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Abstract. In real-world data mining applications, an accurate ranking
is same important to a accurate classification. Naive Bayes (simply NB)
has been widely used in data mining as a simple and effective classifica-
tion and ranking algorithm. Since its conditional independence assump-
tion is rarely true, numerous algorithms have been proposed to improve
Naive Bayes, for example, SBC[1] and TAN[2]. Indeed, the experimental
results show that SBC and TAN achieve a significant improvement in
term of classification accuracy. However, unfortunately, our experiments
also show that SBC and TAN perform even worse than naive Bayes
in ranking measured by AUC[3, 4](the area under the Receiver Oper-
ating Characteristics curve). This fact raises the question of whether
can we improve Naive Bayes with both accurate classification and rank-
ing? In this paper, responding to this question, we present a new learn-
ing algorithm called One Dependence Augmented Naive Bayes (simply
ODANB). Our motivation is to develop a new algorithm to improve Naive
Bayes’ performance not only on classification measured by accuracy but
also on ranking measured by AUC. We experimentally tested our algo-
rithm, using the whole 36 UCI datasets recommended by Weka[5], and
compared it to NB, SBC[1] and TAN[2]. The experimental results show
that our algorithm outperforms all the other algorithms significantly in
yielding accurate ranking, yet at the same time outperforms all the other
algorithms slightly in terms of classification accuracy.

1 Introduction

Classification is one of the most important tasks in data mining. Learning
Bayesian classifiers is a process of constructing a special Bayesian networks from
a given set of preclassified instances, each of which is represented by a vector
of attribute values. Assume Ai, i = 1, 2, . . . , n are n attributes which take val-
ues ai, i = 1, 2, . . . , n respectively. Those attributes will be used collectively to
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predict the value c of the class C. Thus, the Bayesian classifier represented by a
Bayesian network can be defined as:

arg max
c∈C

P (c)P (a1, a2, . . . , an|c) (1)

Assume all attributes are independent given the class. That is:

P (a1, a2, . . . , an|c) =
n∏

i=1

P (ai|c) (2)

The resulting classifier is called a naive Bayesian classifier, or simply Naive
Bayes:

arg max
c∈C

P (c)
n∏

i=1

P (ai|c) (3)

It is obvious, Naive Bayes is a probability-based classification model which is
based on the assumption that attributes are conditionally mutually independent
given the class label. Although Naive Bayes has conceptual and computational
simplicity etc many advantages, its unrealistic attribute independence assump-
tion leads to its probability estimations will not be correct[6], if there exists some
strong dependent relations among attributes.

Thinking of the limitation of Naive Bayes, in real-world data mining applica-
tions, many researchers propose to learn an optimal Bayesian networks to over-
come Naive Bayes’s limitation of unrealistic attribute independence assumption
throughout. Unfortunately, however, it has been proved that learning an optimal
Bayesian networks is NP-hard[7]. Therefore, researchers have made a substantial
amount of effort to improve Naive Bayes. Research work to improve the Naive
Bayes can be broadly divided into two approaches: 1) selecting attributes subsets
in which attributes are mutual conditionally independent at most; 2) relaxing
the conditional independence assumption by extending the structure of Naive
Bayes to represent the dependencies among attributes.

In classification, the predictive ability of a classifier is typically measured by
its predictive accuracy on the testing examples. In fact, most classifiers (including
Naive Bayes) can also produce probability estimations or “confidence” of the
class prediction. Unfortunately, however, this information is completely ignored
in classification. This is often taken for granted since the true probability is
unknown for the testing examples anyway.

In many data mining applications, however, the classifier’s accuracy are not
enough, because they cannot express the information how “far-off” (be it 0.45
or 0.01?) is the prediction of each example from its target. For example, in
direct marketing, we often need to promote the top X% of customers during
gradual roll-out, or we often deploy different promotion strategies to customers
with different likelihood of buying some products. To accomplish these tasks, we
need more than a mere classification of buyers and non-buyers. We often need a
ranking of customers in terms of their likelihood of buying. Thus, a ranking is
more desirable than just a classification.
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A natural question is how to evaluate a classifier in terms of its ranking
performance, rather than classification accuracy. Recently, the area under the
Receiver Operating Characteristics curve [3, 4], or simply AUC, has been used for
this purpose and received a considerable attention. AUC compares the classifiers’
performance cross the entire range of class distributions and error costs and is
a good “summary” for comparing two classifiers. Hand and Till [8] show that,
for binary classification, AUC is equivalent to the probability that a randomly
chosen example of class − will have a smaller estimated probability of belonging
to class + than a randomly chosen example of class +. They present a simple
approach to calculating the AUC of a classifier G below.

Â =
S0 − n0(n0 + 1)/2

n0n1
, (4)

where n0 and n1 are the numbers of negative and positive examples respectively,
and S0 =

∑
ri, where ri is the rank of ith positive example in the ranked list.

From Equation 4, it is clear that AUC is essentially a measure of the quality of a
ranking. For example, the AUC of a ranking is 1 (the maximum value of AUC)
if there is no positive example preceding a negative example.

In this paper, Our motivation is to develop a new algorithm to improve
Naive Bayes’ performance not only on classification measured by accuracy but
also on ranking measured by AUC. In order to achieve our goal, we present a
new learning algorithm called One Dependence Augmented Naive Bayes (simply
ODANB). The experimental results show that we have learned improved Naive
Bayes with both accurate classification and ranking.

The rest of the paper is organized as follows. In Section2, we introduce the
related work on improving Naive Bayes. In Section3, we present our new learning
algorithm called One Dependence Augmented Naive Bayes (simply ODANB)
and make a simple analysis on its advantages and disadvantages. In Section4,
we describe the experimental setup and results in detail. In Section 5, we draw
a conclusion.

2 Related Work

Naive Bayes is a simple but effective classifier. Although its conditional inde-
pendence assumption is often violated, it performs surprisingly well in classifica-
tion[9]. This fact raises the question of whether a Naive Bayesian classifier with
less restrictive assumptions can perform even better.

In order to tackle this question effectively, we need an appropriate language
and efficient machinery to represent and manipulate independence assertions.
Both are provided by Bayesian networks[10]. So, learning Bayesian networks
from data has become a rapidly growing field of research. Unfortunately, however,
it has been proved that learning an optimal Bayesian networks is NP-hard[7].
In order to escape Bayesian networks’s learning complexity, learning improved
Naive Bayes has attracted much attention from researchers. Research work to
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improve Naive Bayes can be broadly divided into two categories just as described
in introduction.

The first category aims to improve Naive Bayes by selecting attributes subsets
in which attributes are mutual conditionally independent. For example, Langley
and Sage[1] presented an algorithm called Selective Bayesian Classifiers(simply
SBC). They used a forward greedy search method to select an attribute sub-
set through the whole space of attributes. They use Naive Bayes’ accuracy to
evaluate alternative subsets of attributes and consider adding each unselected
attribute which can improve the classifier’s accuracy at most on each iteration.
Their experimental results proved their hypotheses that their algorithm will
improve Naive Bayes’ accuracy in domains that involve correlated attributes
without reducing Naive Bayes’ accuracy in domains that don’t.

The second category aims to improve Naive Bayes by extending the structure
of Naive Bayes to represent dependencies among attributes. For example, Fried-
man and Goldszmidt[2] singled out an algorithm called Tree Augmented Naive
Bayes(simply TAN). They hypothesized the structure among all attributes only
is tree-like structure, in which the class node directly points to all attributes
nodes and each attribute except the root node of the tree has only one parent
from another attribute node. As a result, significant improvement in accuracy is
achieved for some datasets compared to Naive Bayes.

3 One Dependence Augmented Naive Bayes: ODANB

At first, let us introduce an important definition of conditional mutual informa-
tion used in our classification algorithm.

Let X,Y,Z are three variables,then the conditional mutual information be-
tween X and Y given Z can be defined by the Equation 5. Roughly speaking, this
function measures the information that Y provides about X when the value of
Z is known. Some more information about conditional mutual information can
been found in [2].

IP (X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y, z)P (z)
P (x, z)P (y, z)

(5)

In order to improve Naive Bayes’ performance measured by accuracy and
AUC, we present a novel classification algorithm called One Dependence Aug-
mented Naive Bayes (simply ODANB) to weaken the attribute independence
assumption by adding a parent Aip, i = 1, 2, . . . , n for some attributes Ai, i =
1, 2, . . . , n. Our algorithm classifies instance using the formulation:

arg max P (C)
n∏

i=1

P (Ai|Aip, C) (6)

where

P (Ai|Aip, C) =

{
P (Ai|Am, C) IP (Ai;Am|C) ≥ average

P (Ai|C) IP (Ai;Am|C) < average
(7)
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where Am satisfies

IP (Ai;Am|C) = max IP (Ai;Aj |C), j 6= i = 1, 2, . . . , n (8)

and average is defined as

average =
1

n(n− 1)

n∑

i=1

n∑

j 6=i=1

IP (Ai;Aj |C) (9)

Now, let us look back how to calculate P (Ai|Aip, C). At first, we calculate
the conditional mutual information IP (Ai;Aj |C), i 6= j between each pair of at-
tributes, and calculate their average conditional mutual information. Secondly,
we take the attribute with maximum conditional mutual information and above
(including equal) the average conditional mutual information as one attribute’s
attribute parent. At last, we calculate this attribute’s conditional probability
given class and its attribute parent. Of course, if all conditional mutual informa-
tion between the one attribute and all the other attributes are below the average
conditional mutual information, then this attribute hasn’t attribute parent. So,
we only need to calculate its conditional probability given class.

Compared to Tree Augmented Naive Bayes(TAN)[2], our classification algo-
rithm(ODANB) has the following advantages at least:

1. Our experimental results measured by classification accuracy and AUC have
already proved our classification algorithm has better performance than all
the other algorithm used to compare.

2. ODANB’s effectiveness and efficiency is higher than TAN, because it substi-
tutes calculating each attribute’s maximum conditional mutual information
for TAN’s searching a maximum conditional mutual information weighted
spanning tree. ODANB’s time complexity only is o(n2 · N + n2), where n
is the number of attributes and N is the number of training instances. It is
lower than TAN’s time complexity o(n2 ·N + n2 · log n).

3. ODANB is easier for researchers to understand and implement, because its
learning process doesn’t suffer from TAN’s searching a maximum conditional
mutual information weighted spanning tree.

4 Experimental Methodology And Results

We run our experiments on the 36 UCI data sets recommended by Weka[5].
All the preprocessing stages of data sets are carried out by the Weka[11]. They
mainly include the following three processes:

1. We use the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. We use the filter of Discretize in Weka to discretize numeric attributes.
3. It is well-known that, if the number of values of an attribute is almost equal

to the number of instances in the data set, this attribute does not contribute
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any information to classification. So we use the filter of Remove in Weka
to delete these attributes. In these 36 data sets, there only exists three this
type of attributes, namely Hospital Number in colic.ORIG, Instance Name
in Splice and Animal in zoo.

We conduct our experiments to compare ODANB on accuracy and AUC
with NB, SBC and TAN. In our all experiments, the accuracy of each classifier
is based on the percentage of successful predictions on the test sets of each data
set, and multi-class AUC has been calculated by measure[8]. The accuracy and
AUC of each classifier was measured via the ten-fold cross validation for all data
sets. Runs with the various classifiers were carried out on the same training sets
and evaluated on the same test sets. In particular, the cross-validation folds are
the same for all the experiments on each data set. Throughout, we compare
our algorithm with each other algorithm via two-tailed t-test with significantly
different probability of 0.95, because we speak of two results for a dataset as
being “significantly different” only if the difference is statistically significant at
the 0.05 level according to the corrected two-tailed t-test.

Table 1 show the accuracy of each classifier on the test sets of each data
set, the average accuracy are summarized at the bottom of the table. Table 2
show the AUC of each classifier on the test sets of each data set, the average
AUC are summarized at the bottom of the table. Table 3 shows the results of
two-tailed t-test between each pair of algorithms, each entry w/t/l means that
the algorithm at the corresponding row wins in w datasets, ties in t datasets,
and loses in l datasets, compared to the algorithm at the corresponding column.

The detailed results displayed in Table 1−Table 3 show that our algorithm
outperforms all the other algorithms used to compare measured by accuracy and
AUC. Now, we summarize the highlights as follows:

1. Our algorithm’s performance on classification measured by accuracy outper-
forms all the other algorithms. ODANB’s average classification accuracy is
83.37, but the best algorithm of the other algorithms is TAN with average
classification accuracy of 82.96. Moreover, the w/t/l value between ODANB
and TAN is 5/27/4.

2. Our algorithm’s performance on ranking measured by AUC outperforms all
the other algorithms. Although Our algorithm’s average AUC(89.30) is a
little lower than that of NB(89.61), the w/t/l value between ODANB and
NB is 9/25/2.

3. TAN improves NB’s performance on classification measured by accuracy, but
they perform even worse than Naive Bayes in ranking measured by AUC. The
average AUC of NB(89.61) is higher than that of TAN(80.58) significantly.
Moreover, the w/t/l value between TAN and NB is 1/12/23.

5 Conclusions

Naive Bayes delivers fast and effective classification with a clear theoretical foun-
dation. However, It is hampered by the limitations of the attribute independence
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Table 1. Experimental results on classification accuracy and standard de-
viation. ODANB: One Dependence Augmented Naive Bayes; NB: Naive Bayes; SBC:
Selective Bayesian Classifiers; TAN: Tree Augmented Naive Bayes with smoothed pa-
rameter of 5.0.

Datasets ODANB NB SBC TAN

anneal 96.55±1.11 94.32±2.38 96.88±2.5 96.66±2.35
anneal.ORIG 90.31±2.57 87.53±4.69 88.75±3.72 87.98±3.62
audiology 62.27±10.02 71.23±7.03 76.01±7.05 75.16±8.45
autos 78.55±6.92 64.83±11.18 67.71±11.27 76.07±10.01
balance-scale 91.36±1.38 91.36±1.38 91.36±1.38 86.08±3.18
breast-cancer 69.61±8.45 72.06±7.97 73.45±8.91 66.82±7.01
breast-w 96.99±1.85 97.28±1.84 96.42±2.26 96.71±1.79
colic 81.25±5.46 78.81±5.05 81.77±4.89 77.18±7.04
colic.ORIG 68.76±4.55 75.26±5.26 75.53±6.15 75.51±7.15
credit-a 82.9±3.54 84.78±4.28 85.51±4.16 84.64±5.03
credit-g 73.4±4.58 76.3±4.76 74.1±3.87 73.4±4.12
diabetes 73.84±7.31 75.4±5.85 75.53±5.07 75.13±4.71
glass 60.28±9.31 60.32±9.69 57.99±6.89 55.71±10.81
heart-c 80.46±10.31 84.14±4.16 82.47±7.61 77.53±7.41
heart-h 79.66±5.97 84.05±6.69 79±9.77 79.97±6.39
heart-statlog 80±11.07 83.7±5 79.26±9.75 81.11±3.68
hepatitis 85.13±7.36 83.79±8.79 80.63±6.8 83.83±8.05
hypothyroid 92.63±0.82 92.79±1.02 93.53±0.66 92.79±1.06
ionosphere 90.9±5.1 90.89±3.49 91.17±4.12 90.6±3.83
iris 94.67±8.2 94.67±8.2 97.33±4.66 90.67±11.42
kr-vs-kp 90.52±1.54 87.89±1.81 94.34±1.23 93.18±1.6
labor 90±14.05 93.33±11.65 77±11.91 88±11.46
letter 77.89±0.89 70±0.81 70.57±0.88 80.45±0.91
lymph 82.43±7.18 85.67±9.55 79±6.84 84.38±9.1
mushroom 99.94±0.09 95.57±0.45 99.67±0.23 99.77±0.12
primary-tumor 44.26±4.06 46.89±4.32 46.02±5.19 48.37±5.83
segment 94.2±1.12 88.92±1.95 90.43±1.96 86.36±2.36
sick 97.59±0.48 96.74±0.53 97.59±0.69 97±0.4
sonar 77.02±11.28 77.5±11.99 70.71±12.97 71.62±12.64
soybean 91.51±3.94 92.08±2.34 91.79±2.72 93.41±2.1
splice 93.07±2.34 95.36±1 94.76±1.6 95.39±1.35
vehicle 71.04±2.8 61.82±3.54 60.65±4.73 69.86±3.47
vote 94.04±3.9 90.14±4.17 95.18±3.93 93.12±4.02
vowel 91.82±2.31 67.07±4.21 68.69±3.47 83.43±3.84
waveform-5000 81.26±0.91 79.96±1.92 81.32±1.54 81.52±1.21
zoo 95.18±8.15 94.18±6.6 93.18±7.93 97.09±4.69

Mean 83.37±5.03 82.41±4.88 82.09±4.98 82.96±5.06
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Table 2. Experimental results on AUC and standard deviation. ODANB:
One Dependence Augmented Naive Bayes; NB: Naive Bayes; SBC: Selective Bayesian
Classifiers; TAN: Tree Augmented Naive Bayes with smoothed parameter of 5.0.

Datasets ODANB NB SBC TAN

anneal 96.53±0.22 95.9±1.3 94.7±3.92 92.97±2.51
anneal.ORIG 95.17±2.76 94.49±3.67 94.35±4.31 85.42±7.04
audiology 70.84±0.58 70.96±0.73 70.98±0.67 70.16±0.55
autos 93.07±4.06 89.18±4.93 90.43±3.43 90.28±2.59
balance-scale 84.46±4.1 84.46±4.1 84.46±4.1 76.47±7.56
breast-cancer 66.57±11.08 69.71±15.21 67.67±12.63 67.4±10.4
breast-w 99.04±1.05 99.19±0.87 99.16±0.62 98.74±1.32
colic 84.48±5.99 83.71±5.5 84.86±7.13 50.6±8.29
colic.ORIG 72.53±5.61 80.67±6.98 81.82±4.9 62.89±7.73
credit-a 90.19±3.79 92.09±3.43 87±3.75 63.3±13.3
credit-g 75.65±6.28 79.27±4.74 77.41±4.67 60.18±6.84
diabetes 80.88±5.95 82.31±5.17 82.79±5.04 74.18±5.87
glass 79.94±6.88 80.5±6.65 80.97±8.37 84.79±4.34
heart-c 83.85±0.79 84.1±0.54 83.87±0.64 82.96±1.12
heart-h 83.23±0.84 83.8±0.7 82.83±1.38 82.69±0.72
heart-statlog 88.18±9.27 91.3±4.19 87.98±6.91 80.12±11.94
hepatitis 86.04±12.18 88.99±8.99 83.62±12.29 53.83±14.97
hypothyroid 86.5±8.64 87.37±8.52 85.25±8.16 84.03±12.22
ionosphere 97.67±1.71 93.61±3.36 92.26±5.26 72.05±7.4
iris 98.58±2.67 98.58±2.67 99±1.46 94.17±5.51
kr-vs-kp 97.13±0.9 95.17±1.29 96.41±0.78 87.21±1.49
labor 91.67±18 98.33±5.27 65.83±32.5 68.33±40.41
letter 98.45±0.16 96.86±0.24 97.03±0.23 94.5±0.25
lymph 89.02±2.62 89.69±1.49 88.14±3.35 85.56±6.98
mushroom 100±0 99.79±0.04 99.98±0.02 99.87±0.04
primary-tumor 78.18±0.78 78.85±1.35 78.88±1.45 76.39±1.9
segment 99.55±0.23 98.51±0.46 98.93±0.42 95.35±1.06
sick 97.48±0.88 95.91±2.35 94.5±4.28 73.25±2.73
sonar 81.64±12.5 85.48±10.82 79.89±13.1 67.4±13.83
soybean 99.46±0.72 99.53±0.6 99.08±0.74 96.73±1.59
splice 99.05±0.57 99.41±0.22 99.14±0.36 97.72±0.68
vehicle 87.97±3.13 80.81±3.51 81.31±4.02 76.86±3.8
vote 98.16±1.47 96.56±2.09 94.26±4.14 93.49±1.38
vowel 99.49±0.2 95.81±0.84 96.12±0.59 92.33±1.23
waveform-5000 94.38±0.62 95.27±0.58 95.12±0.76 78.9±2.03
zoo 89.88±4.05 89.88±4.05 89.06±4.49 89.88±4.05

Mean 89.30±3.92 89.61±3.54 87.92±4.75 80.58±5.99
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Table 3. Results of two-tailed t-test on accuracy and AUC.

NB SBC TAN

SBC 6/29/1
accuracy TAN 6/26/4 4/28/4

ODANB 10/25/1 6/27/3 5/27/4

SBC 4/31/1
AUC TAN 1/12/23 0/16/20

ODANB 9/25/2 8/26/2 22/14/0

assumption. The current work is motivated by the desire not only to improve
Naive Bayes’ performance not only on classification measured by accuracy but
also on ranking measured by AUC. In this paper, we present a novel classification
algorithm called One Dependence Augmented Naive Bayes (simply ODANB) by
adding an attribute parent for some attributes. Our experimental results show
that our classification algorithm outperforms NB, SBC and TAN measured by
accuracy and AUC. In a word, we believe that we have been successful in our goal
of developing a data mining algorithm that retains the computational simplicity
and direct theoretical foundation of naive Bayes while alleviating the limitations
of its attribute independence assumption.
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