition

Snvolves an arbitrary one-output (irreversible) Boolean function.

We now briefly review existing work on classical reversible cir-
cuits. Toffoli [16] gives constructions for an arbitrary reversible
or irreversible function in terms of a certain gate library. How-
ever, his method makes use of a large (although linear in the input
size) number of temporary storage channels, i.e. input-output wire-
pairs other than those on which the function is computed. Sasao
and Kinoshita show that any conservative functidiix{ is con-

personal or classroom use is granted without fee provided that copies areservative ifvx, x and f(x) contain the same number of 1s in their

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWLS 2002June 4-7, 2002, New Orleans, Louisiana, USA

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

125

binary expansions) has an implementation with only 3 temporary
storage channels using a certain fixed library of conservative gates,
although no explicit construction was given [12]. Kerntopf uses ex-
haustive search methods to examine small scale synthesis problems

and related theoretical questions about reversible circuit synthesis S

[6]. Finally, members of the Portland Quantum Logic Group pro- ?i%

pose a general heuristic for reversible logic synthesis [11]. & & ? m ><
Our work pursues synthesis of optimal reversible circuits which

can be implemented without temporary storage channels. In Sec-

tion 3 we show by explicit construction that any reversible function

which performs an even permutation on the input values may be Figure 2: Two reversible circuit equivalences.T(1,2;3)-N(1)-

synthesized using theNT (CNOT, NOT, TOFFOLI) gate library ~ T(1,2;3)-N(1) =C(2;3), andC(3;2)-C(2;3)-C(3;2) = 52,3)

under such constraints. In Section 4 we present synthesis algo-

rithms for decomposing such a function into a circuit with a mini-)) o) o

mal number of gates. Besides branch-and-bound, we use dynamic We will be working with circuits from a pre-given, limited gate

programming that exploits reversibility. Empirical results are given llPrary. Usually, this will be theCNT gate library, consisting of
in Section 5, and applications to quantum computing in Section 6. the CNOT, NOT, and TOFFOLI gates defined above. Sometimes,

we will take subsets, and speak of, say, @i gate library. We
will also on occasion add the SWAP gat,a 2x 2 gate which
2. BACI_(GRQUND o)) exchanges the inputs; that {g,y) — (Y, X).

In conventional (irreversible) circuit synthesis, one typically starts As with reversible gates, a reversible circuit has the same number
with a universal gate library and some specification of a Boolean of input and output wires; again we will call a reversible circuit with
function. The goal is to find a |OgiC circuit that implements the n inputs amxn Circuit’ or a circuit om wires. We may also draw
Boolean function and minimizes a given cost metric, e.g., the num- an “invisible box” around @ x n circuit and think of it as the inner
ber of gates or the circuit depth. At a high level, reversible circuit workings of am x n reversible gate.
synthesis is just a special case in which no fanout is allowed and all ' Thjs also allows us to draw reversible circuits as vertical arrays of
gates must be reversible. horizontal lines (representing wires), in which gates are represented
by vertically oriented symbols. For example, in Figure 1, we see a
reversible circuit drawn in standard notation [10]. Thesymbols
represent inverters and thesymbols represent controls. A vertical

A necessary condition is that the gate have the same number ofline connecting a control to an inverter means that the inverter is
input and output wires. If it hak, it is called ak x k gate, or a only applied if the wire on which the control is set carries a signal.
gate onk wires. We will think of themth input wire and thenth Thus, the gates used are (from left to right), TOFFOLI, CNOT,
output wire as really being the same wire. Many gates satisfying NOT, TOFFOLI.
these conditions have been examined. We will consider a specific The truth table in Figure 1.b is the only truth table appearing
set, defined by Toffoli [16]. in this paper. Since we will be dealing only with bijective func-

tions fromBK — BX, we represent them using tlogcle notation

DEFINITION 2. Ak-CNOT is ak+1) x (k+1) gate. ltpasses known from elementary algebra. That way, every permutation is
the first k inputs through unchanged, and inverts the last iff the represented by disjoint cycles of variables. For example, the truth
others are alll. (These gates are all reversible.) table in Figure 1 is represented b9,1)(2,3)(4,5)(6,7) because
the corresponding function swaps 000 (0) and 001 (1), 010 (2) and
011 (3), etc. The set of all permutationrofetters is denote&, so
the set of bijective functions from" to itself isSpyn.

As the permutatiori0, 1)(2,3)(4,5)(6,7) may be computed in a
circuit with only gates from th€NT gate library, we will call it
CNT-constructible. More generally:

DEFINITION 1. A gate is reversible if the (Boolean) function it
computes is bijective.

The first three of these have special names. The 0-CNOT is just
an inverter, referred to as a NOT gate. The 1-CNOT, which passes
the first input through and inverts the second if the first input is 1,
is referred to as a CNOT (controlled-NOT). The 2-CNOT is called
a TOFFOLI gate. Together, the NOT, CNOT, and TOFFOLI form
a universal set of gates for classical reversible circuits [16] (we will
be more specific about what this means later). They are also attrac- DeriNITION 4. LetL be a (reversible) gate library. An L-circuit
tive for quantum computing [10] where additional, purely quantum, s a circuit with only gates from L, and a permutatiore S is L-
gates are required for universality. constructible if it may be computed by axm L-circuit.

DerINITION 3. Awell-formed reversible logic circuit is an acyclic Note that a circuit consisting of just an inverter on the’ line
combinational logic circuit in which all gates are reversible, and computes the same function as the circuit in Figure 1. Pairs of
are interconnected without fanout. circuits computing the same function are very useful, since we may
substitute one for another. Two more such pairs are given in Figure
2. On the right, we see that thr€egates may be used to replace a

a a a b c|la b ¢ X : :
y 0 0 0/0 0 1 Sgate; on the left we see that tB&T gate library is redundant, in
b b 00 1/0 0 o that we may replace every occurrence & gate with twoT gates
c c o1 0lo0 1 1 and twoN gates. We will still use thENT gate library in synthesis
T ¢ N T 01 1/0 1 o to reduce gate counts and potentially speed up synthesis (Figure 2,
10 0/l1 o 1 shows how to replace 4 gates with ddgate). In fact, for the same
1 0 1/l1 0 o reason, we will sometimes add tBayate, and consider t@NT S
1 1 0l1 1 1 gate library.
11 1]1 1 O DEFINITION 5. Two reversible circuits are equivalent if they
€Y (b) compute the same function.
Figure 1: (a) Reversible circuit, (b) the function it implements. The left box in Figure 2 illustrates the use of “temporary stor-

age”. Computing a CNOT usually only takes 2 wires, but if we do

126

it with two NOT gates and two TOFFOLI gates, we need a third
wire. The value of the third wire is irrelevant to the computation,

permutatiorrte Aon may be written as the product of disjoint trans-
position pairs. For a proof, consult Proposition 12 in the appendix.

and emerges unaltered. More generally, consider the general redt therefore suffices to show that disjoint transposition pairs are con-

versible circuit of Figure 3. The top— k lines transfem — k sig-
nalsY to the corresponding wires on the other side of the circuit.
The bottomk go in as the input valuX and emerge as the output

structible, as we may chain together their circuits to obtain the cir-
cuit for . First, we observe that the permutation with cycle de-
composition(0,1)(2,3) can be computed by a circuit consisting of

value f(X). These lines often serve as an essential workspace fora (n— 2)-CNOT gate with the controls on the top- 2 wires and

computingf (X). Following Toffoli, we say tha€ computesf (X)
usingn—k lines of temporary storage [16]. Figure 1 provides an-
other example; the circuit there computes N©O3n thec-c’ wire,
using the top two wires as temporary storage.

We now formally define what it means for a librakyof re-
versible gates to beniversal

DEFINITION 6. Let L be a reversible gate library. Then L is
universal if for all permutationst € Sy (for all k) there exists some
| such that some L-constructible circuit computessing | wires of
temporary storagé.

3. THEORETICAL RESULTS
AND HEURISTICS FOR SYNTHESIS

It is a result of Toffoli that theCNT gate library is universal; he

the inverter on the bottom wire, with &hgate on each side of each
control. We may replace th@g — 2)-CNOT gate with a linear (in
n) number ofC gates [1].

LetS={a,b,c,d} with a,b, c,d distinct. In Proposition 13 in the
appendix, we explicitly construct a circuit computing a permutation
Tis such thatris(a) = 0, ig(b) = 1, ig(c¢) = 2, andrig(d) = 3. Be-
cause(a,b)(c,d) = 1g(0,1)(2, S)Tgl, there is a circuit computing
(a,b)(c,d) by chaining together first a circuit computimg, then
the circuit computing(0,1)(2,3), and finally a circuit computing

~1

Finally, if c(m) is the cardinality of the support af, then there
are®(nc(m)) gates used in this constructioe() < 2". 0

The following two corollaries (i) give a way to synthesize circuits
computing odd permutations using temporary storage, and (ii) ex-
tend the result of Proposition 2 to an arbitrary universal gate library.

also showed that one may bound the amount of temporary storage

required to compute a permutation$» by n— 3. We are inter-

PrROPOSITION 3. If TT€ Sn is any permutation, then we may

ested in trying to synthesize permutations using no extra storage.computertusing the CNT gates and one wire of temporary storage.

As a first step, we would like to know for which permutations this

may actually be done, using a reasonable gate library. Toffoli gave Proof: Suppose we hadrax n gate G computingt, and we placed

a negative result in this direction, but to state it we must introduce
the concept of an even permutation.

DEFINITION 7. A permutation is called even if it may be writ-
ten as the product of an even number of transpositfofiae set of
even permutations in,3s denoted A, and it is a result of elemen-
tary algebra that half the permutations are even fos .

PROPOSITION 1. Any nx n circuit with no nx n gates com-
putes an even permutati¢h6].

In particular, since thENT gate library contains no gates of size
greater than 3, Proposition 1 implies that ev€lT-constructible
permutation is even fan > 4. We now investigate the converse.

PROPOSITION 2. Every even permutation is CNT -constructible.

Proof: It follows from a result of Toffoli [16] that every permu-
tation in Sy is CNT-constructible fon < 4. Suppose > 4. Any

INote that we do not allow constant signals.
2|t is a result from elementary algebra that if a permutation may be

it on the bottorm wires of an(n+ 1) x (n+ 1) reversible circuit; let
Tbe the permutation computed by this new circuit. Then by Propo-
sition 1,Ttis even, so by Proposition &is CNT-constructible. Let

C be aCNT-circuit computingrt. Then C computeswith one line

of temporary storage. 0

PROPOSITION 4. If Lis any universal gate library, then for suf-
ficiently large n, permutations insA are L-constructible, and per-
mutations in & are computable with one wire of temporary stor-
age.

Proof: SinceL is universal, there is some numbesuch that we
may compute the permutations corresponding to the NOT, CNOT,
and TOFFOLI gates using at mdstotal wires. Letn > k, and let

1€ Axn. By Proposition 2, we may find@N T-circuit C computing

TG, replace every occurrence Nf C, or T with a circuit computing

it. The second claim follows similarly from Propositions 2, 3

Since Proposition 2 is proven by an explicit construction, we
may implement it as a circuit synthesis heuristic which produces
(very) suboptimal circuits. For permutations Aan, the runtime
and the length of the circuits produced are botm2"), suggesting

written as the product of an ‘odd number of transpositions, then it that this technique should work with circuits of up to approximately

may not be written as an even number of transpositions.

k-1 C k1]
X | £(X)

Figure 3: A reversible circuit with n-k wires of temp. storage.

127

20 inputs.

Later, we describe an algorithm which will synthesize optimal
circuits from an arbitrary gate library. Roughly speaking, the per-
formance of this algorithm is improved by using a smaller gate li-
brary, as long as the average circuit length is not significantly in-
creased. We will show that the inverters i€l T-circuit may be
pushed to the end of the circtit.

DEFINITION 8. IfLj...Lgare gate libraries, an . .. |Ly-circuit
is an Ly-circuit followed by a kL-circuit, ..., followed by an k-
circuit. A permutation computed by an|L.. |L circuitis “L 1] ... |Lk-
constructible”.

3This is analogous to pushing all inverters in an AND-OR-NOT
circuit to the inputs by applying De Morgan’s laws.

T 1T

57]
S
S
57]

N N
N\ N TN N ZAaN N ZAaN

Soa

44

<

PR

vt

Figure 4: Equivalences between reversible circuits used in our constructions.

ProPOSITION 5. Every CNT -circuit is equivalent to some QN-
circuit.
Proof: First, we move all theN gates toward the outputs of the
circuit. Each box in Figure 4-left indicates a way of replacing an
N|CT circuit with aCT|N circuit. Moreover, every possible way
for an N gate to appear to the immediate left o€ar aT is ac-
counted for, up to permuting the input and output wires.

Now, number the noiN gates in the circuit in a reverse topo-
logical order starting from the outputs. In particular, if two gates

appear at the same level in a circuit diagram, they must be indepen-

dent, and one can order them arbitrarily. Hdie the number of the
highest-numbered gate with &hgate to its left. AlIN gates past
thed-th gateG may be reordered with th® gate without introduc-
ing newN gates on the other side &. In any event, as there are
no remainingN gates to the left o6 anymore,d decreases. This
process terminates with all tiNegates are clustered together at the
circuit outputs.

If we make sure to always cancel redundahgates, then no
more than 2 new gates will be introduced for each non-inverter
originally in the circuit; additionally, there will be no more than
n total N gates when the process is complete. Thus if the original
circuit hadl gates, then the new circuit has at most-31) +n
gates. 0

PROPOSITION 6. The permutatiomcomputed by a C[N-circuit
uniquely determinesct and Ty computed by the CT and N sub-
circuits.

Proof: C andT gates (and hend@T-circuits) fix 0. Thusr(0) =
v (0). But the image of O (or anything else) under Mrtircuit

completely determines thay. Thentct = TlT[ﬁl = Ty. 0

Thus, if we are looking for &N T-circuit computing a permuta-
tion 11, we may quickly computeyy and then simplify the problem
to that of looking for aCT-circuit computingmry. By Proposi-
tion 5, we know that the gate-minimal circuit of this form has at

most about three times as many gates as the gate-minimal circuit

computingrt

Given that the pictures in Figure 4-right show how to move a
gate past & gate, and account for every possible wag anay
appear to the left of & (up to permuting wires), one might expect
everyCT circuit to be equivalent to @ |C circuit. This is not the
case. We note that the proof of Proposition 5 in fact requires the
ability to move an arbitrary number &f gates past any other given
gate, while Figure 4-right only allows us to moveClgate past a
given T gate. However, mangT circuits are equivalent td|C
circuits, and in this case the following result holds:

PROPOSITION 7. The permutatiomcomputed by a JC-circuit
uniquely determines permutatioms and 1c computed by the T
and C sub-circuits.

Proof: Any C-circuit is linear [11], so it suffices to check its values
on the basis elements corresponding to the binary expansiohs of 2

128

As anyT circuit fixes thesem(2') = ¢ o 17 (2') = 1¢(2'), so the
permutationmtuniquely determinesc. T = TUEl. .

Proposition 7 implies, in particular, that the number of permuta-
tions in Sy that areT |C-constructible is equal to the number that
areC-constructible times the number that areconstructible. In
the results section, we will use this fact to show that there exist
CT-constructible permutations which are AgC-constructible.

4. OPTIMAL SYNTHESIS

Now that we know which permutations admit circuit realizations
without extra storage, we seeptimalrealizations of this type. A
circuit is optimal if no equivalent circuit has smaller cost; in our
case, the cost function will be the number of gates in the circuit.

PrRoPOSITION 8. (Property of Optimality) If S is a sub-circuit
of an optimal circuit C, then S is optimal.
Proof: Suppose not. Then I& be a circuit smaller (in the number
of gates) tharg, but computing the same function. If we replége
by S, we get another circulf’ which computes the same function
asC. But since we have only modifie we must have that' is
as much smaller tha@ asS is smaller tharS. However,C was
assumed to be optimal, hence this is a contradiction. Note: there
may be many equivalent circuits with the same number of gates as
S O

We will use an iterative-deepening A* (IDA*) search procedure
[7] to find an optimal circuit computing a given permutation. An
IDA* algorithm first examines possible solutions of cost 1, then
possible solutions of cost 2, and so on. Pseudo-code for the IDA*
framework of the algorithm is given in Figure 5. Once a circuit
is found, it must be optimal since we have examined all smaller
circuits already. We will use the property of optimality to speed up
search.

CIRCUIT synthesize(PERM)

{

if (PERM==IDENTITY) return EMPTY
/I otherwise, use IDA* to find a circuit.
for(DEPTH <« 1, DEPTH < MAXDEPTH; DEPTH++)

_CCT;

{
CIRCUIT « find _circ(DEPTH, PERM, EMPTY _CCT);
if (CIRCUIT != NIL) return CIRCUIT;

}
}

Figure 5: Finding an optimal circuit computing permuta-
tion PERM. Returned value NIL means “not found”. See
find _circ() in Figure 6.

We know that the firsk gates of an optimal circuit of coatmust
form an optimal circuit. So, fixing in advance, we extend the
gate library into a “circuit library” of optimal circuits of costor

CIRCUIT find _circ(COST, PERM, CURR _CCT)
{
if (COST < k)
/I if PERM can be computed by a circuit
/I with fewer at most k gates,
/I such a circuit must be in the library
return CURR _CCT + LIB[DEPTH].find(PERM));
else
/I The goal circuit must have >k gates;
/I Try constructing it from k-gate circuits
for each C in LIB[K]
{
/I divide PERM by permutation computed by C
PERM2+ PERM * INVERSE(C.perm)
/Il and try to synthesize the result
TEMRCCT « find _circ(depth-k,PERM2));
if (TEMP _CCT != NIL) return TEMP _CCT;

Figure 6: Finding a circuit of cost <COST or less that com-
putes permutation PERM (NIL returned if no such circuit ex-
ists). CURR.CCT, TEMP _CCT and records in LIB represent
circuits, and include a field “perm” storing the permutation
computed. The * character means concatenation of circuits,
and NIL*anything=NIL.

less, and store them in an array LIB such that LIB[d] is a collec-
tion of d-gate circuits. Then, to find a circuit of castcomputing

a given permutation, we iterate through optimal circuits of ¢pst
and for each we recursively look for an optimal circuit of costk
that, together with the current circuit of cdstcomputes the de-
sired permutation. Ifi—kisk or less, we look in our circuit library

to check if the desired circuit exists. Pseudo-code is given in Fig-
ure 6. For any complete gate library IDA*-search terminates if and
only if a circuit computing the desired function exists (the exis-

Size N C T NC CT NT | CNT | CNTS

12 0 0 0 0 0 47 0 0

11 0 0 0 0 0| 1690 0 0

10 0 0 0 0 0| 8363 0 0

9 0 0 0 0 0 | 12237 0 0

8 0 0 0 0 6 | 9339 577 32

7 0 0 0 14| 386 | 5097 | 10253 | 6817

6 0 2 0| 215| 1688 | 2262 | 17049| 17531

5 0| 24 0| 474 | 1784 870 | 8921 | 11194

4 0| 60 5| 393| 845 296 | 2780 | 3752

3 1| 51 9| 187 | 261 88 625 844

2 3| 24 6 51 60 24 102 134

1 3 6 3 9 9 6 12 15

0 1 1 1 1 1 1 1 1

Total 8| 168 | 24| 1344 | 5040 | 40320 | 40320 | 40320
Time,s| =0 | ~ ~0 30| 215 97 40 15

Table 1: Size distribution of optimal 3-wire L-circuits, for sub-
setsL of the CNT Sgate library. Runtimes are given for 2GHz
Pentium-4 Xeon.

cuit sizes. For example, Table 1 lists the numbek-gbnstructible
permutations for various subsétof theCNT Sgate library.

While we cannot theoretically validate every entry of Table 1,
we can check the totals. Every reversible function on 3 wires can
be synthesized using ti@NT gate library [16], and there are 8!
40320 of these. All those can be synthesized withNfelibrary
because th€ gate is redundant in t@NT library (Figure 2 shows
how to replace & gate with twoN and twoT gates). On the other
hand, adding th8gate to the library cannot decrease the number of
synthesizable functions. Therefore, the totals inffeandCNT S
columns must be 40320 as well.

On the other side of the table, the number of posdiblgrcuits
is just 2 = 8 since there are three wires, and there may be at most
oneN gate per wire in an optimal circuit (since otherwise we may

tence problem is addressed in Section 3). Therefore, our algorithmcancel redundant pairs.) By Propositions 5 and 6, the number of

needs an additional termination condition that would prevent infi-

NC-constructible permutations should be the product of the number

nite looping if no solution exists. In general, we can stop the search of N-constructible permutations and the numbe€afonstructible

procedure at some fixed cost, but if the total number of optimal
circuits that may be synthesized with a given gate library is small

permutations, since amyC-constructible permutation may be writ-
ten uniquely as a product of @h constructible permutation and a

enough to be stored in memory, we use a different approach. WeC constructible permutation. So the total in tN€ column should

store all permutations for which our algorithm finds circuits along

be the product of the totals in tl@and N columns, which it is.

the way. Suppose we discover that there are no optimal circuits Similarly, the total in theCNT column should be the product of

of costn (for somen). Then the property of optimality implies
that any circuit withn gates or larger is suboptimal, and we may
stop looking. Note that if a permutation is not synthesizable, this
termination condition will trigger sooner or later. That is because
there are only finitely many synthesizable permutation aires,
versus infinitely many circuits ow wires.

Generating the circuit library may be done in the following fash-
ion. We begin with a library of maximum cost 1, since this is just
a gate library. To generate the library of maximum dostl from
a library with maximum cosk, it suffices to iterate through the op-
timal circuits of cosk and, for each, try each way of appending a
gate to the end. By the property of optimality, this examines every
optimal circuit of lengthk+ 1.

5. EMPIRICAL RESULTS FOR
CLASSICAL REVERSIBLE CIRCUITS

the totals in theCT andN columns; this would allow us to deduce
the total number o€ T-constructible permutations from values we
know.

Finally, it is possible to show that the number of permutations
implementable om wires withC gates only is|'|i”:‘ol(2n —2"). For
n = 3 this formula gives 168 and agrees with Table 1. To derive
this formula, observe that th@ gate defines a linear transforma-
tion over the two-element fieleb. This means that if we apply an
n-wire circuit consisting of on€ gate to two sets of input values,
then the bit-wised of the outputs equals the output of the circuit
on the bit-wisep of the inputs. This leads us to considér22"
matrices with 0-1 entries because they can capture linear operators
overF,. SinceC gates are invertible, we also require that all matri-
ces be reversible. In algebra this matrix group is den@kegF,)
[11]. It turns out that th&-constructible permutations bijectively
correspond to matrices iBLy(F2). To produce the counting for-
mula above, observe that a linear mapping is fully defined by its

We may use the algorithm explained in the previous section to values on basis vectors. There afe-21 ways of mapping the™

find the length of the optimal circuit computing some given permu-
tation. Doing this for all permutations which may be computed on,
say, three wires, we can determine the distribution of optimal cir-

129

bit-string 10..0. Once we fixed its image, there aré-22 ways of
mapping 010.0, and so on. Each time we map one of these ba-
sis bit-strings it can’'t map to the subspace spanned by the previous

bit-strings. This is why we have"2- 2' choices for thé-th basis CircuitSize JOJ1]2[3[4]5]6]7] Total]
bit-string. Once all basis bit-strings are mapped, the mapping of Lcreuits of thatsizel] 1 [7[21]35][35[24]4 [1] 128 |
the rest is specified by linearity.

We observed that the longest optin@xcircuits on 3, 4 and 5
wires merely permute the wires. Our experimental data supports
the conjecture that no optim@lcircuit onn wires has more than
3(n—1) gates, and the ones withrB— 1) gates represent wire
permutations that leave no wire fixed. However, an information- circuits [5].
theoretic counting argument shows that the optimal gate count in an Proof: Define the permutatlom by f(x y) = (x,y® f(x)), and de-
optimal C-circuit is at IeasO(nZ/Iog(n)). This asymptotic bound fine a unitary operatods by letting it permute the states of the

Table 3: Optimal 3+1 oracle circuits for Grover’s search algo-
rithm.

is produced by comparing the number of unidikircuits onn computational basis accordlng fo An additional qubit (wire)

wires and the number of circuits formed by chains of umit@ is initialized to the staté—) = -1 (|0) — |1)) so thatUs|x,—) =

gates [13]. Since this non-constructive argument is based on count- V2)

ing, finding some worst-case circuits and describing families with (— 1)"™|x, —) If we now ignore the value of the last qubit, the sys-

worst-case asymptotics remains an interesting challenge. tem is in the staté—1)"*|x), which is exactly the state needed
Since wire-swaps require three gates from@nT library, we for Grover's algorithm. Since a quantum operator is completely

tried adding the swap gate, S, to our gate library. On average, cir- determined by its behavior on a given computational basis, any cir-
cuit sizes On|y |mpr0ved by one gate. On a 2GHz Pentium-4 Xeon, cuit Implementlngf lmplementQJf In partlcular since reversible

if we do not make use of a circuit library generating the Table 1 is gates may be implemented with quantum technology, we may syn-
not possible in many hours. Generating a circuit library up to three thesizeU; as a reversible logic circuit. O
gates k = 3) takes less than a minute, and all of Table 1 can be
generated in minutes.

Although it is unrealistic to produce complete statistics for 4-
wire functions (there are 16! of them), average synthesis times for
takes less than a second when the input function can be imple-.
mented in 8 gates or less (in this case, our circuit library contains functions .
optimal circuits with up to 4 gates). CNT-constructible functions . e . . .

L Given aCNT-constructiblef, we can use the algorithm given in
requiring 9 or more gates have been observed to take at least 1. 5Sectlon 4to find the smallest circuit taking this form. Figure 3 gives
hours to synthesize. The reason for the large jump after the 8 gate, 9 g 9

the optimal circuit sizes of functions corresponding to 3-input 1-

mark is that this is when the recursion starts having to go 3 levels .
q . ST . - output functionsf (we call such functions “3+1 oracles” because

eep. Improving the way the circuitlibrary is stored would improve they operate on four wires). These circuits are significantly smaller
performance, but, it is unrealistic to expect optimal synthesis meth- yop . Lo . re sig Y S

) . than many optimal circuits on four wires. This is not surprising, as

ods to scale very far. This algorithm does, however, scale betterthe erform less comoutation
than its irreversible counterparts [8], primarily because application yp P ’

T . . In Grover oracle circuits the main input lines preserve their input
of the property of optimality to the reversible case is much more . .
straightforward. values and only the temporary storage lines may change their val-

ues. Therefore Travaglione et al. [17] studied circuits where some

lines cannot be changed even at intermediate stages of computa-

6. QUANTUM COMPUTING APPLICATIONS tion. In their terminology, a circuit witk lines that we are allowed
This section presumes some familiarity with quantum computing to modify and an arbitrary number of read-only lines is called a

not required elsewhere in the paper. Background can be found ink-bit ROM-based circuit. They show how to compute permutation

the book [10] by Nielsen and Chuang. Grover’s search algorithm is f arising from a Boolean functiof using a 1-bit quantum ROM-

a quantum algorithm that allows one to sedxchnordered items in based circuit, and prove that if only classical gates are allowed, two

O(+/N) time, where the desired items are identified by a Boolean writable bits are necessary. Two bits are sufficient if@NT gate

predicate. This improves upon the best possible asymptotics for library is used. Their synthesis algorithms rely on EXOR-SUM

classical computation, which B(N). decompositions of . We state their result and outline their con-
Grover’'s search uses a quantum circuit that flips the sign of those struction.

states in the computational basis that satisfy the predicate, and leaves

all other states unchanged. Quantum states in the computational ba- PrRoposITION 10. Given an EXOR-SUM decomposition of a

sis can be thought of as stringshbits. If f is a Boolean function function f, we may synthesize a reversible 2-bit ROM based CNT -

that evaluates to 1 on desired basis states and 0 on other basis statesircuit computing(x,a,b) — (x,a,b® f(x)), where x is a k bit input

the circuit needs to change an arbitrary basis gtatéo the state [17].

(=1)f™|x). Such a circuit computes a transformation given by a Proof: It suffices to know how to transforiix,a,b) — (x,a,b& p)

diagonal matrix with entries-1 and can be synthesized from basic for an arbitrary product of uncomplemented literpjbecause then

We are interested in circuits for such functions, therefore we first
question whethef is CNT-constructible, i.e., whether the permu-
tation f is even. Sincef swaps(x,y) with (x,y® f(x)), it may
be written as a product of{# : f(x) = 1} transpositions. Thu$
is even iff this set has even cardinality, which is true for 50% of

gates for quantum computation [5]. we may add the terms in an EXOR-SUM decomposition term by
Most works on Grover’s algorithm do not address the synthesis term. So, without the loss of generality, let=x; ... xm.
of the above quantum circuits defined by Boolean functibnac- Denote byT (a,b;c) a T gate with controls o, b and inverter

cording to Bettelli et al. [3], this is a major obstacle for automatic onc. Similarly, denote byC(a;b) aC gate with control ora and
compilation of C++-like quantum programs, and no solutions are inverter onb. Number the ROM wires 1.k, and the non-ROM
known. wiresk+ 1 andk + 2. Let us first suppose that there is at least one
uncomplemented literal, and putCil,k+ 2) on the circuit; note
PrRoPOSITION 9. The problem of synthesizing a quantum cir- thatC(1,k+ 2) applied to the inputx, a,b) gives(x,a,b®x;). We
cuit that transforms computational basis statgs to (—1)*)|x) will write this asC(1,k+2) : (x,a,b) — (x,a,b®x;), and denote
can be reduced to a problem in the synthesis of classical reversible this operation by;. Then, we define the circuit) as the sequence

130

Size O(1]2 (3 |4 |5 |6 |7 [8 |9 1011121314 | 15|16 | 17|18 | 19| 20| 21| 22|23 | 24| 25| 26
Exor 1146 |4 |4 |12|18|12]|6 |[12]|19|16|10|8 |[10]|16| 19| 12| 6 1218|124 |4 |6 |4 |1
OptT |14 |6 |4 |4 |12]21|24|29|33|44|46(|22|5 |1 |0 |0 |[O |O]|]O |O|O |O]|JO [O |O |O
Opt 117121135 (36|28|28[36|35|21]|7 1 /00]JO|O O[O |]O]JO|O]|O|O]O |[O|O|O

Table 2: Circuit size distribution of 3+2 ROM based circuits synthesized using various algorithms.

of gatesT (2,k+2,k+ 1)VoT(2,k+2,k+ 1)V, and one may check
thatV, : (x,a,b) — (x,a®x1%2,b). We definev, by exchanging the
wiresk+ 1 andk+2; clearlyVs : (x,a,b) — (X,a,b@® x1x2).

More generally, given a circuf : (X,a,b®xg...x_1) = (X,ad®
x1..-%), we define/, ; :==T(1+1,k+2,k+ DT (I +1,k+2,k+
1)M; one may check tha¥/ , : (x,a,b) = (x,a®x1...X1,b).
DefineV, 1 by exchanging the wirels+ 1 andk+ 2; then clearly
Vit1: (X,a,b) = (x,a,b®x1...X141). By induction, we may get
as many uncomplemented literals in this product as we like

A careful count of the number of gates used yields the following.

PrRoPOSITION 11. If a function’s EXOR-SUM decomposition
consists of only one term, let k be the number of literals appearing
(without complementation) If J 0 then there will be3- 2k-1 -2
gates.

We applied the above construction [17] to all 256 functions im-
plementable in 2-bit ROM based circuits with 3 bits of ROM. The
circuit size distribution is given in the line labeled “Exor” in Table
2. That is compared with optimal circuit sizes produced by the al-
gorithm from Section 4. The line “Opt T" gives the size distribution
of circuits synthesized under the restriction [17] thiat control bit
per gate be on a ROM bit, which is observed by the EXOR-SUM
based heuristic. This is whyj the sum of the firs§ numbers in
the “Opt T” line is> than that in the “Exor” line. Travaglione et al
[17] mention that their results do not depend on the above restric-
tion, and the “Opt” line of Table 2 relaxes it.

The “Exor” line of Table 2 tooks2 minutes to generate. Using a
circuit library with up to 6 gates (191Mb file, 1.5 min to produce),
the “Opt” line took~ 5 minutes to generate. Using a 5-gate library
improved the runtimes by at least 2x if we do not synthesize the
only circuit of size 11. To produce the results in the “Opt T” line,
we first found (in 15 min) the 250 optimal circuits of size 12 and
less using a 6-gate library (61Mb, 5min). The remaining 6 func-
tions were synthesized in 5 min using a 7-gate library (376Mb, 10
min). This required>1Gb or RAM.

Although most functions computable by a 2-bit ROM-based cir-
cuit actually require 2 bits [17], there is a simple algorithm for de-
termining if a function may be computed by a 1-bit ROM-based
CNT-circuit, and find an optimal circuit if so. It is facilitated by
the observation that gates in the circuit may be reordered any way
we like, as no gate affects the inputs to the control-bits of any other
gate. This means that any given gate will flip the output bit, or not,
depending only on the original value of the input bits. Every gate
in theCNT library is involutive, so there can be at most one copy
of each gate applied to a given subset of wires. Thus, to synthe-
size the given permutation, we simply check its value on each input
combination with 0, 1, or 2 ones in its binary expansion (again, we
have relaxed the restriction that only 1 control may be on a ROM
wire). If the value of the function is 1, the circuit must havéla
C or T gate controlled by those bits. Note that this gives a way of
determining if a given permutation can be synthesized by a 1-bit
ROM-basedCNT-circuit.

In the case ok + 1 ROM synthesis, it is clear that adding the
S gate to the gate library will never decrease circuit sizes: no two

131

wires may be swapped since at least one of them is a ROM wire.
In the case ok+ 2 ROM synthesis, it is at least intuitively plausi-
ble that the same will be true, as if two wires are to be swapped,
they have to be the two non-ROM wires — one of which must be re-
turned to its initial value by the end of the computation. We ran an
experiment comparing circuit lengths in the 3+2 ROM based case
and found no improvement in circuit sizes upon addingSigate,
however we have been unable to prove this in general.

7. CONCLUSIONS

Reversible circuits have numerous applications, from cryptogra-
phy to subroutines of quantum algorithms. In this work, we study
optimal and heuristic synthesis methods of reversible circuits using
no temporary storage. We show constructively that all even per-
mutations can be synthesized in this manner, and propose heuristic
algorithms for synthesis. We give circuit equivalences which are
useful to push NOT gates to one end of the circuit, and possibly
for future research on optimization heuristics. We describe an al-
gorithm for the synthesis of optimal circuits, and demonstrate its
application to Grover's search in quantum computing.

8. REFERENCES

[1] A. Barenco et al., “Elementary Gates For Quantum
Computation” Physical Review A2, 1995, pp. 3457-3467.

[2] C. Bennett, “Logical Reversibility of ComputationlBM J.
of Research and Developmeh?, 1973, pp. 525-532.

[3] S. Bettelli, L. Serafini and T. Calarco, “Toward an
Architecture for Quantum Programming”, Nov. 2001
(version 2), http://arxiv.org/abs/cs.PL/0103009.

[4] L. K. Grover, “A Framework For Fast Quantum Mechanical
Algorithms”, ACM Symp. on Theory of Computing (STQC)
1998.

[5] T.Hogg et al., “Tools for Quantum Algorithms”,

http://arxiv.org/abs/quant-ph/9811073, 1998.

P. Kerntopf, “A Comparison of Logical Efficiency of

Reversible and Conventional GateBYLS 2000 pp.

261-269.

R. Korf, “Artificial Intelligence Search Algorithms”,

Algorithms and Theory of Computation HandbpGIRC

Press, 1999.

E. Lawler, “An Approach to Multilevel Boolean

Minimization”, J. of ACM, 11, No. 3, July 1964, pp.

283-295.

[9] John P. McGregor and Ruby B. Lee, “Architectural

Enhancements for Fast Subword Permutations with

Repetitions in Cryptographic Applicationsjtoc. of ICCD

2001, Sept. 2001, pp. 453-461.

M. Nielsen and |. ChuangQuantum Computation and

Quantum InformationCambridge Univ. Press, Sept. 2000.

M. Perkowski et al., “A General Decomposition For

Reversible Logic” Reed-Muller WorkshgpAug. 2001.

[12] T. Sasao, K. Kinoshita, “Conservative Logic Elements and

Their Universality,"IEEE Trans. on Computerg8, '79, pp.
682-685.

(6]

(7]

(8]

[10]

[11]

[13] T. Silke, “PROBLEM: register swap”, December 1995,
http://www.mathematik.uni-bielefeld.de/
“silke/PROBLEMS/bit _swap

[14] B. Steinbach and A. Mishchenko, “A New Approach to

Exact ESOP Minimization”Proc. Reed-Muller Workshop

August 2001, Starkville, Mississippi, pp. 66-81.

Z. Shi and R. Lee, “Bit Permutation Instructions for

Accelerating Software CryptographyEEE Intl. Conf. on

Application-specific Systems, Architectures, and Processors

July 2000, pp. 138-148.

T. Toffoli, "Reversible Computing”Tech. Memo

MIT/LCS/TM-151MIT Lab for Comp. Sci, 1980.

B. Travaglione, M. Nielsen, H. Wiseman, A. Ambainis,

“ROM-based computation: Quantum Versus Classical”,

2001.

http://arxiv.org/abs/quant-ph/0109016

S. Younis and T. Knight, “Asymptotically Zero Energy

Split-Level Charge Recovery LogicyWorkshop on Low

Power Design1994.

[15]

[16]

[17]

[18]

Appendix

Below we state and prove technical results used in Section 3.

PROPOSITION 12. For n > 5, we may write any permutation in
A, as the product of no more than n pairs of disjoint transpositions.

Proof: Fix te An. Then take the cycle decomposition mfand
decompose each cycle into transpositions to wiiges a product
of ¢(m) < ntranspositions. Sinca is even, we knowc() = 2k
for somek. Pair up the Bth and(2i 4 1)-st transpositions. Some
of these pairs may not be disjoint, but sinte- 5 we may write
(a,b)(a,c) = (a,b)(d,e)(d,e)(a,c) whered # e are distinct from
a,b,c. Thus breaking up non-disjoint pairs, we writas a product
of 2k = ¢(m) < n pairs of transpositions. O

PrROPOSITION 13. Let n> 4, and ab,c,d be distinct integers
betweerD and n— 1. Then there exists a constructable permutation
e Ax such thatr(a) =0, i(b) = 1, T(c) = 2, andmi(d) = 3. It
takes at mosen N gates4(n+ 1) C gates, an®(n—2) T gates.
Proof: Start with an empty circuit and pladégates on every line
corresponding to a 1 in the binary expansioraoflLet 1y be the
permutation performed by the circuit so fam;(a) = 0.

Sinceb # a, som(b) # 0 and thereforey(b) has at least one
1 in its binary expansion. Say it's on tteth line; then usingC
gates controlled on thb-th line, flip any other non-zero bits of
b'. Finally, if h # 1, swap theh-th bit and the Oth bft Letmy be
the permutation performed by the circuit so far. by construction,
m (b) = 1, and since& gates fix 0, we have (a) = (a) = 0.

As beforec # b,a = m(c) # 1,0 hencery (c) has a 1 some-
where in its binary expansion other than the lowest bit, say in the
k-th bit. Using the algorithm of the previous paragraph, flip every
other bit to 0 and then swap theth and 2-nd bit; we note that
again we have not affected 0, and none of Gugates have been
controlled on the bottom line, we cannot move 1. The permutation
T, performed by the circuit thus far has the property tigdt) = 2,
m(b) =1,m™),(a) =0.

Finally, observe thatp(d) > 3; if it is in fact 3 then we are
done, if not then we havey(d) > 4, and some bit in the binary
expansion ofip(d) other than the lowest two bits must be 1; let it
be them-th bit. Then usingC gates controlled thetth bit, flip the

4This may always be done usingC3gates. In this case, since we
know that the bottom bit is 0 and threth bit is 1, we need only 2.

132

bottom two wires to 1 if necessary, and Uusgates controlled on
these bottom two bits to clear off the rest of the wires. We are now
done, as none of these gates affedt @, and this subcircuit sends
10 (d) — 3. A careful count of the gates used verifies the final claim
of the proposition. 0

