
Hidden Naive Bayes

Harry Zhang
Faculty of Computer Science

University of New Brunswick, Canada
E3B 5A3, hzhang@unb.ca

Liangxiao Jiang
Faculty of of Computer Science
China University of Geosciences

Wuhan, China 430074

Jiang Su
Faculty of Computer Science

University of New Brunswick, Canada
E3B 5A3, k4km1@unb.ca

Abstract

The conditional independence assumption of naive
Bayes essentially ignores attribute dependencies and is
often violated. On the other hand, although a Bayesian
network can represent arbitrary attribute dependencies,
learning an optimal Bayesian network from data is in-
tractable. The main reason is that learning the opti-
mal structure of a Bayesian network is extremely time
consuming. Thus, a Bayesian model without structure
learning is desirable. In this paper, we propose a novel
model, called hidden naive Bayes (HNB). In an HNB,
a hidden parent is created for each attribute which
combines the influences from all other attributes. We
present an approach to creating hidden parents using
the average of weighted one-dependence estimators.
HNB inherits the structural simplicity of naive Bayes
and can be easily learned without structure learning.
We propose an algorithm for learning HNB based on
conditional mutual information. We experimentally test
HNB in terms of classification accuracy, using the 36
UCI data sets recommended by Weka (Witten & Frank
2000), and compare it to naive Bayes (Langley, Iba, &
Thomas 1992), C4.5 (Quinlan 1993), SBC (Langley &
Sage 1994), NBTree (Kohavi 1996), CL-TAN (Fried-
man, Geiger, & Goldszmidt 1997), and AODE (Webb,
Boughton, & Wang 2005). The experimental results
show that HNB outperforms naive Bayes, C4.5, SBC,
NBTree, and CL-TAN, and is competitive with AODE.

Introduction
A Bayesian network consists of a structural model and a
set of conditional probabilities. The structural model is a
directed graph in which nodes represent attributes and arcs
represent attribute dependencies. Attribute dependencies are
quantified by conditional probabilities for each node given
its parents. Bayesian networks are often used for classifi-
cation problems, in which a learner attempts to construct a
classifier from a given set of training examples with class
labels. Assume that A1, A2,· · ·, An are n attributes (corre-
sponding to attribute nodes in a Bayesian network). An ex-
ample E is represented by a vector (a1, a2, , · · · , an), where
ai is the value of Ai. Let C represent the class variable (cor-
responding to the class node in a Bayesian network). We

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

use c to represent the value that C takes and c(E) to de-
note the class of E. The Bayesian classifier represented by a
Bayesian network is defined in Equation 1.

c(E) = argmax
c∈C

P (c)P (a1, a2, · · · , an|c). (1)

Assume that all attributes are independent given the class;
that is,

P (E|c) = P (a1, a2, · · · , an|c) =

n∏

i=1

P (ai|c). (2)

The resulting classifier is called a naive Bayesian classifier,
or simply naive Bayes:

c(E) = argmax
c∈C

P (c)

n∏

i=1

P (ai|c). (3)

Figure 1 shows graphically the structure of naive Bayes.
In naive Bayes, each attribute node has the class node as its
parent, but does not have any parent from attribute nodes.
Because the values of P (ai|c) can be easily estimated from
training examples, naive Bayes is easy to construct. It is also,
however, surprisingly effective (Kononenko 1990; Langley,
Iba, & Thomas 1992; Domingos & Pazzani 1997).

 C

A A A A1 2 3 4

Figure 1: An example of naive Bayes

Naive Bayes is the simplest form of Bayesian networks.
It is obvious that the conditional independence assumption
in naive Bayes is rarely true. Extending its structure is a di-
rect way to overcome the limitation of naive Bayes, since
attribute dependencies can be explicitly represented by arcs.
Tree Augmented naive Bayes (TAN) is an extended tree-
like naive Bayes (Friedman, Geiger, & Goldszmidt 1997),
in which the class node directly points to all attribute nodes

and an attribute node can have only one parent from another
attribute node. Figure 2 shows an example of TAN. TAN is
a specific case of general Augmented naive Bayesian net-
works, or simply Augmented naive Bayes (ANB), in which
the class node also directly points to all attribute nodes, but
there is no limitation on the arcs among attribute nodes (ex-
cept that they do not form any directed cycle).

 C

A A A A1 2 3 4

Figure 2: An example of TAN

Learning an optimal ANB is equivalent to learning an op-
timal Bayesian network, which has been proved to be NP-
hard (Chickering 1996). In fact, the most time consuming
step in learning a Bayesian network is learning the struc-
ture (structure learning). In practice, imposing restrictions
on the structures of Bayesian networks, such as TAN, leads
to acceptable computational complexity and a considerable
improvement over naive Bayes. One main issue in learning
TAN is that only one attribute parent is allowed for each at-
tribute, ignoring the influences from other attributes. In addi-
tion, in a TAN learning algorithm, structure learning is also
unavoidable.

Certainly, a model that avoids structure learning, and is
still able to represent attribute dependencies to some extent,
is desirable. In this paper, we present a new model hidden
naive Bayes (HNB). HNB creates a hidden parent for each
attribute, which represents the influences from all other at-
tributes. Our experimental results show that HNB demon-
strates remarkable accuracy compared to other state-of-the-
art algorithms.

The rest of the paper is organized as follows. We first in-
troduce the related work. Then we present our new model
hidden naive Bayes, followed by the description of our ex-
perimental setup and results in detail. We make a conclusion
and outline the main directions for future research.

Related Work
Numerous techniques have been proposed to improve or ex-
tend naive Bayes, mainly in two approaches: selecting at-
tribute subsets in which attributes are conditionally indepen-
dent, and extending the structure of naive Bayes to represent
attribute dependencies.

The idea of selecting a subset of attributes or forming new
attributes is to convert the data to a new form that satis-
fies the conditional independence assumption. Of the pro-
posed techniques, selective naive Bayes (SBC) by Langley
and Sage (1994) demonstrates a remarkable improvement
over naive Bayes. SBC uses forward selection to find a good
subset of attributes, and then uses this subset to construct a
naive Bayes.

As discussed in the previous section, ANB is an exam-
ple of the second approach. Learning restricted ANB, such
as TAN, is a reasonable trade-off between model optimal-
ity and computational complexity. In fact, Friedman et al.
(1997) show that the result of searching for an optimal
Bayesian network may not be better than the result of just
searching for an optimal TAN. They propose a TAN learning
algorithm based on conditional mutual information between
two attributes given the class variable, called CL-TAN in this
paper. CL-TAN is an extension of the ChowLiu algorithm
(Chow & Liu 1968). The conditional mutual information is
defined as

IP (X ; Y |Z) =
∑

x,y,z

P (x, y, z)log
P (x, y|z)

P (x|z)P (y|z)
, (4)

where x, y, and z are the values of variables X , Y , and
Z respectively. In CL-TAN, IP (Ai; Aj |C) between each
pair of attributes is computed, and a complete undirected
weighted graph is built, in which nodes are attributes A1,
· · ·, An, and the weight of an edge connecting Ai to Aj is
set to IP (Ai; Aj |C). Then, a maximum weighted spanning
tree is constructed. Finally, the undirected tree is converted
to directed, and a node labeled by C that points to all at-
tribute nodes is added. Keogh and Pazzani (1999) propose
a cross-validation-based TAN learning algorithm SuperPar-
ent, and show that the SuperParent algorithm outperforms
the CL-TAN learning algorithm in classification accuracy.
However, its training time complexity is also significantly
higher than that of CL-TAN.

Kohavi (1996) presents a model NBTree to combine a de-
cision tree with naive Bayes. In an NBTree, a local naive
Bayes is deployed on each leaf of a traditional decision tree,
and an example is classified using the local naive Bayes
on the leaf into which it falls. The experiments show that
NBTree outperforms naive Bayes significantly in accuracy.

The most recent work on improving naive Bayes is AODE
(averaged one-dependence estimators) (Webb, Boughton, &
Wang 2005). In AODE, an ensemble of one-dependence
classifiers are learned and the prediction is produced by
aggregating the predictions of all qualified classifiers. The
notion of x-dependence is introduced by Sahami (Sahami
1996). An x-dependence estimator means that the probabil-
ity of an attribute is conditioned by the class variable and
at most x other attributes, which corresponds to an ANB
with at most x attribute parents. In AODE, a one-dependence
classifier is built for each attribute, in which the attribute is
set to be the parent of all other attributes. Their experimen-
tal results show that AODE performs surprisingly well com-
pared to other classification algorithms. For example, AODE
outperforms the SuperParent algorithm significantly.

Some other, more sophisticated, naive Bayes-based learn-
ing algorithms with high time complexity have also been
proposed. Zhang (2004) proposes a model, hierarchical
naive Bayes, in which hidden variables are introduced to al-
leviate the conditional independence assumption. A hierar-
chical naive Bayes is a tree-like Bayesian network in which
internal nodes are hidden variables, and leaf nodes are at-
tributes. Learning hierarchical naive Bayes has a high com-

putational complexity. Zheng and Webb (2000) propose an
approach of lazy learning, the lazy Bayesian rule (LBR). The
time complexity for learning LBR is also quite high.

Hidden Naive Bayes
As discussed in previous sections, naive Bayes ignores
attribute dependencies. On the other hand, although a
Bayesian network can represent arbitrary attribute depen-
dencies, it is intractable to learn it from data (Chickering
1996). Thus, learning restricted structures, such as TAN,
is more practical. However, only one parent is allowed for
each attribute in TAN, even though several attributes might
have the similar influence on it. Our motivation is to develop
a new model that can avoid the intractable computational
complexity for learning an optimal Bayesian network and
still take the influences from all attributes into account. Our
idea is to create a hidden parent for each attribute, which
combines the influences from all other attributes. This model
is called hidden naive Bayes (HNB).

C

A1 A3A2 An......

Ahp1 Ahp2 Ahp3 Ahpn

......

Figure 3: The structure of HNB

Figure 3 gives the structure of an HNB. In Figure 3, C is
the class node, and is also the parent of all attribute nodes.
Each attribute Ai has a hidden parent Ahpi

, i = 1, 2, · · · , n,
represented by a dashed circle. The arc from the hidden par-
ent Ahpi

to Ai is also represented by a dashed directed line,
to distinguish it from regular arcs.

The joint distribution represented by an HNB is defined
as follows.

P (A1, · · · , An, C) = P (C)

n∏

i=1

P (Ai|Ahpi
, C), (5)

where

P (Ai|Ahpi
, C) =

n∑

j=1,j 6=i

Wij ∗ P (Ai|Aj , C), (6)

and
∑n

j=1,j 6=i Wij = 1. The hidden parent Ahpi
for Ai

is essentially a mixture of the weighted influences from all
other attributes.

The classifier corresponding to an HNB on an example
E = (a1, · · · , an) is defined as follows.

c(E) = argmax
c∈C

P (c)

n∏

i=1

P (ai|ahpi
, c). (7)

In an HNB, attribute dependencies are represented by
hidden parents of attributes. The way of defining hidden
parents determines the capability of representing attribute
dependencies. In Equation 6, one-dependence estimators
P (Ai|Aj , C) are used to define hidden parents. Recall that
at most one attribute parent is allowed for each attribute in
TAN, and the influences from other attributes have to be ig-
nored. In an HNB, on the other hand, the influences from
all other attributes can be represented and a weight is used
to represent the importance of an attribute. Thus, intuitively,
HNB is a more accurate and expressive model than TAN
with respect to representing attribute dependencies.

If we have an order of attributes: A1, · · ·, An,
P (Ai|Ahpi

, C) can be thought of as an approximation of
P (Ai|A1, · · · , Ai−1). In Equation 6, the approximation is
based on one-dependence estimators. However, in principle,
arbitrary x-dependence estimators can be used to define hid-
den parents. If x = n − 1, any Bayesian network is repre-
sentable by an HNB. Thus, theoretically, an HNB is equiva-
lent to a Bayesian network in terms of expressive power. In
practice, however, we would prefer a simple way to define
hidden parents in order to make the learning process simple
and efficient.

From Equation 5 and 6, we can see that the approach to
determining the weights Wij , i, j = 1, · · · , n and i 6= j,
is crucial for learning an HNB. There are two general ap-
proaches to doing it: performing a cross-validation based
search, or directly computing the estimated values from data.
We adopt the latter, and use the conditional mutual infor-
mation between two attributes Ai and Aj as the weight of
P (Ai|Aj , C). More precisely, in our implementation, Wij

is defined in Equation 8.

Wij =
IP (Ai; Aj |C)∑n

j=1,j 6=i IP (Ai; Aj |C)
, (8)

where IP (Ai; Aj |C) is the conditional mutual informa-
tion defined in Equation 4.

Learning an HNB is quite simple and mainly about esti-
mating the parameters in the HNB from the training data.
The learning algorithm for HNB is depicted as follows.

Algorithm HNB(D)
Input: a set D of training examples
Output: an hidden naive Bayes for D

for each value c of C
Compute P (c) from D.

for each pair of attributes Ai and Aj

for each assignment ai, aj , and c to Ai, Aj , and C
Compute P (ai, aj |c) from D

for each pair of attributes Ai and Aj

Compute IP (Ai, Aj |C)
for each attribute Ai

Compute Wi =
∑n

j=1,j 6=i IP (Ai; Aj |C)

for each attribute Aj and j 6= i

Compute Wij =
IP (Ai,Aj |C)

Wi

From the algorithm above, we know that the training
process of HNB is similar to CL-TAN, except no structure
learning. A three-dimensional table of probability estimates
for each attribute-value, conditioned by each other attribute-
value and each class is generated. To create the hidden parent
of an attribute, HNB needs to compute the conditional mu-
tual information IP (Ai; Aj |C) for each pair of attributes.
The time complexity for computing weights using Equation
8 is O(n2). Thus, the training time complexity of HNB is
O(tn2+kn2v2), where t is the number of training examples,
n is the number of attributes, k is the number of classes, and
v is the average number of values for an attribute. At clas-
sification time, given an example, Equation 7 is used, and it
takes O(kn2).

Compared to CL-TAN, which has a training time com-
plexity of O(tn2 + kn2v2 + n2logn) and classification time
complexity of O(kn), HNB does not have structure learning
with the time complexity of O(n2logn) in CL-TAN. Thus,
the training time complexity of HNB is lower than that of
CL-TAN.

Compared to AODE, which has a training time complex-
ity of O(tn2) and classification time complexity of O(kn2),
HNB needs more training time and same classification time.
HNB, however, has an explicit semantics. Roughly speak-
ing, a hidden parent for an attribute can be seen as aggregat-
ing the influences from all other attributes that with higher
influences are assigned higher weights. Such an explicit se-
mantics makes HNB understandable. In real-world appli-
cations, the comprehensibility of a model is important for
decision making. Actually, the weights in HNB can be as-
signed by human experts, which allows an effective inter-
action between human experts and the learning program. In
addition, we should notice that AODE is an ensemble learn-
ing method, in which a collection of models is built and their
predictions are combined, whereas only a single model is
learned in HNB.

Experiments and Results
We ran our experiments on all the 36 data sets recommended
by Weka (Witten & Frank 2000), which are described in Ta-
ble 1. All these data sets are from the UCI repository (Blake
& Merz 2000). We downloaded these data sets in the format
of arff from the main web of Weka.

In the preprocessing stages of data sets, we used the fil-
ter of ReplaceMissingValues in Weka to replace the missing
values of attributes. Numeric attributes were discretized by
the filter of Discretize in Weka using unsupervised ten-bin
discretization. Thus, all attributes were treated as nominal.
Moreover, it is well-known that, if the number of values of
an attribute is almost equal to the number of examples in a
data set, this attribute does not contribute any information to
classification. So we used the filter of Remove in Weka to
delete this type of attribute.

In our experiments, we used the Laplace estimation to
avoid the zero-frequency problem. More precisely, we esti-

Table 1: Description of the data sets used in the experiments.

data set size attributes classes missing
anneal 898 39 6 Y
anneal.ORIG 898 39 6 Y
audiology 226 70 24 Y
autos 205 26 7 Y
balance-scale 625 5 3 N
breast-cancer 286 10 2 Y
breast-w 699 10 2 Y
colic 368 23 2 Y
colic.ORIG 368 28 2 Y
credit-a 690 16 2 Y
credit-g 1000 21 2 N
diabetes 768 9 2 N
Glass 214 10 7 N
heart-c 303 14 5 Y
heart-h 294 14 5 Y
heart-statlog 270 14 2 N
hepatitis 155 20 2 Y
hypothyroid 3772 30 4 Y
ionosphere 351 35 2 N
iris 150 5 3 N
kr-vs-kp 3196 37 2 N
labor 57 17 2 Y
letter 20000 17 26 N
lymphography 148 19 4 N
mushroom 8124 23 2 Y
primary-tumor 339 18 21 Y
segment 2310 20 7 N
sick 3772 30 2 Y
sonar 208 61 2 N
soybean 683 36 19 Y
splice 3190 62 3 N
vehicle 846 19 4 N
vote 435 17 2 Y
vowel 990 14 11 N
waveform-5000 5000 41 3 N
zoo 101 18 7 N

mated the probabilities P (c), P (ai|c), and P (ai|aj , c) using
Laplace estimation as follows.

P̂ (c) =
nc + 1

t + k
,

P̂ (ai|c) =
nic + 1

nc + vi

,

P̂ (ai|aj , c) =
nijc + 1

njc + vi

,

where t is the total number of training examples, k is the
number of classes, vi is the number of values of attribute Ai,
nc is the number of examples in class c, nic is the number
of examples in class c and with Ai = ai, njc is the number
of examples in class c and with Aj = aj , and nijc is the
number of examples in class c and with Ai = ai and Aj =
aj .

We conducted experiments to compare HNB to naive
Bayes (Langley, Iba, & Thomas 1992), C4.5 (Quinlan 1993),
SBC (Langley & Sage 1994), NBTree (Kohavi 1996), CL-
TAN (Friedman, Geiger, & Goldszmidt 1997), and AODE

(Webb, Boughton, & Wang 2005) in classification accuracy.
We implemented HNB and SBC within the Weka frame-
work (Witten & Frank 2000), and used the implementation
of C4.5(J48), NBTree, CL-TAN, and AODE in Weka. In all
experiments, the accuracy of an algorithm on a data set was
obtained via 10 runs of ten-fold cross validation. Runs with
the various algorithms were carried out on the same training
sets and evaluated on the same test sets. Finally, we con-
ducted a two-tailed t-test with a 95% confidence level to
compare our algorithm with other algorithms.

Table 2 shows the accuracies of the algorithms on each
data set, and the average accuracy and standard deviation on
all data sets are summarized at the bottom of the table. Table
3 shows the results of the two-tailed t-test, in which each
entry w/t/l means that the algorithm in the corresponding
row wins in w data sets, ties in t data sets, and loses in l
data sets, compared to the algorithm in the corresponding
column.

The detailed results displayed in Table 2 and Table 3 show
that the performance of HNB is competitive with the state-
of-the-art classification algorithms compared in the paper.
Now, we summarize the highlights briefly as follows:

1. HNB achieves a significant improvement over naive
Bayes (16 wins and 2 losses).

2. HNB outperforms SBC (10 wins and 3 losses), C4.5 (10
wins and 4 losses), CL-TAN (10 wins and 3 losses), and
NBTree (8 wins and 4 losses).

3. HNB is competitive with AODE (3 wins and 2 losses).
Considering that HNB is a single understandable classifier
in contrast to an ensemble of classifiers in AODE, HNB
is overall more effective.

Conclusions
In this paper, we proposed a novel model hidden Naive
Bayes (HNB) by adding a hidden parent for each attribute on
naive Bayes. Our experimental results show that HNB has a
better overall performance compared to the state-of-the-art
algorithms. Considering the simplicity and comprehensibil-
ity of HNB, HNB is a promising model that could be used
in many real world applications.

The HNB that we implemented is based on one-
dependence estimators. It could be generalized to arbitrary
dependence estimators. Thus, HNB can be seen as a gen-
eral model in which structure learning plays a less impor-
tant role than in Bayesian networks. In defining and learning
an HNB, how to learn the weights is crucial. Currently, we
use conditional mutual information to estimate the weights
directly from data. We believe that the use of more sophis-
ticated methods, such EM, could improve the performance
of the current HNB and make its advantage stronger. This is
one direction for our future research.

References
Blake, C., and Merz, C. J. 2000. UCI reposi-
tory of machine learning databases. In Dept of ICS,
University of California, Irvine. http://www.ics.uci.edu/
m̃learn/MLRepository.html.

Chickering, D. M. 1996. Learning Bayesian networks is
NP-Complete. In Fisher, D., and Lenz, H., eds., Learn-
ing from Data: Artificial Intelligence and Statistics V.
Springer-Verlag. 121–130.
Chow, C. K., and Liu, C. N. 1968. Approximating dis-
crete probability distributions with dependence trees. IEEE
Trans. on Information Theory 14:462–467.
Domingos, P., and Pazzani, M. 1997. Beyond indepen-
dence: Conditions for the optimality of the simple Bayesian
classifier. Machine Learning 29:103–130.
Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian network classifiers. Machine Learning 29:131–
163.
Keogh, E. J., and Pazzani, M. J. 1999. Learning augmented
Naive Bayes classifiers. In Proceedings of the Seventh In-
ternational Workshop on AI and Statistics.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In Proceedings of the
Second International Conference on Knowledge Discovery
and Data Mining. AAAI Press. 202–207.
Kononenko, I. 1990. Comparison of inductive and naive
Bayesian learning approaches to automatic knowledge ac-
quisition. In Wielinga, B., ed., Current Trends in Knowl-
edge Acquisition. IOS Press.
Langley, P., and Sage, S. 1994. Induction of selective
Bayesian classifiers. In Proceedings of Uncertainty in Ar-
tificial Intelligence 1994. Morgan Kaufmann.
Langley, P.; Iba, W.; and Thomas, K. 1992. An analysis of
Bayesian classifiers. In Proceedings of the Tenth National
Conference of Artificial Intelligence. AAAI Press. 223–
228.
Quinlan, J. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann: San Mateo, CA.
Sahami, M. 1996. Learning limited dependence bayesian
classifiers. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining.
AAAI Press. 335–338.
Webb, G. I.; Boughton, J.; and Wang, Z. 2005. Not so naive
bayes: Aggregating one-dependence estimators. Journal of
Machine Learning 58(1):5–24.
Witten, I. H., and Frank, E. 2000. Data Mining –Practical
Machine Learning Tools and Techniques with Java Imple-
mentation. Morgan Kaufmann.
Zhang, N. L. 2004. Hierarchical latent class models for
cluster analysis. Journal of Machine Learning Research
5:697–723.
Zheng, Z., and Webb, G. I. 2000. Lazy learning of bayesian
rules. Journal of Machine Learning 41(1):53–84.

Table 2: Experimental results on classification accuracy.

Datasets C4.5 NB SBC CL-TAN NBTree AODE HNB
anneal 98.65±0.97 94.32±2.23 96.94±2.03 97.65±1.48 98.4±1.53 96.74±1.72 97.74±1.28
anneal.ORIG 90.36±2.51 88.16±3.06 89.68±2.92 91.66±2.34 91.27±3.03 88.79±3.17 89.87±2.2
audiology 77.22±7.69 71.4±6.37 74.15±7 62.97±6.25 76.66±7.47 71.66±6.42 69.04±5.83
autos 81.54±8.32 63.97±11.35 68.69±11.27 74±9.65 74.75±9.44 73.38±10.24 75.49±9.89
balance-scale 64.14±4.16 91.44±1.3 91.44±1.3 85.57±3.33 91.44±1.3 89.78±1.88 89.14±2.05
breast-cancer 75.26±5.04 72.94±7.71 72.53±7.52 67.95±6.8 71.66±7.92 72.53±7.15 73.09±6.11
breast-w 94.01±3.28 97.3±1.75 96.58±2.19 94.46±2.54 97.23±1.76 97.11±1.99 95.67±2.33
colic 84.31±6.02 78.86±6.05 83.37±5.56 79.71±6.31 82.5±6.51 80.9±6.19 81.44±6.12
colic.ORIG 80.79±5.66 74.21±7.09 74.83±6.17 70.59±7.03 74.83±7.82 75.3±6.6 75.66±5.19
credit-a 85.06±4.12 84.74±3.83 85.36±3.99 83.06±4.75 84.86±3.92 85.91±3.78 85.8±4.1
credit-g 72.61±3.49 75.93±3.87 74.76±3.85 74.95±4.09 75.54±3.92 76.42±3.86 76.29±3.45
diabetes 73.89±4.7 75.68±4.85 76±5.24 74.83±4.43 75.28±4.84 76.37±4.35 76±4.6
glass 58.14±8.48 57.69±10.07 56.19±9.73 59.72±9.69 58±9.42 61.13±9.79 59.02±8.67
heart-c 79.14±6.44 83.44±6.27 81.12±7.15 78.46±8.03 81.1±7.24 82.48±6.96 82.31±6.82
heart-h 80.1±7.11 83.64±5.85 80.19±7.03 80.89±6.7 82.46±6.26 84.06±5.85 83.21±5.88
heart-statlog 79.78±7.71 83.78±5.41 80.85±7.61 78.74±6.98 82.26±6.5 83.67±5.37 82.7±5.89
hepatitis 81.12±8.42 84.06±9.91 82.51±8.48 82.72±8.23 82.9±9.79 84.82±9.75 83.92±9.43
hypothyroid 93.24±0.44 92.79±0.73 93.46±0.5 92.99±0.69 93.05±0.65 93.53±0.62 93.48±0.47
ionosphere 87.47±5.17 90.86±4.33 91.25±4.14 92.74±3.86 89.18±4.82 92.08±4.24 92±4.32
iris 96±4.64 94.33±6.79 96.67±4.59 91.73±8.16 95.27±6.16 94.47±6.22 93.93±5.92
kr-vs-kp 99.44±0.37 87.79±1.91 94.34±1.3 93.53±1.47 97.81±2.05 91.01±1.67 92.36±1.3
labor 84.97±14.24 96.7±7.27 82.63±12.69 88.33±11.89 95.6±8.39 95.3±8.49 92.73±11.16
letter 81.31±0.78 70.09±0.93 70.71±0.9 81.09±0.84 83.49±0.81 85.54±0.68 84.68±0.73
lymph 78.21±9.74 85.97±8.88 80.24±9.58 83.69±9.23 82.21±8.95 86.25±9.43 83.9±9.31
mushroom 100±0 95.52±0.78 99.7±0.22 99.51±0.26 100±0 99.95±0.07 99.94±0.1
primary-tumor 41.01±6.59 47.2±6.02 44.49±6.76 44.51±6.38 45.84±6.61 47.67±6.3 47.66±6.21
segment 93.42±1.67 89.03±1.66 90.65±1.77 93.88±1.55 92.64±1.61 92.94±1.4 93.76±1.47
sick 98.16±0.68 96.78±0.91 97.51±0.72 97.55±0.72 97.86±0.69 97.51±0.73 97.77±0.68
sonar 71.09±8.4 76.35±9.94 69.78±9.74 74.28±9.68 71.4±8.8 79.04±9.42 81.75±8.4
soybean 92.63±2.72 92.2±3.23 92.03±3.14 93.69±2.8 92.3±2.7 93.28±2.84 93.88±2.47
splice 94.17±1.28 95.42±1.14 94.95±1.29 95.31±1.15 95.42±1.14 96.12±1 95.86±1.08
vehicle 70.74±3.62 61.03±3.48 60.98±3.62 71.94±3.49 68.91±4.58 71.62±3.6 72.15±3.41
vote 96.27±2.79 90.21±3.95 95.59±2.76 93.01±3.95 94.78±3.32 94.52±3.19 94.43±3.18
vowel 75.57±4.58 66.09±4.78 68.59±4.5 93.06±2.86 88.01±3.71 89.52±3.12 91.34±2.92
waveform-5000 72.64±1.81 79.97±1.46 81.17±1.45 80.17±1.79 81.62±1.76 84.24±1.59 83.79±1.54
zoo 92.61±7.33 94.37±6.79 94.04±7.34 95.24±6.22 94.55±6.54 94.66±6.38 97.73±4.64
Mean 82.64±4.75 82.34±4.78 82.33±4.89 83.17±4.88 84.47±4.78 85.01±4.61 84.99±4.42

Table 3: Summary of experimental results: classification accuracy comparisons.

C4.5 NB SBC CL-TAN NBTree AODE
NB 8/15/13
SBC 5/21/10 11/23/2
CL-TAN 5/22/9 11/20/5 5/24/7
NBTree 7/27/2 12/24/0 8/28/0 8/26/2
AODE 13/17/6 13/22/1 11/23/2 12/21/3 5/26/5
HNB 10/22/4 16/18/2 10/23/3 10/23/3 8/24/4 3/31/2

