
Learning k-Nearest Neighbor Naive Bayes For
Ranking ?

Liangxiao Jiang1, Harry Zhang2, and Jiang Su2

1 Faculty of Computer Science, China University of Geosciences
Wuhan, Hubei, P.R.China, 430074

ljiang@cug.edu.cn
2 Faculty of Computer Science, University of New Brunswick

P.O.Box 4400, Fredericton, NB, Canada E3B 5A3
hzhang@unb.ca

Abstract. Accurate probability-based ranking of instances is crucial in
many real-world data mining applications. KNN (k-nearest neighbor)
[1] has been intensively studied as an effective classification model in
decades. However, its performance in ranking is unknown. In this paper,
we conduct a systematic study on the ranking performance of KNN. At
first, we compare KNN and KNNDW (KNN with distance weighted) to
decision trees and naive Bayes in ranking, measured by AUC (the area
under the Receiver Operating Characteristics curve). Then, we propose
to improve the ranking performance of KNN by combining KNN with
naive Bayes (simply NB). The idea is that a naive Bayes is learned using
the k nearest neighbors of the test instance as the training data and used
to classify the test instance. A critical problem in combining KNN with
naive Bayes is the lack of training data when k is small. We propose to
deal with it using cloning to expand the training data. That is, each of the
k nearest neighbors is “cloned” and the clones are added to the training
data. We call our new model instance cloning local naive Bayes (sim-
ply ICLNB). We conduct extensive empirical comparison for the related
algorithms in two groups in terms of AUC, using the 36 UCI datasets
recommended by Weka[2]. In the first group, we compare ICLNB with
KNN, NB, NBTree[3], C4.4[4]. In the second group, we compare ICLNB
with KNN, KNNDW and LWNB[5]. Our experimental results show that
ICLNB outperforms all those algorithms significantly. From our study,
we have two conclusions. First, KNN-relates algorithms performs well
in ranking. Second, our new algorithm ICLNB performs best among the
algorithms compared in this paper, and could be used in the applications
in which an accurate ranking is desired.

1 Introduction

Classification is one of the most important tasks in data mining. In classification,
a classifier is learned from a set of training instances with class labels, and an in-
? This work was supported by Excellent Youth Foundation of China University

of Geosciences(No.CUGQNL0505) and Natural Science Foundation of Hubei of
China(No.2001ABB006 and No.2003ABA043).

2 Liangxiao Jiang, Harry Zhang, and Jiang Su

stance x is often represented by a tuple of attibutes < a1(x), a2(x), . . . , an(x) >,
where ai(x) denotes the value of the ith attribute Ai of x. The performance of
a classifier is typically measured by its classification accuracy. Many classifiers
can also produce the class probability estimates p̃(c|x) that is the probability
of an instance x in the class c, as a by-product. Thus, a ranking of instances
based on the class probabilities would be generated. Indeed, in many data min-
ing applications, such a ranking is useful. For example, in direct marketing, we
often need to deploy different promotion strategies to customers with different
likelihoods of buying some products, in which a ranking of customers in terms
of their likelihoods of buying is desired.

KNN has been widely used for decades as an effective classification model.
KNN is based on a distance function that measure the difference or similarity
between instances. Given a test instance x, its k closest neighbors y1, · · ·, yk, are
found and a vote are conducted to assign the most common class to x. That is,
the class of x, denoted by c(x), is determined by the following equation.

c(x) = arg max
c∈C

k∑

i=1

δ(c, c(yi)), (1)

where c(yi) is the class of yi, and δ is a function that δ(u, v) = 1 if u = v.
KNN also produces an estimate p̃(c|x) using a simple vote. That is, p̃(c|x)

is the fraction of instances of class c in the k nearest neighbors, shown in the
following equation.

p̃(c|x) =
∑k

i=1 δ(c, c(yi))
k

. (2)

Essentially, KNN can be also viewed as a probability-based classifier, shown
in Equation 3. Thus, improving the probability estimates of KNN will also lead
to an improvement in its classification performance.

c(x) = arg max
c∈C

p̃(c|x). (3)

From Equation 2, intuitively, the probability estimates yielded by KNN
should be poor, since they are estimated from only the k nearest instances,
instead of the whole training data. Thus, its ranking performance should be
poor too. We will see later that, in fact, this intuition is sort of wrong.

When we study the ranking performance of a classifier, how to evaluate it
is a question. In most scenarios in data mining, the underlying true ranking of
training instances is unknown, and only a set of instances with class labels is
given. Fortunately, The area under Receiver Operating Characteristics curve, or
simple AUC, could be used for this purpose[6].

In recent years, AUC has attracted considerable attention in machine learning
and data mining community. Hand and Till[7] show that, for binary classification,
AUC is equivalent to the probability that a randomly chosen instance of class −
will have a smaller estimated probability of belonging to class + than a randomly
chosen instance of class +. They present a simple approach to calculating the
AUC of a classifier G below.

Learning k-Nearest Neighbor Naive Bayes For Ranking 3

Â =
S0 − n0(n0 + 1)/2

n0n1
, (4)

where n0 and n1 are the numbers of negative and positive instances respectively,
and S0 =

∑
ri, where ri is the rank of ith positive instance in the ranking.

From Equation 4, it is clear that AUC is essentially a measure of the quality
of a ranking. For example, the AUC of a ranking is 1 (the maximum value of
AUC) if there is no positive instance preceding a negative instance.

In recent years, reseachers have started to study the ranking performance of
traditional classification models, such as decision trees, naive Bayes and SVM
(support vector machine) [4, 8, 9]. To our knowledge, there has been no work on
studying the ranking performance of KNN-related algorithms (KNN and its vari-
ants). The motivation of this paper is to study systematically the performance
of KNN-related algorithms in ranking, measured by AUC.

The rest of the paper is organized as follows. In Section 2, we introduce
the related work on learning classifiers with accurate ranking. In Section 3, we
empirically compare KNN-related algorithms with decision trees and naive Bayes
in AUC, and then propose a novel algorithm for learning k-nearest neighbor
naive Bayes for ranking. We also present the experimental results of an extensive
empirical comparions on various algorithms in Section 3. In Section 4, we draw
a conclusion.

2 Related Work

In recent years, researchers have paid considerable attention to exploring learning
algorithms for yielding accurate ranking, since classification is not enough in
many applications, such as data mining. A substantial amount of research work
has been focussed on decision trees. It has been observed that decision trees
produce poor probability estimates. Provost and Domingos[4] point out that
the decision tree representation can approximate any probability distribution as
accurately as possible, but modern decision tree algorithms are biased against
building a tree with accurate probability estimates. They propose using Laplace
correction and turning off the reduced-error pruning in C4.5[10] to improve the
probability estimates. The resulting algorithm is called C4.4. They compared
C4.4 to C4.5 by empirical experiments, and showed that C4.4 is a significant
improvement over C4.5 with regard to AUC.

Ling and Yan also propose a method to improve the AUC of a decision
tree[8]. They present a novel probability estimation algorithm, in which the
class probability of an instance is an average of the probability estimates from
all leaves of the tree, instead of only using the leaf into which it falls. In other
word, each leaf contributes to the class probability estimate of an instance.

Kohavi[3] presents a model NBTree to combine a decision tree with naive
Bayes. In an NBTree, a local naive Bayes is deployed on each leaf of a traditional
decision tree, and an instance is classified using the local naive Bayes on the leaf

4 Liangxiao Jiang, Harry Zhang, and Jiang Su

into which it falls. The experiments showed that NBTree outperforms naive
Bayes significantly in terms of classification.

Some other traditional learning algorithms, such as decision trees[4, 8], naive
Bayes[11] and SVM[9], have been studied in terms of ranking. To our knowledge,
there has been no systematic study on the performance of KNN-related algo-
rithms in producing accurate probability estimates or probability-based rank-
ings. Instead, a substantial amount of work has been done on improving the
classificaiton accuracy of KNN. Recently, researchers have observed that an sig-
nificant improvement can be achieved by combining KNN with naive Bayes[5,
12]. That is, a naive Bayes is deployed in the neighborhood of the test instance,
consisting of its k nearest neighbors. Indeed, naive Bayes is a simple but effective
classifier, which is based on the assumption that all the attributes are indepen-
dent given the class (the conditional independence assumption). In addition, it
performs well when the size of training data is small[3]. Thus, naive Bayes is
a suitable local model within KNN. The idea for combining KNN with naive
Bayes is quite straightforward. Whenever a test instance is classified, a local
naive Bayes is trained using the k nearest neighbors of the test instance, with
which the test instance is classified. The classification of the local naive Bayes
is based on the following equation.

c(x) = arg max
c∈C

p(c)
k∏

i=1

p(ai(x)|c), (5)

where x is the test instance. The parameters of the local naive Bayes are the
probabilities p(c) and p(ai(x)|c) in Equation 5 that are estimated from the local
training data (the k nearest neighbors of x) based on frequency.

Frank et al.[5] present an model to combine KNN with naive Bayes, called
locally weighted naive Bayes(LWNB). In LWNB, each of nearest neighbors is
weighted in terms of its distance to the test instance. Then a local naive Bayes is
built from the weighted training instances. Their experiments show that LWNB
outperforms naive Bayes significantly.

Most of the existing research works on combining KNN with naive Bayes are
motivated by improving naive Bayes through relaxing the conditional indepen-
dence assumption using lazy learning. It is expected that there are no strong
dependences within the k nearest neighbors of the test instance, although the
attribute dependences might be strong in the whole data.

3 Probability-based Ranking of KNN

3.1 Experiment Methodology

The study in this paper is mostly based on experiments. Thus, we first introduce
the setup of our experiments. We run our experiments on the 36 UCI data sets
recommended by Weka[2]. All the preprocessing stages of data sets are carried
out by the Weka[13]. They mainly include the following three processes:

Learning k-Nearest Neighbor Naive Bayes For Ranking 5

1. We use the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. We use the filter of Discretize in Weka to discretize numeric attributes.
3. It is well-known that, if the number of values of an attribute is almost equal

to the number of instances in the data set, this attribute does not contribute
any information to classification. So we use the filter of Remove in Weka
to delete these attributes. In these 36 data sets, there only exists three this
type of attributes, namely Hospital Number in colic.ORIG, Instance Name
in Splice and Animal in zoo.

In our experiments, we use the Laplace estimation to avoid the zero-frequency
problem. Assume that there are p instances of the class c, N total instances, and
C total classes in the training data. The frequency-based estimation calculates
the estimated probability p(c) = p

N . The Laplace estimation calculates the esti-
mated probability p(c) = p+1

N+C . In the Laplace estimation, p(ai(x)|c) = 1+Nic

Ni+Nc
,

where Nic is the number of instances in class c and with Ai = ai(x), Nc is the
number of instances in class c, and Ni is the number of values for attribute Ai.

All algorithms are implemented within the Weka[13]. Multi-class AUC is cal-
culated by the M-measure[7]. The AUC of a classifier on a data set is obtained by
averaging the result from a ten-fold cross validation. Runs with the various algo-
rithms are carried out on the same training sets and evaluated on the same test
sets. Finally, we conduct two-tailed t-test with significantly different probability
of 0.95 to compare each pair of algorithms. That is, we speak of two results for
a data set as being “significantly different” only if the difference is statistically
significant at the 0.05 level according to the corrected two-tailed t-test.

3.2 The Ranking Performance of KNN

We have studied the ranking performance of KNN, measured by AUC, by experi-
mentally comparing KNN with naive Bayes and C4.4. Table 1 shows the detailed
experimental results at k = 10, and a summary of t-test results at k = 5, 10, 30
is shown in Table 2. This paper, we only present the detailed experimental re-
sults at k = 10 for KNN-related algorithms, due to the space limit. But in the
summary of t-test, we present comparison results at k = 5, 10, 30. From Table 1
and 2, we have a few observations on KNN as follows:

1. KNN performs worse than naive Bayes in ranking, when k is small. The
AUC scores of KNN are lower than naive Bayes’ in 10 data sets, and higher
than naive Bayes’ in 5 data sets at k = 5; and the cresponding numbers are
6 and 4, respectively, at k = 10.

2. KNN outperforms C4.4 in ranking. The AUC scores of KNN are higher than
C4.4’s at all the k values in Table 4. In addition, KNN outperforms C4.4 in
larger margin at larger k values.

3. The ranking performance of KNN improves as k increases.

Generally, the ranking performance of the traditional KNN is poor when k
is small. In real applications of KNN, a small k value is preferred, since the

6 Liangxiao Jiang, Harry Zhang, and Jiang Su

classification performance of KNN typically degrades as the increase of k. In
addition, small k conforms closer to the data.

It is a natural extension to KNN that weights the instances in the neighbor-
hood in terms of their distance to the test instance. The resuling model is called
k-nearest neighbor with distance weighted (KNNDW). The probability estimate
p̃(c|x) yielded by KNNDW is shown in Equation 6.

p̃(c|x) =
∑k

i=1 wiδ(c, c(yi))∑k
j=1 wi

, (6)

where wi is the weight of yi, which is a function of the distance d(x, yi). In
our experiments, wi = 1

d2(x,yi)
.

Our experiments show that KNNDW outperforms KNN in ranking. From
Table 4, you can see that the number of data sets on which KNNDW has higher
AUC scores is significantly greater than the converse.

3.3 K-nearest Neighbor Naive Bayes for Ranking

As we showed in Section 1, the probability estimate of KNN is based on a
voting within the neighborhood of the test instance. It is believed that a more
sophisticated local model within the neighborhood, instead of voting, would
improve probability estimates. It is natural to learn a local naive Bayes for
a test instance using only the k nearest neighbors. Although the conditional
independence assumption of naive is always violated on the whole training data,
it is expected that the dependencies within the neighborhood of the test instance
are not strong and thus naive Bayes performs better. However, when the local
naive Bayes is learned from only the k nearest neighbors, the training data tends
to be insufficient, espeically when k is small. Thus, the parameters of naive Bayes
cannot be accurately estimated. Then, the performance of a local naive Bayes
would be poor. In NBTree[3], a threshold on the size of the training data on a
decision node is set to avoid this problem. Each node should have at least 30
training instances. In LWNB[5], Laplace estimation has been used to smooth
probability estimates, and a relatively large k, such as k = 50, is chosen.

We propose to an approach to handling the issue of lack of training data by
expanding the neighborhood. We “clone” each neighbor in terms of its distance
to the test instance and add the clones to the training data. Thus, the parameters
in naive Bayes can be estimated more accurately and reliably, and the resulting
local naive Bayes performs better.

Our cloning is based on an explicit function, defined in Equation 7, which
measures the similarity between two instances with nominal attributes. Let x
and y are two instances, their similarity, denoted by s(x, y), is defined as:

s(x, y) =
n∑

i=1

δ(ai(x), ai(y)). (7)

Given a test instance x, for each instance y in its neighborhood, s(x, y) clones
of y are added to the training data. Then, a local naive Bayes is learned from the

Learning k-Nearest Neighbor Naive Bayes For Ranking 7

expanded training data with which x is classified. We call our method instance
cloning local naive Bayes, or simply ICLNB. Its algorithm is depicted below.

Algorithm ICLNB(T, k, x)
Input : a set T of training instances, an integer k, and a test instance x.
Output : the probability estimate p̃(c|x)

1. Find x’s k nearest neighbors y1, · · ·, yk, from T.
2. Local training set L = {y1, · · · , yk}
3. For each neighbor yi of x

– Compute s(x, yi) using the similarity function in Equation 7.
– Add s(x, yi) clones of yi to L.

4. Create a local naive Bayes NB using L as the training data.
5. Use NB to produce the probability estimate p̃(c|x).
6. Return the probability estimate p̃(c|x).

ICLNB is based on instance cloning, different from the instance weighting
in LWNB[5]. ICLNB replicates instances in order to improve the parameter
estimates of naive Bayes, and thus leads to more accurate probability estimates
from the local naive Bayes. On the other hand, the instance weighting of LWNB
aims to differentiate the contributions of instances to classification, and is not
necessarily helpful to the probability estimates of the local naive Bayes, which
will be shown by the experimental results in Section 3.4.

3.4 Experimental Results for ICLNB

We conducted two group of comparisons. In the first group, we compared ICLNB
with KNN, NB, NBTree, and C4.4. Table 1 and 2 show the experimental results
at k = 10 and a summary of t-test results at k = 5, 10, 30 respectively. In the
second group, we compared ICLNB with the KNN-related algorithms, including
KNN, KNNDW, LWNB, and the experimental results at k = 10 and a summary
of t-test results at k = 5, 10, 30 are shown in Table 3 and 4 respectively.

From Table 1 and 2, we can see that ICLNB generally outperforms all the
other types of algorithms compared in this paper in AUC. We summarize the
highlights as follows:

1. ICLNB outperforms naive Bayes significantly. The w/t/l values between
ICLNB and NB respectively is 9/25/5, 9/24/3, and 9/22/5 at k = 5, 10, 30.

2. ICLNB outperforms C4.4 significantly. The w/t/l values between ICLNB and
C4.4 are 11/23/2, 13/22/1, and 14/21/1 at k = 5, 10, 30, respectively. Notice
that C4.4 is the state-of-the-arts decision tree learning algorithm designed
for yielding accurate rankings.

3. ICLNB performs better than NBTree in AUC. The w/t/l values between
ICLNB and NBTree are 4/28/4, 6/27/3, and 5/31/0 at k = 5, 10, 30, respec-
tively. As k gets larger, ICLNB performs better than NBTree with larger
margin. This fact is quite interesting, since NBTree is similar to ICLNB in
the sense that both have naive Bayes as a local model. It indicates that KNN
would have a better potential than decision trees in ranking.

8 Liangxiao Jiang, Harry Zhang, and Jiang Su

Table 1. Experimental results on AUC and standard deviation. ICLNB: in-
stance cloning local naive Bayes; KNN: k-nearest neighbor; NB: naive Bayes; NBTree:
naive Bayes tree; C4.4: C4.5 with laplace correction and without tree pruning. The
value of K in each related algorithm is 10.

Datasets ICLNB KNN NB NBTree C4.4

anneal 95.46±3.77 94.52±3.94 95.9±1.3 96.45±0.28 93.78±2.9
anneal.ORIG 94.77±3.74 92.19±7.17 94.49±3.67 94.71±3.74 92.69±3.15
audiology 71.11±0.7 70.93±0.74 70.96±0.73 71.14±0.71 70.58±0.63
autos 94.13±2.69 89.55±2.95 89.18±4.93 93.93±2.68 90.73±4.52
balance-scale 72.2±2.91 65.86±2.94 84.46±4.1 84.46±4.1 63.06±6.18
breast-cancer 61.03±12.37 62.92±12.49 69.71±15.21 68.95±11.27 59.3±12.03
breast-w 99.41±0.74 98.37±1.59 99.19±0.87 99.21±0.73 97.85±1.86
colic 82.19±4.82 86.74±5.7 83.71±5.5 85.92±6.3 85.02±7.03
colic.ORIG 76.39±6.37 76.95±6.5 80.67±6.98 80.06±8.69 80.56±8.94
credit-a 90.09±3.33 91.59±3.55 92.09±3.43 91.48±3.52 89.42±3.1
credit-g 75.11±5.64 75.97±5.23 79.27±4.74 77.75±5.97 69.62±5
diabetes 79.28±6.08 78.35±5.68 82.31±5.17 82.31±5.17 75.5±5.76
glass 84.43±6.05 82.53±4 80.5±6.65 82.53±8.46 82.36±4.38
heart-c 83.57±1.05 83.8±0.77 84.1±0.54 83.96±0.51 83.1±1.19
heart-h 83.51±0.86 83.6±0.79 83.8±0.7 83.78±0.62 83.04±0.85
heart-statlog 88.27±3.51 90.6±4.82 91.3±4.19 89.66±3.42 81.36±9.15
hepatitis 85.2±14.49 86.97±9.3 88.99±8.99 88.03±8.29 82.03±14.04
hypothyroid 84.99±10.95 82.25±10.83 87.37±8.52 87.01±9.1 81.58±8.8
ionosphere 98.14±1.27 95.11±4.24 93.61±3.36 96.84±2.16 93.1±3.76
iris 98.75±2.12 97.83±3.12 98.58±2.67 98.08±2.67 97.33±2.63
kr-vs-kp 99.54±0.36 99.07±0.46 95.17±1.29 99.17±0.68 99.95±0.06
labor 95±11.25 95.83±10.58 98.33±5.27 100±0 74.17±31.04
letter 99.75±0.05 99.25±0.15 96.86±0.24 98.47±0.15 95.39±0.39
lymph 89.61±2.02 89.33±3.06 89.69±1.49 89.08±2.08 87.26±3.75
mushroom 100±0 100±0.01 99.79±0.04 100±0 100±0
primary-tumor 77.77±1.58 77.72±1.66 78.85±1.35 78.26±1.75 75.48±2.33
segment 99.66±0.17 98.82±0.26 98.51±0.46 99.09±0.43 98.85±0.32
sick 98.97±0.37 97.28±1.33 95.91±2.35 94.46±2.65 99.07±0.35
sonar 89.98±8.08 86.65±8.53 85.48±10.82 79.72±12.51 77.01±8.59
soybean 99.38±0.75 96.77±1.79 99.53±0.6 99.33±0.64 91.43±2.6
splice 98.47±0.63 97.9±0.71 99.41±0.22 99.41±0.22 98.14±0.72
vehicle 88.88±2.12 88.49±2.87 80.81±3.51 85.83±2.9 86.5±2.28
vote 98.72±1.12 97.88±1.27 96.56±2.09 98.82±1.61 96.77±2.96
vowel 99.7±0.25 96.12±0.87 95.81±0.84 98.66±0.68 91.28±2.46
waveform-5000 91.42±0.89 91.62±0.65 95.27±0.58 93.35±1.32 80.83±1.24
zoo 89.88±4.05 89.42±4.44 89.88±4.05 89.88±4.05 88.88±4.5

Mean 89.30±3.53 88.58±3.75 89.61±3.54 89.99±3.34 85.92±4.71

Learning k-Nearest Neighbor Naive Bayes For Ranking 9

Table 2. Summary on t-test of experimental results: AUC comparisons on
KNN, NB, NBTree, and C4.4.

KNN NB NBTree C4.4

NB 10/21/5
K=5 NBTree 12/23/1 7/28/1

C4.4 5/24/7 4/20/12 2/20/14
ICLNB 12/13/1 9/22/5 4/28/4 11/23/2

NB 6/26/4
K=10 NBTree 8/26/2 7/28/1

C4.4 2/25/9 4/20/12 2/20/14
ICLNB 10/25/1 9/24/3 6/27/3 13/22/1

NB 5/25/6
K=30 NBTree 8/25/3 7/28/1

C4.4 3/23/10 4/20/12 2/20/14
ICLNB 11/20/5 9/22/5 5/31/0 14/21/1

From Table 3 and 4, we can see that ICLNB achieves a significant improve-
ment to all other KNN-related algorithms compared in AUC scores. Now, we
summarize the highlights as follows:

1. ICLNB outperforms all other three algorithms significantly in AUC. For
example, compared to LWNB, ICLNB wins in 6 data sets, ties in 29 data
sets and loses in 1 data set, at both k = 5 and k = 10.

2. KNNDW outperforms LWNB k = 5 (wins in 7 data sets, loses in 1 data
sets); and there is no significant difference when k = 10 and k = 30. This
fact shows that weighting instances does not help to improve the probability
estimates, although it results in a significant improvement in classification.

3. Both KNNDW and LWNB are significantly better than KNN. It shows that
there is considerable space for improving the probability estimates of KNN.

4 Conclusions

In this paper, we have conducted a systematic empirical study on the ranking
performance of KNN-related algorithms. We found that KNN-related algorithms
performs well compared to naive Bayes and decision trees. We proposed an ap-
proach of combining KNN with naive Baye to improving the ranking perfor-
mance of KNN, and presented an instance cloning based method to deal with
the problem of lack of training data for the local naive Bayes. Our experimen-
tal results showed that our new algorithm ICLNB significantly outperforms the
KNN-related algorithms KNNN, KNNDW and LWNB. It also performs better
than the state-of-the-arts learning algorithms naive Bayes, C4.4 and NBTree.
Our study suggests that KNN and its variants could be a good model for the
data mining applications that requires accurate rankings.

10 Liangxiao Jiang, Harry Zhang, and Jiang Su

Table 3. Experimental results on AUC. ICLNB: instance cloning local naive
Bayes; KNN: k-nearest neighbor; KNNDW: k-nearest neighbor with distance weighted;
LWNB: locally weighted naive Bayes. The value of K in each algorithm is 10.

Datasets ICLNB KNN KNNDW LWNB

anneal 95.46±3.77 94.52±3.94 96.04±1.61 94.95±4.93
anneal.ORIG 94.77±3.74 92.19±7.17 94.41±3.61 94.38±2.35
audiology 71.11±0.7 70.93±0.74 71.14±0.6 71.06±0.65
autos 94.13±2.69 89.55±2.95 94.05±2.85 94.18±2.95
balance-scale 72.2±2.91 65.86±2.94 65.86±2.94 73.25±3.57
breast-cancer 61.03±12.37 62.92±12.49 65.04±12.54 62.44±12.56
breast-w 99.41±0.74 98.37±1.59 98.99±1.15 99.07±1.55
colic 82.19±4.82 86.74±5.7 87.32±4.55 84.37±4.2
colic.ORIG 76.39±6.37 76.95±6.5 75.22±7.88 73.62±10.18
credit-a 90.09±3.33 91.59±3.55 90.91±3.51 88.75±3.85
credit-g 75.11±5.64 75.97±5.23 76.06±3.89 74.53±5.02
diabetes 79.28±6.08 78.35±5.68 78.79±5.08 72.74±4.03
glass 84.43±6.05 82.53±4 85.65 ±6.55 82.88±7.01
heart-c 83.57±1.05 83.8±0.77 83.7±0.93 83.5±1.14
heart-h 83.51±0.86 83.6±0.79 83.5±0.74 83.38±0.97
heart-statlog 88.27±3.51 90.6 ±4.82 90.33±4.89 88.13±6.81
hepatitis 85.2±14.49 86.97±9.3 84.75±10.92 79.75±10.1
hypothyroid 84.99±10.95 82.25±10.83 79.22±10.68 80.07±12.51
ionosphere 98.14±1.27 95.11 ±4.24 94.16 ±2.52 96.89 ±1.4
iris 98.75±2.12 97.83±3.12 98.08±3.33 97.33±3.87
kr-vs-kp 99.54±0.36 99.07±0.46 99.55±0.21 99.38±0.29
labor 95±11.25 95.83±10.58 96.67±7.03 98.33±5.27
letter 99.75±0.05 99.25±0.15 99.44±0.07 99.43±0.06
lymph 89.61±2.02 89.33±3.06 89.64±2.36 89.19±2.76
mushroom 100±0 100±0.01 100±0 100±0
primary-tumor 77.77±1.58 77.72±1.66 76.9±1.98 76.99±2.68
segment 99.66±0.17 98.82±0.26 99.17±0.21 99.32±0.22
sick 98.97±0.37 97.28±1.33 98.08±0.85 98.03±1.64
sonar 89.98±8.08 86.65±8.53 88.57±8.27 90.27±7.45
soybean 99.38±0.75 96.77±1.79 99.28±0.76 99.31±0.8
splice 98.47±0.63 97.9±0.71 98.35±0.6 97.87±0.64
vehicle 88.88±2.12 88.49±2.87 88.2±2.91 87.84±2.91
vote 98.72±1.12 97.88±1.27 97.76±1.44 98.05±1.89
vowel 99.7±0.25 96.12±0.87 99.28±0.33 99.74±0.19
waveform-5000 91.42±0.89 91.62±0.65 91.44±0.67 87.36±1.17
zoo 89.88±4.05 89.42±4.44 89.88±4.05 89.88±4.05

Mean 89.30±3.53 88.58±3.75 89.04±3.40 88.51±3.66

Learning k-Nearest Neighbor Naive Bayes For Ranking 11

Table 4. Summary on t-test of experimental results: AUC comparisons on
KNN-related algorithms, including KNN, KNNDW, LWNB.

KNN KNNDW LWNB

KNNDW 8/27/1
K=5 LWNB 6/27/3 1/28/7

ICLNB 12/23/1 6/30/0 6/29/1

KNNDW 7/28/1
K=10 LWNB 6/27/3 2/31/3

ICLNB 10/25/1 6/30/0 6/29/1

KNNDW 8/26/2
K=30 LWNB 9/25/2 4/30/2

ICLNB 11/20/5 9/24/3 6/27/3

References

1. Aha, David W., Dennis Kibler, Marc K. Albert. 1991. Instance-Based Learning
Algorithms. Machine Learning, vol. 6, pp. 37-66.

2. http://prdownloads.sourceforge.net/weka/datasets-UCI.jar
3. Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree

Hybrid. Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD-96). AAAI Press (1996) 202-207

4. Provost, F. J., Domingos, P.: Tree Induction for Probability-Based Ranking. Ma-
chine Learning 52(3) (2003) 199-215

5. Frank, E., Hall, M., Pfahringer, B.: Locally Weighted Naive Bayes. Proceedings
of the Conference on Uncertainty in Artificial Intelligence (2003). Morgan Kauf-
mann(2003), 249-256.

6. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: com-
parison under imprecise class and cost distribution. Proceedings of the Third In-
ternational Conference on Knowledge Discovery and Data Mining. AAAI Press
(1997) 43-48

7. Hand, D. J., Till, R. J.: A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning 45 (2001) 171-186

8. Ling, C. X., Yan, R. J.: Decision Tree with Better Ranking. Proceedings of the 20th
International Conference on Machine Learning. Morgan Kaufmann (2003) 480-487

9. Huang, J., Lu, J., Ling, C., X.: Comparing Naive Bayes, Decision Trees, and SVM
with AUC and Accuracy. Proceedings of the Third IEEE International Conference
on Data Mining. IEEE Computer Society Press(2003), 553-556.

10. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann: San
Mateo, CA (1993)

11. Zhang, H., Su, J.: Naive Bayesian Classifiers for Ranking. Proceeding of ECML
2004. Springer (2004) 501-512

12. Xie, Z., Hsu, W., Liu, Z., Lee, M.: SNNB: A Selective Neighborhood Based Naive
Bayes for Lazy Learning. Proceedings of the Sixth Pacific-Asia Conference on KDD.
Springer (2002) 104-114

13. Witten, I. H., Frank, E.: Data Mining –Practical Machine Learning Tools and
Techniques with Java Implementation. Morgan Kaufmann (2000)

