ARTIFICIAL INTELLIGENCE

Chapter 1

Outline

- \diamond Course overview
- \diamondsuit What is Al?
- \diamondsuit A brief history
- \diamondsuit The state of the art

Administrivia

Class home page: http://www-inst.eecs.berkeley.edu/~cs188 for lecture notes, assignments, exams, grading, office hours, etc.

Assignment 0 (lisp refresher) due 1/28 account forms from 727 Soda.

Book: Russell & Norvig Artificial Intelligence: A Modern Approach 2^{nd} Ed. See syllabus: Chapter 1 for today's material, Chapter 2 for Friday/Monday.

Code: integrated lisp implementation for AIMA algorithms at http://www.cs.berkeley.edu/~russell/aima.html/ Updated version posted locally (see class page) Lisp/emacs/AIMA tutorial:

11-1 on Fri 1/23 and Mon 1/26, 271 Soda

Prerequisites: CS 61A, and Math55/CS70

Sections 104 and 105 are primarily intended for non-CS majors

Course overview

- \Diamond intelligent agents
- \diamondsuit search and game-playing
- \Diamond logical systems
- \Diamond planning systems
- \diamondsuit uncertainty—probability and decision theory
- \Diamond learning
- \diamondsuit language
- \diamondsuit perception
- \diamondsuit robotics
- $\diamondsuit\,$ philosophical issues

What is AI?

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- \diamond "Can machines think?" \longrightarrow "Can machines behave intelligently?"
- \diamondsuit Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamondsuit Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking humanly: Cognitive Science

1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Both share with AI the following characteristic:

the available theories do not explain (or engender) anything resembling human-level general intelligence

Hence, all three fields share one principal direction!

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic: **notation** and **rules of derivation** for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:

- 1) Not all intelligent behavior is mediated by logical deliberation
- 2) What is the purpose of thinking? What thoughts **should** I have out of all the thoughts (logical or otherwise) that I **could** have?

Acting rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

An agent is an entity that perceives and acts

This course is about designing rational agents

Abstractly, an agent is a function from percept histories to actions:

 $f: \mathcal{P}^* \to \mathcal{A}$

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Caveat: computational limitations make perfect rationality unachievable \rightarrow design best program for given machine resources

AI prehistory

Philosophy	logic, methods of reasoning
	mind as physical system
	foundations of learning, language, rationality
Mathematics	formal representation and proof
	algorithms, computation, (un)decidability, (in)tractability
	probability
Psychology	adaptation
	phenomena of perception and motor control
	experimental techniques (psychophysics, etc.)
Economics	formal theory of rational decisions
Linguistics	knowledge representation
	grammar
Neuroscience	plastic physical substrate for mental activity
Control theory	homeostatic systems, stability
	simple optimal agent designs

Potted history of AI

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1952–69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning
- 1966–74 AI discovers computational complexity Neural network research almost disappears
- 1969–79 Early development of knowledge-based systems
- 1980–88 Expert systems industry booms
- 1988-93 Expert systems industry busts: "Al Winter"
- 1985–95 Neural networks return to popularity
- 1988– Resurgence of probability; general increase in technical depth "Nouvelle Al": ALife, GAs, soft computing
- 1995– Agents, agents, everywhere . . .
- 2003– Human-level AI back on the agenda

Which of the following can be done at present?

 $\diamondsuit\,$ Play a decent game of table tennis

- $\diamondsuit\,$ Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \Diamond Drive safely along Telegraph Avenue

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- \diamondsuit Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamondsuit Design and execute a research program in molecular biology

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- ♦ Discover and prove a new mathematical theorem
- \diamondsuit Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- ♦ Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamondsuit Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamond Perform a complex surgical operation

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamondsuit Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamond Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamond Perform a complex surgical operation
- \diamondsuit Unload any dishwasher and put everything away

- \diamondsuit Play a decent game of table tennis
- \diamondsuit Drive safely along a curving mountain road
- ♦ Drive safely along Telegraph Avenue
- \diamondsuit Buy a week's worth of groceries on the web
- \diamond Buy a week's worth of groceries at Berkeley Bowl
- \diamond Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Design and execute a research program in molecular biology
- \diamondsuit Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamond Translate spoken English into spoken Swedish in real time
- \diamondsuit Converse successfully with another person for an hour
- \diamondsuit Perform a complex surgical operation
- \diamond Unload any dishwasher and put everything away

Unintentionally funny stories

One day Joe Bear was hungry. He asked his friend Irving Bird where some honey was. Irving told him there was a beehive in the oak tree. Joe threatened to hit Irving if he didn't tell him where some honey was. The End.

Henry Squirrel was thirsty. He walked over to the river bank where his good friend Bill Bird was sitting. Henry slipped and fell in the river. Gravity drowned. The End.

Once upon a time there was a dishonest fox and a vain crow. One day the crow was sitting in his tree, holding a piece of cheese in his mouth. He noticed that he was holding the piece of cheese. He became hungry, and swallowed the cheese. The fox walked over to the crow. The End.

Unintentionally funny stories

Joe Bear was hungry. He asked Irving Bird where some honey was. Irving refused to tell him, so Joe offered to bring him a worm if he'd tell him where some honey was. Irving agreed. But Joe didn't know where any worms were, so he asked Irving, who refused to say. So Joe offered to bring him a worm if he'd tell him where a worm was. Irving agreed. But Joe didn't know where any worms were, so he asked Irving, who refused to say. So Joe offered to say. So Joe offered to bring him a worm if he'd tell him where a worm was. Irving agreed. But Joe didn't know where any worms were, so he asked Irving, who refused to say. So Joe offered to bring him a worm if he'd tell him where a worm was. . . .